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Abstract- Methods of de-noising the output signal of the JSD-I/A quartz flexural accelerometer based 

on five types of multiwavelets are comparatively investigated in this paper. Firstly, the theory of 

multiwavelet transform and the generalized cross validation criterion are analyzed. Secondly, because 

the JSD-I/A quartz flexural accelerometer which is fixed in SCT-1 two-axis rotation platform by the 

appropriative clamp has a start-up procedure of 3 minutes, the output signal of the quartz flexural 

accelerometer are sampled after applying the voltage for 5 minutes. Thirdly, based on the soft threshold 

function and the universal threshold, GHM orthogonal multiwavelet, SA4 orthogonal multiwavelet, CL 

orthogonal multiwavelet, Cardbal2 balanced multiwavelet and BIGHM biorthogonal multiwavelet are 
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applied to de-noise the sampled signal of the JSD-I/A quartz flexural accelerometer with 4 

decomposition level, respectively. Lastly, the generalized cross validation criterion is used to evaluate 

the de-noising effects of the above five multiwavelets. The experimental results shows that the 

generalized cross validation value of BIGHM biorthogonal multiwavelet is effective in de-nosing the 

the output signal of the JSD-I/A quartz flexural accelerometer, and offer the best performance than 

GHM orthogonal multiwavelet, SA4 orthogonal multiwavelet, CL orthogonal multiwavelet and 

Cardbal2 balanced multiwavelet. 

 

Index terms: GHM orthogonal multiwavelet, SA4 orthogonal multiwavelet, CL orthogonal multiwavelet, 

Cardbal2 balanced multiwavelet, BIGHM biorthogonal multiwavelet, generalized cross validation, JSD-I/A 

quartz flexural accelerometer. 

 

 

I. INTRODUCTION 

 

Since the 20th century, marine gravimeters are widely used in the fields such as the offshore oil 

and gas exploration, the marine geothermal resources survey, gravity passive navigation, etc. 

Many countries in the world have developed various marine gravimeters that are used for 

measuring the marine gravity changes. For example, S-marine gravimeter is developed by 

American LaCoste & Romberg Company and BGM-3 gravimeter is developed by American Bell 

Company. Many kinds of the metal zeros-length spring, the quartz zeros-length spring and the 

inertial accelerometer are adopted for the gravitational sensors of marine gravimeter. In the 

development of the high precision marine gravimeter, the high precision quartz flexural 

gravitational sensor has been adopted as the gravitational sensor in our research project. Because 

the signal de-noising of the quartz flexural gravitational sensor is one of the key technologies of 

the high precision marine gravimeter, the output signal processing of the quartz flexural 

gravitation sensor based on multiwavelet analysis is researched in the paper. 

 

II. MULTIWAVELET THEORY 
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Multiresolution analysis is researched firstly in this section; on the basis we analyze the 

multiscaling function and multiwavelet function and the orthogonal multiwavelet transform [1～

4].  

a. Multiwavelet analysis 

Let function
T 2

1( ) [ ( ), , ( )] ( )r

rt t t L R    (r = 2 in the paper) be the vector function with 

2( ) ( ), 1,2, ,i t L R i r   . For every jZ the following subspace is defined: 

/2{2 (2 - ) :1 , }j j

j iV span t k i r k Z                                            (1) 

Vector function Φ(t) is called a multiscaling function if the subspace Vj, defined in the formula 

(1), satisfies the following properties: 

(1) 1 0 1V V V    ; 

(2)
2 ( )j

j Z

V L R


  and {0}j

j Z

V


 ; 

(3) 1( ) (2 ) ,j jf t V f t V j Z     ; 

(4)function family  ( ) :1 ,i t k i r k Z      is a Riesz basis of V0. 

and saying that the multiwavelet generates a r multiplicity multiresolution analysis of space 

L
2
(R). 

Because the multiscaling function 0 1( )t V V    and the subspace V1 is generated by 

 2 (2 ) :1 ,i t k i r k Z     , the multiscaling function satisfies the two-scale equation: 

( ) 2 (2 )k

k

t G t k                                                       (2) 

where 
2 ( )r r

k ZG Z 

   is r×r dimension low-pass filter coefficient matrix. 

If the scaling function set /2

, ,{ ( ) 2 (2 ) :1 , }j j

i j k it t k i r k Z       is a Riesz basis of subspace 

Vj, the multiscaling function Φ(t) can be denoted: 

, 1, , , ,( ) ( ), , ( )
T

j k j k r j kt t t                                                   (3) 

A multiscaling function Φ(t) is orthogonal if the basis { ( ) :1 , }i t k i r k Z      is not only a 

Riesz basis of V0, but also is orthogonal: 

,0( ), ( ) ( ) ( ) ( )T

r kt t k t t k dt k Z                                         (4) 
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b. Multiwavelet Function 

Let Wj represents the complementary space of Vj in the space Vj+1, so we have 

1j j jV V W    and {0}j jV W                                                  (5) 

It can be known from the properties (1) and (2) of the define of multiresolution analysis that 

2 ( )j
j Z

W L R

  . 

Let 
2

1( ) [ ( ), , ( )] ( )T r

rt t t L R    , for every j∈Z  

/2{2 (2 ) :1 , }j j

j iW span t k i r k Z                                               (6) 

The function Ψ(t) is called a multiwavelet function if  { :  1 , Z}i t k i r k      is a Riesz 

basis of W0. The wavelet function set    /2

, ,{   2 2 :  1 , Z}j j

i j k it t k i r k      is a Riesz 

basis of subspace Wj, and  , ,{  :  1 , , Z}i j k t i r j k     is a Riesz basis of space L2(R). Similar 

with the multiscaling function, we can denote       T

, 1, , , ,  [ , , ]j k j k r j kt t t    . 

Because the wavelet functions 1( ), , ( )rt t  belong to 0 1W V  and the subspace V1 has the basis 

 2 (2 ) :1 ,i t k i r k Z     , the multiwavelet function satisfies the two-scale equation: 

( ) 2 (2 )k

k

t H t k                                                          (7) 

where 
2H ( )r r

k Z Z 

   is r×r dimension high-pass filter coefficient matrix. The multiresolution 

analysis is called a orthogonal multiresolution analysis, if the multiwavelet space Wj, defined in 

formula (6), is a orthogonal complementary space of Vj in the space Vj+1, namely, 

1j j jV V W    and j jV W  

A multiwavelet function Ψ(t) is called a semi-orthogonal multiwavelet, if it generates a 

orthogonal multiresolution analysis. If the multiwavelet function satisfies 

, ,(2 ), (2 ) ( , , , )j i

j i k n rt k t n I j i k n Z       , it is a orthogonal multiwavelet. 

c. Orthogonal discrete multiwavelet transform 

First let 0( )f t V  and 0 1V V , then define 

0, 0,( ), ( )T

k kv f t t   and 
1, 1,( ), ( )T

k kv f t t                                       (8) 

Let v0,k and v1,k are r×1 dimension vector. It can be obtained from formula (2) that 

0, 1,2( ) ( )k m k m

m

t G t   . Substituting the above formula into the left formula of formulas (8): 
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0, 0, 1,2

1,2

1,2 1,2

( ) ( ) ( ) ( )

( ) ( )

( ), ( )

T T T T

k k k m m

m

T T

k m m

m

T T T

k m m k m m

m m

v f t t dt f t t G dt

f t t dt G

f t t G v G





 

   

  
 

  

 

 

 

                                             (9) 

After transforming the formula (9) we can obtain: 

0, 2 1,k m k m

m

v G v                                                                (10) 

Without loss of generality, formula (10) can be extended: 

, 2 1, ,( ), ( ) T

j k m k j m j k

m

v G v f t t                                                   (11) 

Let 
0, 0,( ), ( )T

k kw x t t  , and w0,k be r×1 dimension vector. It can be obtained from formula (7) 

that 

0, 1,2( ) ( )k m k m

m

t H t                                                            (12) 

Similarly, 

0, 1,2

1,2

1,2 1,2

0, 2 1,

( ) ( )

( ) ( )

( ), ( )

T T T

k k m m

m

T T

k m m

m

T T T

k m m k m m

m m

k m k m

m

w f t t H dt

f t t dt H

f t t H v H

w H v





 



 

  
 

  

 



 

 



                                     (13) 

Without loss of generality, formula (13) can be extended: 

, 2 1,j k m k j m

m

w H v                                                                (14) 

Formula (11) and (14) are the decomposition formulas of Mallat fast algorithm. For the 

orthogonal multiscaling function and multiwavelet function, { 2 (2 ) :1 , }i t k i r k Z      is a 

orthogonal basis of V0, and { 2 (2 ) :1 , }i t k i r k Z      is a orthogonal basis of W0. So 

1 0 0( )f t V V W    can be expressed as 

0, 0, 0, 0,( ) ( ) ( )T T

m m m m

m m

f t v t w t                                                    (15) 

And because
1, 1,( ), ( )T

k kv f t t  , we can have 
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1, 0, 0, 0, 0, 1,

0, 0, 1, 0, 0, 1,

0, 2 0, 2

1, 2 0, 2 0,

( ) ( ), ( )

( ), ( ) ( ), ( )

T T T

k m m m m k

m m

T T

m m k m m k

m m

T T

m k m m k m

m m

T T

k k m m k m m

m m

v v t w t t

v t t w t t

v G w H

v G v H w

 

 

    

     

 

  

 

 

 

 

                         (16) 

Without loss of generality, the above can be extended: 

1, 2 , 2 ,

T T

j k k m j m k m j m

m m

v G v H w                                                        (17) 

Formula (17) is the reconstruction formulas of Mallat fast algorithm. 

d. Multiwavelet prefiltering 

As the above shows that the multiwavelet is a multiple input multiple output system. Before 

transforming with multiwavelet, the 1-D signal have to be prefiltered to obtain the 

multidimensional vector signal, and after reconstructing with multiwavelet, the  multidimensional 

vector signal should be postfiltered for obtaining the 1-D signal[5, 6]. The commonly used 

pretreatment methods are oversampled method and critically-sampled method. The oversampled 

method gets second input row by repeating the first one to obtain the initial vector. In the paper 

critically-sampled method is taken. 

Assume P is prefilter and Q is postfilter, P and Q satisfy PQ＝I. We can obtain the initial vector 

by filtering  2( ) 2 1
  ( , )

T

m k m k
x x k m N  
  
 

 with the following formula 

 

 

2

0,

0 2 1

M
m k

k m

m m k

x
v P

x



  

 
  

  
                                                          (18) 

where M is the number of prefilter coefficients. 

 

III. GENERALIZED CROSS VALIDATION 

 

Assume that there is a discrete signal 

( 1,2, , )t t ty f t N                                                     (19) 

or the above formula can be denoted 

y f                                                                   (20) 
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where vector y is sample signal, f is unknown really signal, ε is independent and identically 

distributed signal with 0 mean and σ standard deviation, namely, 1,2, ,t N  ,   0t  , 

2 2

t      and 2

, ( 1,2, , )t j t j j N        . 

After de-noising signal y with wavelet, mean square error (abbreviated MSE) is used to 

evaluating de-noising effect of wavelet[7, 8]. Mean square error defined in the wavelet fields is 

shown in the following formula 

2

,

1

1
( ) ( )

N

t t

t

MSE y f
N




                                                     (21) 

where λ is threshold, yλ,t is de-noised signal, ft is real signal. We can know from formula (21) that 

MSE(λ) measures the de-noising effect of wavelet based on threshold λ in the wavelet field. 

Threshold λ approximates the optimal threshold more, the de-noised signal yλ,t will approximate 

the real signal ft, so the MSE will be smaller and the de-noising effect will be better. But in the 

actual project, the real signal is unknown; we are unable to get the MSE, and analyze de-noising 

effect of different wavelets with formula (13). 

Generalized Cross Validation (abbreviated GCV) is a threshold function, which only bases on 

sample signal. Its minimum value is an asymptotically optimal threshold. In the field of wavelet, 

Generalized Cross Validation is defined as 

2 2

2 2
( )

N y y N w w
GCV

C C

 
 

                                             (22) 

where y is sample signal, w is coefficient of multiwavelet transformation, wλ is thresholded 

coefficient, C is the number that is set to zero in the process of thresholding with soft 

thresholding function. 

Based on soft thresholding: 

, , ,
ˆ ( )(| | )j m j m j mw sign w w                                                    (23) 

where 

,

, ,

,

1, 0

( ) 0, 0

1, 0

j m

j m j m

j m

w

sign w w

w

 


 

 

, 
, 0

( )
0, 0

x x
x

x



 


. Maarten Jansen et al proved that when N 

tends to infinity, the following conclusion can be got 

    2( ) ( )GCV MSE                                                      (24) 
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Therefore, in the practical applications, GCV can replace the MSE to evaluate the de-noising 

effect of wavelet. The form of multiwavelet decomposition result is 2×N 

,[ , , ]j kw w                                                              (25) 

where wj,k is kth 2×1 multiwavelet vector coefficient of jth level. So Tai-Chiu Hsung and 

Maarten Jansen et al improved the formula (25) as following and applied it to the field of 

multiwavelet[10～12] 

,[ , , ]T

j kw w                                                            (26) 

In the paper, we take use of the universal threshold[13], which is proposed by Donoho et al and 

bases on the noise level 

2ln( )N                                                              (27) 

where σ is the standard deviation of noise, and its estimation formula is 

 1,0 1,1 1, /2 1, , ,

0.6745

Nmedian w w w



                                            (28) 

where median indicates the median calculation. The effects of different multiwavelets separating 

useful signal and noise are different. So the thresholds calculated from same threshold will be 

different. Under condition of same thresholding function, the de-noising effects are different. In 

the paper, GCV is used to evaluate the de-noising effects of different multiwavelets. 

 

IV. EXPERIMENT 

 

The JSD-I/A quartz flexural accelerometer is shown in Figure 1, and the signals of JSD-I/A 

quartz flexural accelerometer are studied in the paper. Firstly, the JSD-I/A quartz flexural 

accelerometer is fixed in SCT-1 two-axis rotation platform by appropriative clamp, and 

connected to Lenovo E43A computer by Agilent 34401A digital multimeter. Because the JSD-

I/A quartz flexural accelerometer has a start-up procedure, therefore, one set of the output signal 

are gathered after applying voltage on the JSD-I/A quartz flexural accelerometer after 5 minutes, 

shown in Figure 2. 
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Figure 1. JSD-I/A quartz flexural accelerometer 

 

 

 

Figure 2. the signal of the quartz flexural accelerometer 

 

Firstly, signal {xt} is transformed with GHM orthogonal multiwavelet, SA4 orthogonal 

multiwavelet, CL orthogonal multiwavelet, Cardbal2 balanced multiwavelet and BIGHM 

biorthogonal multiwavelet respectively, and the decomposition level is 4. Then based on 

universal threshold and soft thresholding function, we thresh the five groups of multiwavlet 

coefficients respectively and calculate GCV values of the five groups of multiwavelets 
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coefficients. Lastly, we inverse transform the threshed coefficients to get the de-noised signal. 

Please refer to the appendix for five multiwavelets filters coefficients and coefficients of prefilter 

and postfilter. The GCV values of five multiwavelets are show in Table 1 and the de-noising 

effects are show in Figure 3. 

 

Table 1: The GCV values of five multiwavelets 

 

 GHM SA4 CL Cardbal2 BIGHM 

GCV 0.83707596 0.92077635 0.12754789 0.919984728 0.00716926 
 

 

 

(a) GHM orthogonal multiwavelet 
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(b) SA4 orthogonal multiwavelet 
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(c) CL orthogonal multiwavelet 
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(d) Cardbal2 balanced multiwavelet 
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(e) BIGHM biorthogonal multiwavelet 

 

Figure 3. The de-noising effects of five multiwavlets 
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The following conclusion can be obtained from the Table 1. The difference between GCV value 

of SA4 orthogonal multiwavelet and Cardbal2 balanced multiwavelet is small, so their de-noising 

effects are close. The GCV value of GHM orthogonal multiwavelet is slightly less than the 

former two, so that its de-noising effect is slightly better than former two. The GCV value of CL 

orthogonal multiwavelet is much less than the GCV values of GHM orthogonal multiwavelet, 

SA4 orthogonal multiwavelet and Carbal2 balanced multiwavelet, so its de-noising effect is 

much better than the latter three. The GCV value of BIGHM biorthogonal multiwavelet is two 

orders of magnitude less than the GCV value of CL orthogonal multiwavelet, so the de-noising 

effect of BIGHM biorthogonal multiwavelet is far better CL orthogonal multiwavelet, and it has 

the best de-noising effect in the five multiwavelets. 

 

V. CONCLUSION 

 

In the paper basis content of multiwavelet theory and generalized cross-validation criteria used to 

evaluate the de-noising effects of different multiwavelets are firstly researched. Then based on 

the universal threshold and soft thresholding function, GHM orthogonal multiwavelet, SA4 

orthogonal multiwavelet, CL orthogonal multiwavelet, Cardbal2 balanced multiwavelet and 

BIGHM biorthogonal multiwavelet are applied to de-noise the output signal of JSD-I/A quartz 

flexural accelerometer, and the de-noising effects of the multiwavelets are evaluated by GCV 

criteria. The experiment shows that the GCV value of BIGHM biorthogonal multiwavelet is far 

less than the four others’, so BIGHM biorthogonal multiwavelet has the best de-noising effect. 

 

APPENDIX 

 

1. The filter coefficients of multiwavelets 

(1) The coefficients of GHM multiwavelet. 

 

0

3 4

55 2
G

1 3

20 10 2

 
 
 
 
  
 

, 1

3
0

5 2
G

9 1

20 2

 
 
 
 
 
 

； 
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2

0 0

G 9 3

20 10 2

 
 
 
  

,   3

0 0

G 1
0

20

 
 
 
 

; 

0

1 3

21 2
H

110
3

2

 
  
 
 
 
 

, 1

9 10

21 2
H

910
0

2

 
 

 
 
 
 

； 

2

9 3

21 2
H

910
3

2

 
 

 
 

 
 

, 
3

1
0

1 2
H

110
0

2

 
 

  
 
  
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(2) The coefficients of SA4 multiwavelet. 
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(3) The coefficients of CL multiwavelet. 

Zhao Chihang, Zhong Xin, Dang Qian, Zhao Liye, De-noising Signal of the Quartz Flexural Accelerometer by Multiwavelet Shrinkage

204



 

0

1 1
1

G 7 7
2 2

2 2

 
 
 
  

; 1

2 01
G

0 12 2

 
  

 
; 2

1 1
1

7 7
2 2

2 2

G

 
 
 
  

; 

0

2 21

1 14 2
H

 
  

 
; 

1

4 01

4 2 0 2 7
H

 
  

 
; 2

2 21

1 14 2
H

 
  

 
. 

 

(4) The coefficients of Cardbal2 multiwavelet. 
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(5) The decomposition coefficients of BIGHM multiwavelet. 
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(6) The reconstruction coefficients of BIGHM multiwavelet 
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2. The coefficients of prefilter and postfilter 

 

(1) The coefficients of prefilter and postfilter of GHM multiwavelet 
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(2) The coefficients of prefilter and postfilter of SA4 multiwavelet 
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(3) The coefficients of prefilter and postfilter of CL multiwavelet 
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(4) The coefficients of prefilter and postfilter of Cardbal2 multiwavelet 
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(5) The coefficients of prefilter and postfilter of BIGHM multiwavelet 
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