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Abstract- A fault diagnosis method based on adaptive dynamic clone selection neural network 

(ADCSNN) is proposed in this paper. In this method the weights of neural network is encoded as the 

antibody, and the network error is considered as the antigen. The algorithm is then applied to fault 

detection of motor equipment. The experiments results show that the fault diagnosis method based on 

ADCS neural network has the capability in escaping local minimum and improving the algorithm speed, 

this gives better performance. 
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I. INTRODUCTION 

 

With power system moving in the direction of super-high voltage, high capacity and automation, 

the safety operation of electrical equipments plays an increasingly important role in the safety 

and stability of power system. It has been a common concern for electrical engineers to monitor 

apparatus abnormity and foresee equipment faults according to information of equipment’s 

situations provided by advanced state monitoring and fault diagnosing techniques. Repair 

schedule can be made in accordance with equipment situations and maintenance can be done 

before any potential faults should appear so as to avoid big economical losses. The possibility for 

motor fault is unavoidable. Many components of the induction motor are susceptible to failures, 

the stator windings are subject to insulation breakdown, the bars and end rings of the squirrel 

cage are subject to failures, machine bearings are subject to excessive wear and damage etc, all 

caused by a combination of thermal, electrical, mechanical, magnetic and environmental stresses 

[1,2]. 

Artificial neural network is a huge system which mimics human brain [3, 4]. Since Hopfield 

published his paper about neural networks with self-feedback connections [5], and Rumelhart et 

al. published their monograph on parallel distributed processing (PDP) [6], many neural networks 

have been developed for various applications. Neural networks have been successfully applied to 

fault detection [7], automatic control [8], combinatorial optimization [9], information prediction 

[10], and other fields [11]. Among a number of network models, the BP neural network is a basic 

model and widely applied in the fault diagnosis area. 

Neural networks have provided new fault detection methods, especially for complex systems for 

which scientific models are difficult to develop [12]. The simple structure and strong nonlinear 

mapping ability has led to wide use of back-propagation neural networks in fault detection. But it 

has two disadvantages when used to resolve some complicated problems, which are the slow 

convergence speed and getting into local minimum easily. Artificial neural network method has 

some “black box” characteristics in study and problem solution. The knowledge-obtaining 

process under this approach is difficult to interpret. So, new approaches, particularly those based 

on biological artificial intelligence, become urgent to be put on the agenda.  

Our natural immune system protects our body from foreign cells called antigens by recognizing 

and eliminating them. This process is called an immune response. Based on the development of 
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biological immune mechanism, through learning from natural defense mechanism, the artificial 

immune system provides self-studied, self-organized and clearly self-expressed knowledge. It has 

the advantage of distributed parallel processing, robustness and can solve complicated problems. 

It has presented itself a new approach towards fault diagnosis, which can be used to solve 

problems impossible to be solved by other methods. An immune response contains metaphors 

like pattern recognition, memory, and novelty detection. The fundamental of AIS is inspired by 

the theoretical immune system and the observed immune functions, principles, and models. 

The artificial immune algorithm is a global optimization algorithm which has the natures of 

diversity, learning, memory and parallel search [13, 14 and 15].The objectives and constraints of 

IA are first expressed as antigen inputs. The IA antigen and antibody are equivalent to the 

objective and the feasible solution of a conventional optimization method [16]. The genetic 

operators including crossover and mutation are the sequencing processes for the production of 

antibodies in a feasible space. The algorithm operating on the feasible cells can quickly achieve 

convergence during the search process. Information entropy is also introduced as a measurement 

of the diversity of the population to avoid falling into a local optimal solution [17]. Based on an 

analysis of the mechanism of antigen-antibody recognition as well as patterns of the mechanism, 

and combined with matrix singular value decomposition, this paper studies the fault diagnosing 

method based on the minimum antigen-antibody binding energy so as to make a quick diagnosis 

for equipment faults. 

This paper first describes an adaptive dynamic clone selection neural network (ADCSNN). The 

ADCSNN algorithm proposed in this paper optimizes the weights of the network globally using 

immune algorithm and searches the weights of network locally using BP algorithm. So it can 

escape getting into local minimum and improve the convergence speed of the algorithm. Finally, 

the optimized network is applied to fault detection of motor equipment with better performance 

[18, 19]. 

 

II. ADAPTIVE DYNAMIC CLONE SELECTION ALGORITHMS  

 

The biology has a kind of immune system called the adaptive immune system, which uses two 

types of lymphocytes: T cells and B cells. Here T cells are ignored. Only B cells which can 

secrete antibodies are involved. In the immune system, the lymphocytes recognize an invading 
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antigen and produce antibodies to exclude the foreign antigen. The exact number of foreign 

molecules the immune system can recognize is unknown but has been estimated to be greater 

than 16101 . In spite of the diverse types of antibodies, there is a control mechanism that adjusts 

to produce the needed quantities in the immune system. The immune system produces the diverse 

antibodies by recognizing the idiot types between antigens and antibodies or between antibodies 

and antibodies. These combination intensities can be guessed by the affinity defined using the 

information entropy theory. 

Based on the antibody-antibody affinity, antibody–antigen affinity and their dynamically allotted 

memory units along with the scale of antibody populations, Adaptive Dynamic Clone Selection 

Algorithm (ADCS) can adaptively regulate its evolution.  

In an optimization problem, the antigen, the antibody, and the affinity between them correspond 

to the objective function, the solution, and the combination intensity of the solution [20]. 

Adaptive Dynamic Clone Selection Algorithms [21, 22 and 23] is as follows: 

Step 1 Antigens recognition 

 In the initialization stage, fault samples of the induction motor are taken as a set of antigens (AG) 

in the shape space. The antibody set (AB) is randomly generated from AG. Take a training 

sample (
i

ag ): The training sample is defined as the antigen, and in our study the training sample 

is defined by the feature vector. 

The max iteration, termination condition, mutation probability mp , reconstruction probability cp , 

clonal scale cN , and other parameters are set. Iteration 0k , and the initial population are 

generated as follows: 

  n

n IaaaA  )0(,),0(),0()0( 21                                (1) 

The input data acts as the antigens for the IA. The objective function and constraints are given as 

input. 

Step 2 Production of initial antibodies )0(A  

Some antibodies are first selected from the group of memory cells, i.e., some antibodies are 

chosen from a data base containing superior previous antibodies. In this step, antibodies are 

created randomly on the feasible space. 

Step 3 Calculation of affinities    kAf   
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The affinity between the antigen and antibody is then calculated along with the fitness and 

density of the antibodies. The density is the proportion of those antibodies with the same or 

similar affinities to all the antibodies. The normalized affinity of antibody )(kAi  in population 

)(kA  is 

)(kA :                ],,,[}{ 21 kAfkAfkAfkAf n                  (2) 

Step 4 Memory cells updates 

The antibodies that have high affinity with the antigen are added to the memory cells. Since the 

number of memory cells is limited, antibodies in the memory cells are replaced by new ones with 

higher affinities. Allot adaptively the antibody populations, namely: according to the affinity, the 

antibody population is disparted to memory unit and generic antibody unit, 

 )(),()( kAkMkA b                                                         (3) 

Where    Nat aaakAkAkAkM ,,,)(,),(),()( 2121   ,  )(,),(),()( 21 kAkAkAkA nttb  , 

  isc Dsnfixt  .  fix is the integral function below,  xfix denotes the most integer less 

than x ; cs is a constant set to assure the size of memory units. 

Otherwise: 

 ii
i

n

j

n

i

ij

is
du

D
nn

D






 

max

)1(

1

1 1
                                                  (4) 

Which is used to measure the diversity of antibody population, 10  isD , the bigger isD  is, the 

better is the diversity. 

Antibody clone operator
P

CR is defined as  

       
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Where    iq

iiii

P

C aaaaR ,,, 21  , aNi ,,2,1  , ii nq ,,2,1   

Step 5 regulate the mutate probability: according to the following equation, the corresponding 

mutate probability of each antibody can be calculated. 
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A further amendment is made as follows: 




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Where M

mp  and bA

mp  are mutate threshold value of memory unit and generic antibody unit 

respectively, generally, 
M

mp << bA

mp < 1. 

Antibody mutate operator M

AR is defined as  
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Where   j

i

j

i

M

A aaR 1 , aNi ,,2,1  ,
aNqj ,,2,1   

Step 6: Adjust the clone scale according to the affinity, perform the clonal operator and get the 

new antibody population )1( kA ). In immunology, clone means asexual propagation so that a 

group of identical cells can be descended from a single common ancestor, such as a bacterial 

colony whose members arise from a single original cell as the result of mitosis [24].Antibody 

clone operator P

CR  is defined as  
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Step 7: Antibody reselect operator S

CR  is defined as 

 
      
 
   
 

''

2

'

1

11211

11

2

12

2

11

2

11

1

12

1

11

1

1121111

2

12

2

11

2

11

1

12

1

11

1

1121111

2

12

2

11

2

11

1

12

1

11

1

)2()3('

,,,,,,,,,

a

aN

aaa

aN

aaa

aN

aaa

N

q

NNN

S

C

qS

C

qS

C

q

NNN

qqS

C

q

NNN

qqS

C

S

C

aaa

aaaR

aaaRaaaR

aaaaaaaaaR

aaaaaaaaaR

ARAAb























 (10) 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 6, NO. 2, APRIL 2013 

 488 

1 kk ; if satisfy the halt condition, end, or else return to step2. 

Combining the enactment iterative times with hunting condition, here the algorithm is halted at 

the following criterion: 

 bestff *                                                           (11) 

Where *f is the global optimum, bestf is the current best function value. 

The optimization routine iterates from Step 3 until the termination criterion is satisfied. 

 

III. ADCS NEURAL NETWORK DIAGNOSIS METHOD 

 

By analogy we can show that the immune system and the fault identification problem share some 

common features. In fact, we can state that the system (the body) is exposed to a set of faults (the 

antigen). Moreover, in diagnosable systems each fault set can be uniquely identified by one of its 

consistent syndromes (the antigen’s molecular structure). In addition, the production of high 

“affinity” antibodies, pre-selected for the specific antigen, can be considered as fault 

identification. It follows that AIS can be used as a basis for identifying the set of faulty 

processors. In addition, our AIS-based diagnosis algorithm should be based on an affinity 

function that measures the resemblance between the input syndrome and the one generated for a 

given potential solution. 

The main idea of the ADCS neural network diagnosis method is to optimize the weights of the 

neural network globally using immune algorithm firstly utilizing its characteristics of 

preservation of diversity and global convergence, after global search to optimize the weights 

locally using BP algorithm with momentum to get a network which reaches a satisfactory level of 

performance, finally, input the test data to calculate the output of the network, and diagnosis the 

fault type based on the output. The principle involves encoding the number of hidden layer 

neurons, activation functions, and network training method as a binary string. The optimal 

solution is obtained by the ADCSA as the mean square error (MSE) of the antibody fitness.  

a. Fitness probability calculation 

The MSE of each antibody is computed in each ADCSA generation. Let MSE of the thi   

antibody be iMSE . The fitness of the antibody is then defined as its reciprocal: 

ii MSEf /1                                                               (12) 
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Thus, the fitness probability of antibody i  is defined as the ratio of single antibody fitness to the 

sum of the fitness of all antibodies, 





S

j

jifi ffp
1

/ ,        Si ,,2,1                                             (13) 

Where S is the number of antibodies. 

b. Density probability calculation 

The number of antibodies with the highest density is counted in the current population. The 

density probability of these antibodies is defined as: 
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The sum of the density probabilities of all antibodies is equal to 1. The density probability of 

antibodies with the high density is smaller than that of antibodies with lower densities. 

c. Antibody promotion and suppression 

The antibody selection probability is composed of its fitness probability and its density 

probability, 

dfii ppp )1(                                                                (15) 

Where 0< <1. From Eq. (4) larger antibody fitness will result in a larger selection probability 

while a higher antibody density will result in a smaller selection probability. Thus, high fitness 

antibodies are saved, while the antibody diversity is also guaranteed by the promotion and 

suppression between antibodies based on their densities. 

d. Crossover and mutation 

During the cross operation, the individual is divided into several groups, and each part is 

composed of a group of two individuals to complete the single point crossover and multipoint 

crossover operation with the cross probability. 

Mutation can help to increase the diversity of the population; we need to implement single point 

mutation and multipoint mutation with the rate of the variation. Mutation probability is an 

important factor to increase population diversity. In the genetic algorithm based on binary 

encoding, a lower mutation rate is enough to prevent the entire group of genes in any position to 

change. However, the rate is too small to produce new individuals, and too large probability 
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makes the genetic algorithm a random search algorithm. 

The crossover probability was set to 0.9 while the mutation probability was set to 0.01. The best 

antibody was directly selected into the next generation with no crossover or mutation operations 

to guarantee the ADCSA convergence [25].The specific steps for the ADCSA optimization of the 

BPNN were as follows: 

(1) Set the initial parameters, including the population size, S, the crossover probability, cP , the 

mutation probability, mP , the maximum number of network training epochs, Gen, and the 

minimum MSE goal. 

(2) Randomly create S antibodies. 

(3)Decode the antibody to get the BPNN parameters and structure, train the network, and 

compute the MSE of each individual. Let  i
i

MSEMSE minmin  , Si ,,2,1  . Then, calculate the 

antibody’s fitness probability, density probability, and selection probability using Eqs. (3)-(5). 

(4)Update memory cells. 

(5) Select S antibodies according to their selection probability. 

(6)Generate new antibodies using crossovers between antibodies and mutations. The best 

antibody is directly selected into the next generation with no crossover and mutation operations. 

(7) If minMSE meets the design limit or the number of iterations reaches the predefined limit Gen, 

then terminate the algorithm, otherwise, go to Step 3. 

 

 

IV. EXPERIMENT SETUP 

 

The relationship between fault modes and input parameters in motor equipment is a very 

complicated nonlinear function. Neural networks provide a suitable tool to approximate these 

nonlinear functions. Neural networks have several advantages. First, they can relate multiple 

analog variables without making intricate assumptions about the input variables. Second, they do 

not rely on expert experience but use only the observed data to approximate the implicit 

nonlinear input/output relationship during the training process. This study uses an adaptive 

dynamic clone selection algorithm to optimize the structure and parameters of the feed forward 

neural network to improve the fault detection accuracy. 
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Induction motors are the most used electro-mechanical devices in industrial applications to 

convert energy from the electrical form to the mechanical form. They are exposed to many 

loading and environmental conditions such as corrosive and dusty places. When a motor is 

continually operated at these conditions, aging of it accelerates and this may lead to many failures. 

Our method for diagnosis of faults in three-phase induction motors is based on three steps. 

Figure1 presents the scheme of our approach for induction motor fault detection and diagnosis. 

We performed experiments on an actual induction motor to test the effectiveness of our algorithm. 

 

 

Figure 1. The scheme of fault diagnosis 

 

In Figure1, six features are obtained from three-phase currents of the induction motor, and then 

these features are given to the adaptive artificial immune system. After the motor condition has 

been learned by the adaptive immune system, the memory set obtained in the training stage can 

be used to detect any fault. 
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The aim of the feature extraction stage is to obtain the fault related features using current signals. 

The motor condition can be classified by comparing with reference features gathered into classes. 

Motor current signals can provide sufficient information on stator and broken rotor bars faults 

[26]. The extracted features are given in the next sub-sections. 

(1)Broken rotor bar related feature 

The broken rotor bar related feature is expressed as 

sb sff 2                                                               (16) 

Where bf  and sf  are the broken rotor bar related sideband frequency and line frequency, 

respectively. The s represents the slip value. 

(2)Stator fault related feature 

The feature vector for stator faults are formed as follows: 

 
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0

0

max
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I
S                                                            (17) 

The preceding value converges to one when a fault occurs. In a healthy condition, this value is 

near to zero. 

(3)The mean power of the one phase current ( pM ) 





N

k

ap kI
N

M
1

2
)(

1
                                               (18) 

(4)The peak-to-peak values of dI  

   ddId IIp minmax                                              (19) 

(5) The peak-to-peak values of qI  

   qqIq IIp minmax                                              (20) 

(6)The last feature is the mean of the complex positive sequence component modulus: 

 cbap IIImeanI 2

3

1
  ,      )3/2(  je                      (21) 

We performed experiments on an actual induction motor to test the effectiveness of our algorithm. 

The characteristics of the three-phase induction motor used in the experiments are listed in Table 

1. Three current sensors and a data acquisition card are used to acquire current signals from the 

induction motor. The motor was tested with a healthy rotor, with a stator open phase fault, and 
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with a faulty rotor that had one broken rotor bar. Three supply voltages, 300, 340, and 380V, 

were used for tests of each motor condition. 

 

Table 1. Induction motor characteristic used in the experiment 

 

Description Value 

Power 0.5kW 

Input voltage 380V 

Full load current 1.5A 

Supply frequency 50Hz 

Number of poles 4 

Number of rotor bars 22 

Full load speed 1390rpm 

 

The induction motor is operated under three conditions: one for healthy condition, one for the 

rotor having one broken bar, and one for faulty stator. The number of samples for classification is 

given in Table 2 for each motor condition. 

 

Table 2. The properties or training and testing data 

 

Class Operating mode Supply voltage Number of training samples 

Fault1 Healthy condition 380V 15 

  340V 15 

  300V 15 

Fault2 One broken rotor bar 380V 15 

  340V 15 

  300V 15 

Fault3 Stator fault 380V 15 

  340V 15 

  300V 15 
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V. EXPERIMENTAL RESULTS AND DISCUSSION 

 

An induction motor was tested in the laboratory under 3 fault conditions. These tests were 

performed when the motor was energized from three different power supplies. The motor were 

supplied on different load in these tests. The diagnosis results based on six fault features are all 

given. The experimental results can be shown in Tables 3–11. Full load condition and 380V 

supply voltage under 3 type faults, see table 3. 

 

Table 3. The experimental results (Full load, 380V supply voltage) 

 

Diagnosis  results 
Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1 

1 50.011 0.011 1.511 0.061 0.031 1.500 

2 50.012 0.010 1.501 0.062 0.030 1.501 

3 49.512 0.012 1.502 0.059 0.031 1.502 

4 49.871 0.011 1.502 0.063 0.029 1.500 

5 49.111 0.013 1.521 0.061 0.021 1.501 

Fault2 

1 36.616 0.010 1.001 0.061 0.023 0.991 

2 36.291 0.010 0.996 0.063 0.021 0.993 

3 35.332 0.016 0.989 0.059 0.031 0.987 

4 36.221 0.010 0.991 0.058 0.030 0.997 

5 35.911 0.009 1.010 0.057 0.032 0.989 

Fault3 

1 50.001 0.861 0.712 0.060 0.031 0.801 

2 49.972 0.870 0.723 0.061 0.029 0.802 

3 50.017 0.862 0.773 0.063 0.032 0.801 

4 49.881 0.866 0.761 0.062 0.031 0.811 

5 50.021 0.831 0.691 0.061 0.030 0.809 

 

Full load and 340V supply voltage condition under 3 type faults, see table 4. Full load and 300V 

supply voltage condition under 3 type faults, see table 5, 

 

 



Wu Hongbing, Lou Peihuang, Tang Dunbing, ADAPTIVE DYNAMIC CLONE SELECTION 

NEURAL NETWORK ALGORITHM FOR MOTOR FAULT DIAGNOSIS 

 495 

Table4. Experimental fault result of motor with full load and 340V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.003 0.010 1.301 0.059 0.030 1.200 

Fault2 36.616 0.010 0.801 0.057 0.023 0.791 

Fault3 50.001 0.861 0.612 0.057 0.029 0.761 

 

Table5. Experimental fault result of motor with full load and 300V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.003 0.010 1.110 0.057 0.029 1.100 

Fault2 36.616 0.010 0.711 0.056 0.021 0.711 

Fault3 50.001 0.861 0.523 0.056 0.020 0.701 

 

Half full-load and 380V supply voltage condition under 3 type faults, see table 6. Half full-load 

and 340V supply voltage condition under 3 type faults, see table 7. Half full-load and 300V 

supply voltage condition under 3 type faults, see table 8. 

 

Table6. Experimental fault result of motor with half full-load and 380V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.011 0.012 1.211 0.052 0.030 1.300 

Fault2 36.291 0.011 0.886 0.053 0.019 0.981 

Fault3 50.017 0.762 0.771 0.059 0.030 0.800 
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Table7. Experimental fault result of motor with half full-load and 340V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.011 0.010 1.111 0.052 0.029 1.100 

Fault2 36.291 0.010 0.835 0.053 0.017 0.821 

Fault3 50.017 0.731 0.767 0.059 0.028 0.711 

 

Table8. Experimental fault result of motor with half full-load and 300V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.011 0.009 1.001 0.048 0.021 0.902 

Fault2 36.291 0.008 0.725 0.050 0.015 0.711 

Fault3 50.017 0.711 0.667 0.050 0.021 0.667 

 

No load and 380V supply voltage condition under 3 type faults, see table 9. No load and 340V 

supply voltage condition under 3 type faults, see table 10. No load and 300V supply voltage 

condition under 3 type faults, see table 11. 

 

Table9. Experimental fault result of motor with no load and 380V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.011 0.010 1.011 0.042 0.028 1.001 

Fault2 36.291 0.010 0.826 0.043 0.011 0.881 

Fault3 50.017 0.732 0.711 0.052 0.023 0.708 
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Table10. Experimental fault result of motor with no load and 340V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.011 0.009 1.001 0.032 0.026 0.890 

Fault2 36.291 0.008 0.802 0.043 0.010 0.781 

Fault3 50.017 0.632 0.701 0.050 0.021 0.607 

 

Table11. Experimental fault result of motor with no load and 300V supply voltage 

 

Diagnosis  

results 

Fault features 

bf  fS  pM  Idp  Iqp  pI  

Fault1  50.011 0.008 1.000 0.030 0.020 0.790 

Fault2 36.291 0.008 0.799 0.033 0.010 0.618 

Fault3 50.017 0.612 0.601 0.048 0.020 0.577 

 

From these tables, it can be seen that we can correctly diagnose fault based on the fault features. 

For the diagnosis of fault1, fault2 and fault3, the methods can all make correct decisions. 

Experimental performance results are shown in Figure 2. It gives the best, average, and worst 

convergence speeds of the classifier. The training data are taken as antigens. For these antigens, 

an antibody population is generated. All training data are normalized before the training process 

starts. The performance of ADCSNN becomes constant after 30 iterations. 
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Figure 2. Experimental performance results 

 

Features are used to determine faults under different supply voltages to increase the accuracy of 

our method. The 3D representation of training data is given in Figure3 for three fault types. 

 

Figure 3. 3D representation of three fault type 
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A typical evolution of the ADCSNN-based classifier is shown in Figure4, where the 

classification mean square error is measured over the training set, as a function of the algorithm’s 

number of iterations. 

 

Figure 4. Evolution of classification during a typical ADCSNN execution 

 

Artificial neural network (ANN), K-NN, and fuzzy K-NN methods were also applied to the same 

fault types, respectively. Artificial neural network (ANN), support vector machines (SVM) [27], 

K-NN, and fuzzy K-NN methods were also applied to the same fault types, respectively. The 

structure of the neural network was 6-10-3. The neural network had six inputs and three outputs. 

The output states of the neural networks were set to the following: 

[1; 0; 0] Healthy condition (H) 

[0; 1; 0] One broken bar (B1) 

[0; 0; 1] Stator fault (S) 

The k parameter of fuzzy and standard K-NN was selected as 3. The total accuracy rate for our 

method and other classifiers are given in Table 12. 
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Table 12. Experimental results of method with other artificial intelligence techniques 

 

Method Accuracy rate (%) 

KNN 86.75 

Fuzzy K-NN 90.33 

ANN 96.10 

SVM 98.14 

ADCSNN 98.96 

 

In Table12, The accuracy ADCSNN is approximate to 98.96, ADCSNN is better than K-NN, 

Fuzzy K-NN, ANN and SVM but difference is much more significant for K-NN and Fuzzy K-

NN methods. A typical evolution of the ADCSNN-based classifier is shown in Figure 5, where 

the classification accuracy is measured over the training set, as a function of the algorithm’s 

number of iterations. 
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Figure 5. Evolution of classification during a typical ADCSNN execution 
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Figure 6. Spaces of each class 

 

The experiments were made on a real induction motor. New features were obtained from three-

phase motor to diagnose and classify the faults. The spaces are given in Figure 6. When the 

results were compared to other intelligent classifiers, ADCSNN produced competitive results for 

all the problems. The proposed method has possibilities to detect multi faults by ADCSNN. The 

experimental results show that the proposed ADCSNN has high accuracy rate of fault diagnosis. 

The average performance of ADCSNN is better than other classifier methods to which it was 

compared. 

 

VI. CONCLUSIONS 

 

A novel adaptive dynamic clone selection neural networks system, ADCSNN, was designed and 

implemented. A method for fault diagnosis of motor sets using neural networks and adaptive 

dynamic clone selection optimization has been proposed. The optimized network has been 

successfully applied to a real induction motor. New features were obtained from three-phase 
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motor currents to diagnose and classify the broken rotor bars and stator faults. The experimental 

results show that the proposed ADCSNN has high classification precision. The average 

performance of ADCSNN is better than other classifier methods to which it was compared. 
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