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Abstract- In this paper, a unified and probabilistic method is proposed for simultaneously localization 

of a mobile service robot and states estimation of surrounding objects and co-existing people. This 

method allows intelligent robots to navigate reliably in dynamic environments and provide home-care 

services based on joint localization results. The algorithm makes use of probabilistic model to represent 

non-static people and objects states. Moreover, Rao-Blackwellized particle filters (RBPFs) are utilized 

for efficient joint estimation and laser sensing based smooth observation model is also introduced. The 

resulting algorithm works in real-time and estimates the position of people and state of doors with 

sufficient precision. Our approach has been tested in typical indoor environment with people, doors and 

other non-static objects. Experimental results demonstrate the favorable performance of the position 

estimation accuracy as well as the capability to deal with the uncertainty of mobile sensing.   

 

Index terms: Intelligent robot, localization, mobile manipulation, laser sensing, particle filters. 
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I INTRODUCTION 

For our aging society, dependable methods to improve service quality for the elderly is a 

pressing need [1][2]. Among these methods, intelligent robots are believed to be able to function 

in a human-like way and provide kinds of services for people [3][4][5]. More concretely, mobile 

service robots are installed in home care environments, endowed with capabilities of a large 

variety of manipulative or collective tasks [6][7], for example, delivering messages, fetching 

objects, cleaning rooms, opening doors and so on. Such robots must navigate in dynamic indoor 

environment with coexisting human as well as interact with objects (e.g., doors, drawers). A 

major problem to reliable localization of robot and estimating the states of co-existing people and 

non-static objects is the uncertainty of robot’s pose and the ubiquitous sensor noises.  

Over the last decade, probabilistic methods have been widely employed in the field of mobile 

robot localization and navigation. In special situations that robots need to interact with 

environment, probabilistic methods [9] are of significant importance to deal with the problem of 

non-static states of environment (including moving people and objects). For example, Limketkai 

and Biswas [8] et al. use an off-line EM algorithm to differentiate between static and non-static 

parts of an environment. Hahnel [10] use outlier rejection pre-processing to eliminate the effect 

caused by moving people. Other researches involve simultaneous mapping of obstacles and 

moving objects in the SLAM (Simultaneous robot Localization and Mapping) framework. Wang 

[11] proposes a framework for simultaneous localization, mapping and moving object tracking 

(SLAMMOT) for outdoor vehicles in crowed urban areas. Stachniss and Burgard [12] maintain 

clusters of local grid maps corresponding to different observed configurations of the environment.  

Mobile manipulation tasks require joint estimation of robot’s pose and the states of dynamic 

objects (and people). For example, in the context of robot taking an elevator or opening a door, 

robot needs to estimate the state of the door during its navigation for possibly manipulating the 

doorknob or handler. For another example, when a robot navigates with people, it must estimate 

the position of people nearby to get prepared for predictive avoidance. In both situations, robot 

must always precisely locate itself, which is a perquisite of accurate and safe navigation. For joint 

estimation in the Bayes filtering framework, Rao-Blackwellized particle filters (RBPFs) 

[13][14][15][17][18][19] provide notable insights into joint estimation tasks such as visual object 

tracking [14], SLAM [15] and multiple-model tracking [17][18]. In the SLAM cases, RBPFs 
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decompose the joint estimation into two steps as localization with Particle Filter (PF) and 

mapping with known pose using Kalman Filter (KF) [15] or Unscented Kalman Filter [16]. In 

[17], the unobstructed motion of a ball is tracked by sampling its motion models resulting from 

its interactions with the environment. 

In this paper, a probabilistic approach to state estimation for simultaneous manipulation and 

global navigation is proposed. It allows robots to perform many mobile manipulation tasks. The 

joint estimation algorithm borrow many ideas from SLAM [15] and SLAP [22] research. 

However, this paper is different from related work [23] in that we extend to consider the 

localization of both people and non-static objects in a dynamic Monte Carlo Localization 

framework.  

The organization of the lecture is as follows. Section II describes the probabilistic model of 

robot observation as well as object motion. Section III introduces the proposed joint estimation 

algorithm based on RBPF. In Section IV, experimental results are given, which illustrates the 

effectiveness of the proposed method in service robot application. 

 

II Probabilistic Model and Notation 

2.1 Representation of States and Environment 

 We consider sensors based algorithm to determine the pose of robot and the states of 

dynamic objects (e.g., people and doors) in indoor environments. The position of people are 

assumed unknown, but the doors are restricted with known positions and unknown states. For 

example, the shape of a door is governed by a state parameter   that denotes the angle at 

which the door is open.  

 At each time step t , the problem of joint state estimation is to recursively evaluate the 

joint maximum a posterior (MAP) distribution, from a Bayesian perspective:  

  1: 1: 1( , , | , )t t t t tp r h z u  ,        (1) 

where , , ,( , , )t r t r t r tr x y   is the robot’s pose, th  represent the robot pose and human position 

respectively, 1:tz  is a sequence of measurements, and 1: 1tu   is a sequence of control it has 

executed.  
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 Given the robot pose and a new control, the pose evolves according to a probabilistic 

motion model derived from robot kinematics: 

1 1( | , )t t tp r r u       (2) 

The object state evolves according to 1( | )t tp     and the ground-plane movement of people, 

1( | )t tp h h  , is assumed to follow a Langevin process [24]. Similarly, sensor measurements are 

governed by a observation model ( | , , )t t t tp z r h  . 

 The environment is presented by an occupancy grid map, following the experience in 

mobile robot navigation practice. In the occupancy grid map, information about static objects 

and obstacles in typical office environments such as walls, tables, cabinets are mapped and 

stored at a resolution of 10cm10cm. However, moving objects (e.g., doors and people) are 

partial unknown and their states are to be estimated in the joint localization procedure. In the 

presented paper, we use models comprising polygonal objects (“polygon model”) to represent 

these objects and circular objects (“circle model”) to represent people.  

2.2 Measurement model 

The grids are usually only partially occupied, and thus there is a probability of the laser 

entirely passing through it. With regard to this, each grid cell is associated with a probability 

that a laser terminates within it. We assume that the i th robot pose particle is sampled, and thus 

the laser measurement model with respect to the i th particle is computed as follow. 

By comparing the actual laser observation tz  with an ideal laser scan { }L  ray-traced from 

the hypothesized robot pose ( )i

tr , the measurement model ( )( | )i

t tp z r  is computed in which 

each point is assigned with a probability that is in inverse ratio with its Euclidean distance to 

the closest object, be it a hypothesized person or a occupied map cell. 

To calculate ( ) ( ) ( )( | , , , )i i i

t t t tp z r h M with a prior environmental map M , the person’s 

estimated position ( )i

th and the object’s state ( )i

t  conditioned on ( )i

tr , the Likelihood Field 

Model is computed by fusing three sources of noise: 

( ) ( ) ( )

hit hit rand max max( | , , , )i i i

t t t tp z r h M z p z p z p   
rand .   (3) 

Measurement noise with people hypotheses: hitp  captures the sensor noise by a zero-mean 

Gaussian. The hitp model of the iang th laser beam is computed as 
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( ) ( ) ( )

,

2

( | , , , )

11( , ) exp( ),
2 2

i

i

i i i

t ang t t t

hit ang

hit hit

p z r h M

p dist d




 



  
      (4) 

where
iangd is the Euclidean distance between the iang th laser point (after being transformed to 

the x-y coordinate frame) and the nearest obstacle in the local grid map obtained by the laser 

ray-tracing. Obstacle candidates can be either mapped objects or person hypothesis.  

Failures: The possible failures of the max-range readings are modeled by a point-mass 

distribution maxp . 

Unexplained random measurement: The random noise of laser sensors is modeled by a 

uniform distribution randp . 

 For an entire laser scan, the probability ( ) ( ) ( )( | , , , )i i i

t t t tp z r h M amounts to Equation (5) 

under an independent assumption among the readings of each laser beam 

( ) ( ) ( ) ( ) ( ) ( )

,

1

( | , , , ) ( | , , , )
ang

i

i

N

i i i i i i

t t t t t ang t t t

ang

p z r h M p z r h M 


  ,    (5) 

in which  180angN   is the number of laser beams according our laser scan device SICK LMS-

200.  

 

Figure 1. Leg based people-detection using laser range finder 

Beside the robot’s observation of static obstacles, the measurements about non-static doors 

and people are considered as “detection driven”, i.e., the observation model is valid only when 

the robot detects the target within the field-of-view of sensors. Thus a leg detection technique 

person1 person2

person3

③

③③
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goal
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Grid cell
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[25] is adopted that models a human leg approximately by cylindrical in laser scans, as shown 

in Figure 1.  

Moreover, a door frame detection technique similar to Chen’s method [20][21] is 

employed which combines visual and range information. In detail, the visual method utilizes 

robot onboard camera to capture and perceive image data and extract visual cues including 

intensity edges along the sides (posts) and top (lintel) of the door. When the visual channel 

reports a valid door detection result (as shown in Figure 2), the laser based observation method 

mentioned above begins to function in the object(door) state estimation procedure, as will be 

explained in the following section, which will estimate the angle at which the door is open 

(illustrated by Figure 3). 

 

Figure 2. Robot’s onboard camera is used for detecting existence of doors 

 

Figure 3. Door state perceived by laser sensor 

 

 

 

III Joint Location Inference Using RBPF 
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3.1 Rao-Blackwellization 

 

Figure 4. Dynamic Bayesian network model of the robot pose tx , object state t , people 

position th , measurements tz , and controls tu . 

Figure 4 represents the Dynamic Bayesian network model of the joint localization problem. 

According to the Rao-Blackwell theorem, instead of sampling full distributions, Rao-

Blackwellized particle filters evaluate one part of the filtering equation analytically and the other 

part by Monte Carlo sampling. Such marginalization replaces the finite Monte Carlo particle set 

representation with an infinite closed form particle set, which is always more accurate than any 

finite set.  

With an assumption of independent and non-linear movements of people and robots, the 

RBPF algorithm for SLAP is established on the following factorization of the joint posterior in 

(1) by conditioning the state th and t on tr  

1: 1: 1 1: 1: 1: 1( , , | , ) ( , | , ) ( | , )t t t t t t t t t t t tp r h z u p h r z p r z u   .   (2) 

Since people positions and object states are independent, the above equation can be rewritten as: 

1: 1: 1 1: 1: 1: 1: 1( , , | , ) ( | , ) ( | , ) ( | , )t t t t t t t t t t t t t tp r h z u p h r z p r z p r z u   .  (3) 

Similar to the regular PF, RBPF represents the posteriors by a set of N weighed samples: 

( ) ( ){ , |1 }i i

t t tS s w i N    

The key idea of applying RBPF to joint state estimation is to compute (3) by firstly sampling 

robot pose from 1: 1: 1( | , )t t tp r z u   and then computing the state th and t , respectively, conditioned 

on each robot sample. This conditioning breaks the high dimensional particles into three sets with 

lower dimension: 

1u 2u 3u

1r 2r 3r

1 2 3

1z 2z 3z

tu

tr

t

tz

1h 2h 3h
th

...

...

...
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( ) ( ) ( ) ( ) ( ) ( )

, , , , , ,{ , , } {{ , },{ , },{ , }}i i i i i i

t r t h t t t r t t h t t tS S S S r w h w w    

More specifically, by applying the Sampling Importance Re-sampling (SIR) filter, a Rao-

Blackwellized SIR filter incrementally estimates the pose of the robot according to    

(

1

(

1

) )( ,~ | , )i

t t t

i

t tr rp z ur  
.          (4) 

Then the samples of people positions and object states are estimated, respectively: 

( ) ( )

1

( ) ( | , , )~ i i

t t

i

tt th p h h r z
,        (5) 

( ) ( )

1

( ) ( | , , )~ i i

t

i

t t t tp r z   
.     (6) 

To compute (5) and (6), a KF/EFK is attached to each ( )i

tr for analytically computing a potential 

people/object position. Such conditioning turns each conditional people/object state into a 

Guassian distribution whose mean and variance can be efficiently estimated using KF/EFK.  

The RBPF based joint state estimation algorithm is described as follow. After initially drawing

rN uniformity distributed samples from the initial distribution 0( )p r , following steps are performed 

each time when 1( , )t tz u  is available.  

Firstly, a sample set ( )

1 1{ }, 1,...,i

t tr i N  is drawn from , 1r tS  , the robot sample set at the time 1t 

and rN new samples ( ){ }i

tr are obtained by sampling from the proposal distribution q , chosen as the 

odometry motion model. In situations of localization with laser range finders, this motion model is a 

suboptimal proposal distribution since the sensor reading is significantly more precise than the 

odometry.  

Then, the laser observation likelihood field model is computed for robust robot localization in 

dynamic environment. The new observation model is utilized for the perception update process. The 

importance weight assigned to ( )i

tr can be computed as 

( )
( ) 1: 1: 1

( )

1: 1: 1

( ) ( ) ( )
( )1: 1 1 1: 1

1( ) ( )

1 1: 1: 1

( ) ( )

1

( | , )

( | , )

( | , ) ( | , )

( | , , )

( | )

i
i t t t

t i

t t t

i i i
it t t t t t

ti i

t t t t

i i

t t t

p r z u
w

q r z u

p z r z p r r u
w

q r r z u

p z r w





  


 





 

 

.    (7) 

The second line of (7) restricts the proposal distribution q to a recursive form according to [13] and 

the third line replaces q by the motion model 1 1( | , )t t tp r r u  .  
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Thirdly, the improved re-sampling method involves an adaptive re-sampling step to reduce the 

number of samples to be re-sampled and an Evolution Strategy (ES) based re-sampling step to 

optimize the distribution [22]. The advantage of the new re-sampling method is that it guarantees 

the propagation of robot samples to approximate the true distribution of the robot’s probabilistic 

density function (PDF), as well as maintains high computational efficiency. Thus the robustness of 

the robot localization against dynamic disturbances and environmental cluttering is significantly 

improved. 

Finally, conditioned on each robot sample ( )i

tr , a conditional position of person is evaluated as 

Gaussian distribution using EKF. This leads to an unconditional distribution of the person’s ground-

plane position, approximated by a mixture of rN Gaussians.  

3.2 Human and Object state estimation 

A Gaussian/Extended Kalman Filter (EKF) approximation method is used to estimate the 

object and people states posteriors, ,h tS  and ,tS . In this section, a tracker for estimating the 

states of objects is taken as an example, and the tracker for estimating the people position is 

implemented in a similar way. The EKF based object tracker keeps track of the mean t  and 

variance t  of the approximating Gaussian in each particle ( )i

t . Since ,tS  involves only the 

latest object state t  rather than the entire state history, the storage and computation loads do not 

grow with time and thus efficient and real-time computation is guaranteed.   

1

1

,

1

| , ,( )

( ) ( )

= ( ) (

| , , | ,

| , )

,

| , ,

t t t

t

t t t t t t

t t t

t t t

t t t

t

t

r z uS

z r z u r z u

p

p p

p pz r r z u

 

 

 

 





 ,     (8) 

In the above equation, we write tz  and tu  to denote all measurements and controls up to time t . 

The first step above follows the Bayes rule; the second step follows the conditional independence 

assumptions [23]. For example, it implies that tz , the observation at time t , is independent from 

the history of observations and controls. Finally, the above expression is a product of a 

measurement likelihood term and an object dynamic model. The observation model is described 

in Section 2.2, and the object dynamic model is defined as: 

1

1 1 1

11 1| , , |( ) ,( | ) ( ),
t

t t t t t t

t tt t tr z u r zp p p du


  


  

       (9) 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 5, NO. 4, DECEMBER 2012 

1089



Equation (9) gives the recursive computation relation of the object dynamics. In the EKF 

framework, because 1 1

1 |( , ),t t t

tp r z u  


 is already approximated as a Gaussian by a Rao-

Blackwellized particle from the previous filtering timestep, the mean and variance of 
,tS  can be 

easily computed in closed form using a linear-Gaussian motion model. Similarly, the dynamic 

model of people is chosen as Langevin process, which can be used in Equation (8) for estimating 

the mean and variance of people position.  

IV Experiment Results 

We apply our method to service robots designed for home care applications. An office 

environment is designed as a test-bed environment to perform home-care services for the elderly 

and disabled. An ActivMedia Pioneer 3-DX/Peoplebot robot (as shown in Figure 5(a)) equipped 

with a SICK LMS-200 laser range finder was employed in the experiment. Figure 5(b) shows a 

situation that human and robot co-exist in the office environment. 

   

(a)      (b) 

Figure 5. Service robot employed in the experiment 

The occupancy grid map was obtained at 10cm resolution using standard SLAM algorithm 

with onboard laser sensor. The developed localization software computes in real-time the 

positions of the robot and moving people and meanwhile estimates the states of doors. The 

software treats the estimation of people and door states differently. On one side, the people 

position is maintained in the global world frame of the room directly from the algorithm. On the 

other side, the door state is recovered by building a single precise polygon model of door and 

pasting the model onto the grid map at places where doors exist.  

Figure 6(a) shows the convergence of samples with the movement of a robot tracking a 

people. Red (darker) dots and red line denote the sample for approximating the position of the 

PTZ camera

sonar ring

SICK LMS200 

laser range finder

differential wheels

WLAN antenna

Height : 150cm
Weight : 52kg
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robot and its trajectory history, respectively; Green (lighter) dots and green line denote those of a 

person. As can be seem from the figure, the samples successfully converged to produce the 

approximated mean value of the estimated positions.  

  

Figure 6. Robot localization with estimation of person position 

To give a quantitative evaluation of the localization accuracy, we collected several minutes 

of laser and odometry data of the robot’s approach towards a door in twelve distinct test 

situations, six of which contains people walking around the robots. The root-mean square (RMS) 

error with respect to ground truth is taken and the averaged over all twelve test situations reports 

final accuracy less than 10cm, compared with the whole room environment of 90m
2 

in size. 

Figure 7(a) shows the evolution of the position estimation error as a function of time. Figure 7(b) 

shows the statistical relation of the sample number with the error rate, measured in the percentage 

of time during which the robot lost track of its pose and the person’s position. As a compromise 

between the accuracy and the computational complexity, the number of samples was chosen as 

400 to 500 in the experiment. Experimental results yield that the tracking module ensured an 

average positional error of 6.5cm for robot localization and 3.4cm for people-tracking. 
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(a) 

  
(b) 

Figure 7. Robot localization and people-tracking error 

Furthermore, Figure 8(a) shows the global grid map of the whole 4
th

 floor of our laboratory 

building and the green (lighter) dots demonstrate the laser data layered onto the grid map, which 

well fit the environment map. Figure 8(b) shows the corresponding laser scan in the robot’s local 

frame. In all, the proposed method can simultaneously estimate the position of robot and 

coexisting people, as well as the state of other non-static objects, such as doors. 
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(a) 

 
(b) 

Figure 8. Estimated door state 

V CONCLUSIONS 

In this paper, a probabilistic method is proposed to jointly estimating of robot location, 

moving people position and non-static object state. Due to the uncertainty of robot’s pose as well 

as the robot’s onboard sensory information, the proposed algorithm makes use of Rao-

Blackwellized particle filters to ensure reliable joint localization and tackle with sensor noise and 

dynamic uncertainty problem. The method allows a single robot to efficiently perform self-

localization and object state estimation simultaneously using its onboard sensors. This is 

considered especially important for mobile manipulation tasks such as taking elevator or opening 

a door handle. Experiments for mobile robot localization and navigation in typical office 

robot goal

door

44 

roomA

roomB
roomC

roomD

Door frame

door

robot
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environment are given and the experimental results validate the effectiveness of the proposed 

method.  
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