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complete path from the source to the destination. Many applications require delay constrained routing 

mechanism which can provide acceptable and resilient service in the face of challenged environments. 

A class of adaptive spray mechanisms which aims to achieve the delay constraint with low cost in 

dynamic circumstances was proposed in this paper. Adaptive spray mechanisms use relay nodes to 

make spray decisions in order to apperceive the change of network conditions exquisitely. These 

protocols are least-cost delay-bounded routing protocols under specific spray mechanisms. Theoretic 

analyses of adaptive spray routings at aspects of routing cost, copy redundancy and expected delay were 

also given in this paper. Simulation results have shown that adaptive spray mechanisms exhibit 

prominent superiority in routing cost, adaptability and scalability. Adaptive spray mechanisms are a 

class of correct and efficient delay-bounded routings for opportunistic networks. 

 

Index terms: opportunistic networks, spray routing, delay constraint; adaptive 

 

 

I. INTRODUCTION 

 

Opportunistic networks are sparse wireless networks where most of the time there is no complete 

path from the source to the destination
 
[1]. The messages can be forwarded to the destination 

ultimately in the manner of asynchronous transmission which relies on the contact opportunities 

between nodes in opportunistic networks. This character of Opportunistic network can greatly 

extend the space-time metric of information collection and processing. Therefore, opportunistic 

network will be an important access technology especially for future ubiquitous computing. 

Although the transmissions in opportunistic network often show large delay, it doesn’t mean that 

there is no necessary to implement quality assurance. In fact, there is no application which can 

tolerate very large delay. For examples, electronic notice in campus networks [2] and village 

networks[3], short-term weather information in large national parks[4] and data feedback in 

precision agriculture must be forwarded with specific delay. On the other hand, as the access 
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networks, configuration and forecast for QoS are also necessary in order to provide acceptable 

service (such as e-mail) in opportunistic networks. Hence opportunistic networks must provide 

acceptable and resilient service in the face of challenged environments. 

Routing is a core issue in opportunistic networks. There have been many routing protocols in 

recent years. Study has shown that flooding-based schemes such as Epidemic [5], MRP [6], and 

MV [7] have high probability of delivery and the least delay in theory, but they waste a lot of 

energy and suffer from severe contention. On the other hand, despite the single-copy routing 

protocols such as DTC [8], MobySpace [9], and CAR [10] are energy efficient, they always have 

large delay. Some restricted flooding or spray mechanisms disseminate a small number of 

message copies to potential relay nodes, and then each copy finds routing to the destination 

independently. These mechanisms can obtain the desired delay performance without a lot of 

resource consumptions. 

Spray and Wait [11] is a multi-copy routing based on restricted flooding which tries to balance 

the delay and energy. Spray and Wait combines the speediness of epidemic routing with the 

simplicity and thriftiness of direct transmission. This mechanism “sprays” a number of copies 

into the network, and then “waits” till one of these nodes meets the destination. Spray phase can 

be implemented based on different strategies. Paper [11] proposed the binary spray which has the 

minimum expected delay among all spray based routing algorithms. But this source-defined 

spray strategy can not adapt to dynamic environments. 

Spray and Focus [12] replaced the direct transmission in wait phase with utility-based 

single-copy strategy and proposed the utility transfer mechanism to disseminate the history 

contact information. Paper [13] was absorbed in utility-based spraying and proposed three 

potential utility functions: Last-Seen-First Spraying, Most-Mobile-First Spraying and 

Most-Social-First Spraying. Jindal proposed distance utility based spray strategy[14] which 

utilized dynamic programming to calculate the optimal relay node. In addition, theoretical 

analysis of expected delay in single-copy case and multi-copy case were proposed in [15,16] 

respectively. 
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All of the above-mentioned spray mechanisms assume that the decisions of the number of copies 

and the mode of spray are made by source node. Actually, it is very difficult to obtain accurate 

network parameters in many opportunistic networks especially the applications with time-varying 

network environment. For example, the regional and scale are not fixed in vehicle networks and 

ad hoc city paradigm. Considering the large delivery delay of opportunistic networks, the change 

of network environment during the period of routing can not be ignored. As a result, the decisions 

which made by source node were often unable to meet the delay target. Therefore, it is necessary 

to propose the adaptive spray mechanism which can be dynamically adjusted in accordance with 

network environment. An effective way is that the relay nodes are used to make decisions on 

depth spray independently. Obviously, the relay nodes have fresher knowledge of the networking 

conditions than the source nodes; therefore the estimations of the delivery delay are more 

accurate. In the previous study, we used similar ideas to design adaptive transition routing 

protocol [17] and on-demand path compression algorithm [18]. 

In this paper, we introduced a class of adaptive spray mechanisms in dynamic opportunistic 

network. Adaptive spray mechanisms use the relay nodes to make spray decisions in order to 

apperceive the change of network conditions exquisitely. Adaptive spray mechanisms are 

least-cost delay-bounded routing protocols under specific spray mechanisms. Theoretic analyses 

of adaptive spray routings were also given in this paper at aspects of routing cost, copy 

redundancy and expected delay. Simulation results have shown that adaptive spray mechanisms 

exhibit prominent superiority in routing cost, adaptability and scalability, and are a class of 

correct and efficient delay-bounded routing mechanisms in opportunistic networks. 

In the next section we defined the concept and process of adaptive spray mechanisms. Section 3 

presented the performance analysis of our mechanisms in terms of routing cost, copy redundancy 

and expected delay. Section 4, where the performances of all the strategies were compared with 

respect to average delivery delay and average transmissions per message delivered. Finally, 

Section 5 summarized the paper.  
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II. ADAPTIVE SPRAY ROUTING 

 

In this section, we introduced three adaptive spray mechanisms: ASS (Adaptive Single-Seed 

Spray), ABS (Adaptive Binary Spray) and AMS (Adaptive Multiple-Seed Spray). 

Like Spray&Wait, adaptive spray mechanisms suppose that all nodes move according to some 

stochastic mobility model, whose “meeting times” are approximately exponentially distributed or 

have an exponential tail with expected meeting time equal to EMT (see Definition 4). This 

assumption is acceptable since a number of popular mobility models like Random Walk [19], 

Random Waypoint [20] and Random Direction [21], as well as more realistic, synthetic models 

exhibit such (approximately) exponential encounter characteristics. Therefore, adaptive spray 

mechanisms can be applied to all these models. 

We introduced some concept about adaptive spray routing here: 

Definition 1 (Spray Depth, H): the layer number in spray tree. Let H=1 when a new packet is 

created. 

Definition 2 (Routing Cost, C): the average transmissions for each message. Routing Cost is 

equivalent to the number of copies disseminated in spray routing mechanisms. 

Definition 3 (Average copy redundancy, ):  the average ratio of the number of redundant 

copies divided by the minimum number of copies to satisfy the delay constraint. 

Since the decisions of spraying are made in relay nodes in adaptive spray routing, the nodes at 

same Spray Depth will make same spraying decisions in probability when all nodes move 

according to IID manner. Therefore, the number of copies sprayed by adaptive spray routing will 

depend on Spray Depth in spray mechanism. It means adaptive spray mechanism may produce 

redundant copies. So it is necessary to introduce Average copy redundancy to evaluate the 

efficiency of adaptive spray mechanisms. Low Average copy redundancy means high spray 

efficiency and low routing cost in adaptive spray mechanisms. 

Definition 4 (Expect Meeting Time, EMT):  the expected time until two independent nodes 

which move according to some random mobility models, starting from the stationary 
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distribution, first meet each other.  

Denote E as the size of area, R as the transmission range of node, we can get formula (1) if all 

nodes move according to random walk models (The interested reader can find the proof in [15]): 

12 2
0.5 (0.34log )

2 1

R

R

R
EMT E E

  
 


                                                 (1) 

It is necessary to note that EMT is estimated independently by each node in order to apperceive 

the network condition timely. Despite we can get EMT by formula (1) when the parameters are 

known, the estimation of EMT is also an efficient method when it is difficult to catch the 

parameters especially in dynamic networks. We adopted the estimation method proposed in [11] 

of which the details were omitted due to limitations of space. 

Definition 5 (Seed): the qualification for forwarding message copies. 

In traditional spray mechanism, all of the nodes which received more than one copies can spray 

further, while spray operation was only authorized in the nodes with seed(s) in ASS and AMS. 

Adaptive spray mechanism contains spray phase and wait phase, and the spraying decisions are 

made by spray decision-making algorithm. In addition, we add H (current depth of spray) and 

Dt (target delay) in the head of bundles
 [22]

 for ASS, ABS and AMS. Two extra fields K (the 

number of seeds) and Kcur (the number of seeds in current node) are also required in AMS. 

Adaptive spray mechanisms aimed to achieve the delay constraint with low cost in dynamic 

circumstances. There are three metrics for evaluation: ①capacity of delay constraint, small 

expected delay of adaptive spray mechanism often means great capacity of delay constraint; 

②Routing Cost, it is clear that less message copies means less transmissions and energy 

consumption; ③Average copy redundancy, it is used to evaluate the efficiency of adaptive 

spray mechanisms. 

a. Adaptive Single-Seed Spray 

Spray phase: the source node initializes only one seed.  Each node A which received seed 

decides whether to create and forward a new copy to the next potential relay node B which does 

not have the same copy based on spray decision-making algorithm, and transfers seed to one of 
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A and B(according to some strategy such as utility evaluation of nodes). Repeat the process 

until node A makes sure that it is not necessary to create new copy or node A had encountered 

the destination D. 

Wait phase: such node which received copy can only perform direct transmission if ①it is not a 

seed node or ②it makes sure that it is not necessary to spray new copy based on spray 

decision-making algorithm. 

Spray decision-making algorithm: every node which received seed decides whether to create a 

new copy based on formula: cur rw tD D D                                             (2) 

where Dcur is the time had elapsed which can be derived from the time-stamp of packet, Drw is 

estimated residual delay, and Dt is the target delay which derived from the head item in bundles. 

Furthermore, it is easy to deduce Drw=EMT/CASS according to Definition 4 (CASS is the current 

routing cost of ASS which will given in Theorem 3.1.1). Seed node creates new copy until 

formula (2) is true. 

The spray tree of ASS was depicted in Figure 1: 

 

Figure1. Spray tree of ASS 

b. Adaptive Binary Spray 

Spray phase: each node A which received a message copy decides whether to create and 

forward a new copy to the next potential relay node B which does not have the same copy based 

on spray decision-making algorithm. Repeat the process until node A makes sure that it is not 
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necessary to create new copy or node A had encountered the destination D. 

Wait phase: the nodes which received copy can only perform direct transmission if it makes 

sure that it is not necessary to spray new copy based on spray decision-making algorithm. 

Spray decision-making algorithm: every node which received copy decides whether to create a 

new copy based on formula (2). We can get Drw=EMT/CABS according to Definition 4 (CABS is 

the current routing cost of ABS which will be given in Theorem 2.2.1). Such node creates new 

copy until formula (2) is true. 

Theorem 2.2.1: When all nodes move in IID manner, ABS minimizes the expected time until all 

copies have been sprayed. 

Proof: the nodes at same Spray Depth will make same spraying decisions and accomplish 

spraying at same time in probability when all nodes move according to IID manner. Therefore, 

the spray delay of ABS equal to the spray delay of binary spray&wait
[11] 

whose spray tree is a 

full binary tree depicted in Figure 2. Since the nodes at same Spray Depth disseminate copies in 

a parallel manner, the spray delay of adaptive spray mechanism depends on the number of 

nodes which received copy at each Spray Depth, that is, the Routing Cost at current Spray 

Depth. According to the property of full binary tree, we can get CABS =2
H-1

 which is maximum 

among all tree structure. It implies that ABS minimizes the expected time until all necessary 

copies have been sprayed.                                                       

 

Figure2. Spray tree of ABS 

c. Adaptive Multiple-Seed Spray 

Spray phase: the source node initializes K seeds (K≥1, the calculation of K was given in section 
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3.3).  Each node A which received seeds decides whether to create and forward a new copy to 

the next potential relay node B which does not have the same copy based on spray 

decision-making algorithm, and disseminates seeds in binary manner. Repeat the process until 

node A makes sure that it is not necessary to create new copy or node A has encountered the 

destination D. 

Wait phase: same to the Wait phase of ASS. 

Spray decision-making algorithm: every node which received seeds decides whether to create 

a new copy based on formula (2). We can get Drw=EMT/CAMS according to Definition 4 (CAMS is 

the current routing cost of AMS which will given in Theorem 3.1.1). Such node creates new 

copy until formula (2) is true. 

The spray tree of AMS with K=2 was depicted in Figure 3: 

 

Figure3. Spray tree of AMS 

 

III. PERFORMANCE ANALYSES 

 

a. Routing Cost 

Theorem 3.1.1：Denote CASS、CABS and CAMS as the routing cost of ASS、ABS and AMS, then: 
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( ) 2                                             2  

( , ) ( log 1) 2    2

ASS

H

ABS

H H

AMS

AMS K H

AMS

C H

C

C H K
C

C H K K H K K


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   
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

  
 

       

                               (3) 

Where, H is the current spray depth, K is the number of seeds. 

Proof: since ASS disseminates message copies in serial manner, only one seed node can spray 

at any time in the whole network; therefore the routing cost of ASS is equal to H. The routing 

cost of ABS has been given in theorem2.2.1. We focus on the routing cost of AMS here. There 

are two cases: 

(1) K≥2
H-2

, in this case, all nodes which received copy have seeds after spray depth H-1. 

Therefore, the number of children (nodes which received copy) at Hth layer is equal to the 

number of binary spray&wait, that is, 2
H-1

. 

(2) K<2
H-2

, in this case, not all nodes which received copy have seeds after (H-1)th layer, AMS 

add K nodes at each layer after Hth layer. Therefore, The number of children after spray depth 

H is the sum of number of children at (H-1)th layer and the added nodes later. When the 

maximum of H which satisfies K≥2
H-2

 is logK+2, the spray depth of H-1 is logK+1 and the 

number of children is 2
logK+1-1

=2
logK

. On the other hand, the added number of nodes is 

K(H-logK+1)= K(H-logK-1). So we have log
( log 1) 2

K

AMSC K H K
        .             

Theorem 3.1.1 shows that ABS is a special case of AMS. When K≥2
H-2

, ABS is equivalent to 

AMS of which the routing cost is independent of K. 

b. Average Copy Redundancy 

There is no redundant copy in ASS since only one seed node has the right to spray. So it is easy 

to get 0ASS  . 

However, more than one node has the right to spray in ABS and AMS. These nodes have the 

same decisions of spraying in probability. On the other hand, it is not realistic to implement 

on-line consultation mechanism between nodes in opportunistic networks. So, any form of 

adaptive parallel spray will induce redundant copies. Average copy redundancy of ABS and 

AMS were given in Theorem 3.2.1 and Theorem 3.2.2. 
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Theorem 3.2.1: Let H denote the current depth of spray, ABS  denotes the Average copy 

redundancy of ABS, then: 1

1

0                       2

1/ 2 1/ 2
    2

3/ 2 1/ 2

H
ABS

H

H

H
 






  




                                    (4) 

Proof: When H≤2, only one copy was forwarded in ABS and ABS =0; When H>2, the total 

number of the copies which are forwarded is L=2
H-1

 and the necessary number of copies is 

Lc=2
H-2

+i（i stands for the number of the necessary copies at last layer, i=1,2,…, 2
H-2）. Hence 

we have

2

2

2 1 2

1

2 2

1

(2 (2 ))

(2 )

H

H

H H

i
ABS

H

i

i

i







 







 







. Suppose i is subjected to uniformity distribution 

with {1,2,…, 2
H-2

}, then 
1

1

1/ 2 1/ 2

3/ 2 1/ 2

H

ABS
H










.                                        

Theorem 3.2.1 indicates that ABS  is an increasing function of H when H>2, and there is a 

maximum of ABS , _ max 1/ 3ABS   when H. 

Theorem 3.2.2: Let H denote the current depth of spray, AMS  denotes Average copy redundancy of AMS 

with K seeds, then: 

2

2

log 1

                                                                2

1
           2  

2(2 ( log 3)) 1

H

ABS

HAMS

K

K

K
K

K H K K








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 


 


       

               (5) 

We omit the proof which is similar to that of Theorem 3.2.1. Theorem 3.2.2 indicates that the 

Average copy redundancy of AMS is equal to that of ABS when K≥2
H-2

. It also implies AMS  is 

an increasing function of K if K<2
H-2

, and there is a minimum of AMS , _ min 0AMS   when 

K=1, and AMS ABS   when K→2H-2. 

Now, we summarized the Average copy redundancy: ABS has the most copy redundancies; the 

Average copy redundancy of AMS is an increasing function of the number of seed; there is no 

redundant copy in ASS. 

c. DELAY 
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The accurate delay expressions of ASS, ABS and AMS have been given in the following three 

theorems. 

Theorem 3.3.1: Denote EDASS as the expected delay of ASS, and ED(H) as the remaining time 

to accomplish ASS process. Obviously, EDASS= ED(1). Suppose that there are M nodes in the 

whole network, and Nth layer spray is required to meet the target delay, then: 

1 1 1
( ) ( ( ) ( 1))

( )

( )

EMT M H H
ED H ED H ED H

H M H M H H H

EMT
ED N

N

  
   

 



                            (6) 

Proof: according to the process of ASS, there are H nodes which received copy after Hth layer. 

Since all hitting times are independent and exponentially distributed, the time until any node A 

with a message copy encounters any node B without one (M-H) is equal to
( )

EMT

H M H
. 

If B is the destination (with probability
1

M H

), ASS process finished. Otherwise (with probability

1 1
1

M H

M H M H

 
 

 

), the algorithm continues, performing one of the following: (1) with probability 

(H-1)/H, A is not a seed node, and encountered a new node. Since these relays only forward their 

message copies to the destination, nothing happens, and the remaining time is still ED(H); (2) 

with probability 1/H, A is a seed node that  encountered a new node without the same copy, and 

therefore it creates and hands a new copy. H+1 nodes have copy now, and an expected time 

ED(H+1) remains until delivery. 

When accomplished Nth spray, ASS carries out wait phase until any one of the nodes with a 

message copy encounters the destination D. It is clear that the time of wait phase is EMT/N 

according to Definition 4. Putting it together, we get the recursive equation (6).             

Theorem 3.3.2: Denote EDABS as the expected delay of ABS, and ED(H) as the remaining time 

to accomplish ABS process. Obviously, EDABS= ED(1). Suppose that there are M nodes in the 

whole network, and Nth layer spray is required to meet the target delay, then: 

1

1 1 1

1

2 1
( ) ( 1)

2 ( 2 ) 2

( )
2

H

H H H

N

EMT M
ED H ED H

M M

EMT
ED N



  



 
  

 



                               (7) 
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Proof: according to Theorem 3.1.1, there are 2
H-1

 nodes which received copy after Hth layer. 

Since all hitting times are independent and exponentially distributed, the time until any node A 

with a message copy encounters any node B without one (M-2
H-1

) is equal to
1 12 ( 2 )H H

EMT

M 
. 

If B is the destination (with probability
1

1

2HM 
), ABS process finished. Otherwise (with 

probability
1

1 1

1 2 1
1

2 2

H

H H

M

M M



 

 
 

 
) the algorithm continues, performing (H+1)th layer spray, 

and the expected delay ED(H+1) remains. 

When accomplished Nth spray, ABS carries out wait phase until any one of the nodes which 

received copy encounters the destination D. It is clear that the time of wait phase is EMT/2
N-1

 

according to Definition 4. Putting it together, we get the recursive equation (7).             

Theorem 3.3.3: Denote EDAMS as the expected delay of AMS, and ED(H) as the remaining 

time to accomplish AMS process. Obviously, EDAMS= ED(1). Suppose that there are M nodes in 

the whole network. If Nth layer spray and K seeds are needed to meet the target delay, then: 

-2

-2

( ) 1
( ) ( 1)    2

( )( ( )) ( )

( , ) 1
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( )( ( , )) ( , )

( , )
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)     2
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( )     2
( , )

N

AMS

N
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EMT
K

C N

EMT
ED N K

C N K
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 

    (8) 

Proof: according to the process of AMS, there are CAMS nodes which received copy after Hth 

layer. Further, let’s suppose that, among the CAMS nodes which have received copy, x of them 

have seeds, and they are allowed to forward copy further to other relays. Since all hitting times 

are independent and exponentially distributed, the time until any node A with a message copy 
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encounters any node B without one (M-CAMS) is equal to
( )AMS AMS

EMT

C M C
. 

If B is the destination (with probability
1

AMSM C
), AMS process finished. Otherwise (with 

probability
11

1 AMS

AMS AMS

M C

M C M C

 
 

 
) the algorithm continues, performing one of the following: 

(1) with probability (CAMS -x)/CAMS, A is not a seed node, and encountered a new node. Since 

these relays only forward their message copies to the destination, nothing happens, and the 

remaining time is still ED(H); (2) with probability x/CAMS, A is a seed node that  encountered a 

new node without the same copy, performing (H+1)th layer spray, and the expected time 

ED(H+1) remains. 

When K≥2
H-2

, all nodes which received copy are seed nodes, then x=2
H-1

; when K≥2
H-2

, x=K. 

Further, CAMS was given in Theorem 3.1.1 based on above-mentioned two cases. So we get the 

expression of ED(H), that is, the expected spray delay of AMS process. 

When Nth spray was accomplished, AMS carries out wait phase until any one of the nodes with 

a message copy encounters the destination D. It is clear that the time of wait phase is EMT/CAMS 

according to Definition 4. Putting it together, we get the recursive equation (8).             

Theorem 3.3.3 shows that the expected delay of AMS is same as the expected delay of ABS 

when K≥2
H-2

. This means AMS has the same delay constraint performance with ABS. 

Despite the above-mentioned three theorems provided the accurate expression of adaptive spray 

mechanisms, it is not a closed form. This makes it difficult to calculate the expected delay of 

adaptive spray mechanisms, or to calculate the number of seeds and copies in closed form in 

order to meet performance constraints. For this reason, we also derived an upper bound of the 

expected delay of ASS, ABS and AMS in closed form in the following theorems 

Theorem 3.3.4: The following upper bound holds for the expected delay of ASS: 

1

1 ( ) 1

N

ASS H

EMT M N EMT
ED

M H M N






 

 
                                     (9) 

Xu Jia,  Feng Xin,  Wang Ru Chuan, Adaptive Spray Routing For Opportunistic Networks

108



Where, N denotes the spray depth (NM). 

Proof: Suppose that, the network area, network scale and transmission range are fixed, then 

each relay node will has equal probability to decide whether to create the copy (they have the 

same perception of network environment). So we can simplify the process of ASS to source 

spraying in which only the source node can decide the spray depth and disseminate the copy. 

The upper bound holds for the expected delay of source spraying had been given in [16].     

Theorem 3.3.5: The following upper bound holds for the expected delay of ABS: 

1
1

1 1 11

( 2 )

2 ( 2 ) ( 1) 2

N
N

ABS H H NH

EMT M EMT
ED

M M




  


 

 
                              (10) 

Where, N denotes the spray depth (2
N-1
M). 

Proof: Suppose that, wait phase doesn’t carry out in spray phase, and then the expected delay is 

the sum of expected spray delay and expected wait delay. According to Theorem 3.1.1, there are 

2
H-1

 nodes which received copy when the current spray depth is H. This means the time until 

any one of the 2
H-1

 nodes disseminates copy to any one of M-2
H-1

 is equal to
1 12 ( 2 )H H

EMT

M 
. 

The spray process will continue until Nth layer with total time 
1

1 11 2 ( 2 )

N

H HH

EMT

M



  
 , that is, 

the expected spray delay of ABS. If the destination is not among the 2
N-1

-1 nodes which 

received copy, ABS will carry out wait phase with probability
1 12 1 2

1
1 1

N NM

M M

  
 

 
. It is clear 

that the expected wait delay is 
12N

EMT


. Putting it together, we get the upper bound which holds 

for the expected delay of ABS since we assume wait phase does not carry out in spray phase.  

Theorem 3.3.6: The following upper bound holds for the expected delay of AMS: 

(1)  K≥2
N-2 

 
1

1

( ( ))

( ) ( ( )) ( 1) ( )

N AMS
AMS H

AMS AMS AMS

M C NEMT EMT
ED

C H M C H M C N






 

  
    (11) 

(2)  K<2
N-2

  

l o g 2

1

1

l o g 3

( ) ( ( ) )
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AMS H
AMS AMS

N AMS

H K
AMS AMS
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M C N KEMT EMT
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


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
 


 

 


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   (12) 
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Where, K is the number of seeds, N is the spray depth (CAMS(N) M or CAMS(N,K) M). 

Proof: Suppose that, wait phase doesn’t carry out in spray phase, and then the expected delay is 

the sum of expected spray delay and expected wait delay. When K≥2
N-2

, AMS is equivalent to 

ABS according to Theorem 3.1.1 and then EDAMS=EDABS. 

When K<2
N-2

, the spray delay of AMS contains two parts: (1) K≥2
H-2

, the number of nodes 

which received copy is CAMS(H) at Hth layer, and the spray delay is 
( ) ( ( ))AMS AMS

EMT

C H M C H 
; 

(2) K<2
H-2

, the number of nodes which received copy is CAMS(H,K) at Hth layer, and the time 

until any one of the K nodes disseminates copy to any one of M-CAMS(H,K) is equal to

1 12 ( 2 )H H

EMT

M 
. The spray process will continue until Nth layer, and we get the spray delay. 

If the destination is not among the CAMS(N,K)-1 nodes which received copy, AMS will carry out 

wait phase with probability
( , ) 1 ( , )

1
1 1

AMS AMSC N K M C N K

M M

 
 

 
. It is clear that the expected 

wait delay is
( , )AMS

EMT

C N K
. Putting it together, we get the upper bound which holds for the 

expected delay of AMS since we assume wait phase doesn’t carry out in spray phase.        

Figure 4 has shown the upper bound of expected delay of AMS with different N and K. We can 

see that the upper bound decreased with increasing K when N is fixed. Theorem 3.1.1 has 

shown that the number of message copies is an increasing function of K. Therefore, the upper 

bound must decrease since more message copies are added to network. 
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Figure4. The upper bound of EDAMS calculated by Theorem 3.3.6 with different K and N 

So far, Theorem 3.3.4-3.3.6 have provided the method to estimate the expected delay of our 

adaptive spray mechanisms. On the other hand, it is an efficient way to calculate the minimum 

of spray depth, seeds (for AMS) and corresponding routing cost to meet the target delay. 

Suppose that, there are 100 nodes which move according to Random Walk model in area E=10
6
 

with transmission range R=10. Figure 5 has shown the routing cost of ASS, ABS and AMS to 

achieve the target delay. We can see that ASS can’t satisfy the small target delay (<2510
4
) due 

to the serial spraying which disseminates copies slowly. On the other hand, ASS outperforms all 

protocols in terms of routing cost since there is no copy redundancy in the whole spray process. 

ABS and AMS have small expected delay, and show prominent superiority in delay constraint 

performance. Furthermore, ABS performed more routing cost than ASS and AMS. Therefore, 

ASS is efficient in resource sensitive opportunistic networks with relaxed delay constraint. 

Oppositely, ABS and AMS are suitable for the case with strict performance constraint. 
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Figure5. Comparison for Routing Cost with different target delay 

 

IV. PERFORMANCE EVALUATIONS 

 

We implemented our adaptive spray mechanisms: ASS, ABS and AMS with Opportunistic 

Network Environment, ONE
 [23]

. We evaluated the performance in terms of capacity of delay 

constraint, scalability and adaptability in different scenarios. Table 1 has shown the simulation 

parameters (some parameters were given in the following section since they are related to 

special scenario). All the performance results presented are an average of 10 different 

simulation trials. The initial locations of the network in each trial are random. 

 

Table 1: simulation parameters 

 

parameters Value 

Group.movementModel RandomWaypoint 

Group.speed  0.5,1.5 

Group.waitTime 0 

MovementModel.worldSize 400, 400 

Group.nrofHosts 100 

Router.nrofHosts 100 
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Events.size   500kB, 1MB 

Group.transmitSpeed 250kbps 

Events.interval 2000-3000 

Events.hosts  0,99 

Group.msgTtl 20k  

Group.transmitRange  10 

Group.targetDelay 11k 

simulationTime 2* Group.targetDelay 

a. Delay Performance 

In this scenario, we evaluated the delay constraint performance of adaptive spray mechanisms. 

We tested the average delivery delay and average transmissions with different target delay, 

denote as Dt (3k-8k). Each node created messages from time 0 to Dt for every 2000-3000 time 

units. 

The simulation results depicted by figure 6 have shown that Epidemic routing which is lack of 

control mechanisms for message copies performed significantly more transmissions than spray 

based routing, however it is quite fast. We can see that ASS can’t satisfy the small target delay 

(<7000) due to the serial spraying which needs more time to accomplish spray phase. On the 

other hand, ASS outperforms all protocols in terms of average transmissions since there is no 

copy redundancy in whole spray process. Spray&Wait, ABS and AMS can satisfy all different 

target delay from 3000 to 8000. Spray&Wait and ABS can achieve good expected delay among 

all spray based routing mechanisms since it carries out binary spray. Theorem 3.1.1 has proved 

that AMS is equivalent to ABS when there are enough seeds. It implies that AMS and ABS 

have the same capacity of delay constraint. Furthermore, ABS performed more transmissions 

than AMS and ASS, while outperformed all adaptive spray mechanisms in terms of average 

delivery delay. This is because ABS produced most redundant copies which caused extra 

transmissions and reduced the average delivery delay at the same time. Spray&Wait was not an 

adaptive spraying and calculated the minimum number of copies in the source node. So Spray 
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& Wait show the least routing cost when the network circumstance was static. 

 

(a)                                  (b) 

Figure6. Performance comparisons with different delay constraint 

b. Scalability 

We evaluated the scalability with different network scale (20-100 nodes). As shown in figure 7, 

all protocols can achieve the delay constraint with increasing scale of network. Furthermore, we 

denote  as the radio of the average transmissions and the number of nodes. It is important to 

note that  will reduce with increasing network scale. For more accurate,  reduced from 14.4% 

to 5.936% in ASS, from 19.14% to 7.938% in ABS and from 18.98% to 5.906% in AMS when 

the nodes increased from 20 to 100. This means our adaptive spray mechanisms can meet the 

more stringent delay constraints in large-scale networks. Therefore, adaptive spray mechanisms 

have excellent scalability. 

Further more, we can see from figure 7, the transmissions of ABS varied more significantly 

than ASS and AMS. Theorem 3.1.1 had shown that the routing cost of ABS was an exponential 

form with the depth of spray, while the routing cost of ASS was a line form and AMS is 

moderate too. It implies that the average transmissions of ABS vary more significantly than 

ASS and AMS since the number of copies in adaptive spray mechanisms depends on the depth 

of spray. This also brings about the differences in terms of Average copy redundancy. 
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(a)                                    (b) 

Figure7. Performance comparison with different network scale 

c. Adaptability 

In opportunistic networks, network connectivity may change sometimes, for example, the change 

of work mode for special applications, low-power transmission mode due to lower energy, sleep 

scheduling mechanism, etc. To evaluate the performance with dynamic connectivity, we 

decreased the transmission range from 10m to 2m at Dt/2.  Figure 8 depicted the performance of 

all routing algorithms in terms of average number of transmissions and average delivery delay in 

this scenario. As can be seen there, the average transmissions of spray protocols increased when 

the transmission range decreased. This is because EMT and corresponding delivery delay will 

increase when the transmission range decreased. This implies it is necessary to add extra copies 

to meet the target delay. On the contrary, the transmissions of Epidemic Routing decreased due to 

the specific value of TTL. Since Spray&Wait decides the number of copies in source node, it also 

can’t apperceive the change of transmission range. Therefore, Spray&Wait don’t have good 

ability to adapt the evolvement of networking condition. Especially, the delivery delay of 

Spray&Wait exceeded the target delay most of the time. Spray&Wait needs more time (>22k) to 

make new decisions for spraying. On the other hand, all adaptive spray mechanisms can meet the 

target delay again before 16k time units. 
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(a)                                 (b) 

Figure8. Performance comparisons with dynamic connectivity level 

 

V. CONCLUSION 

 

A class of adaptive spray mechanisms in opportunistic networks was proposed in this paper. 

Adaptive spray mechanisms use relay nodes to make spray decisions in order to apperceive the 

change of network conditions exquisitely, and are least-cost delay-bounded routing protocols 

under specific spray mechanisms. Theoretic analyses of adaptive spray mechanisms were also 

given in this paper at aspects of routing cost, copy redundancy and expected delay. Simulation 

results have shown that: (1) adaptive spray mechanisms performed significantly fewer 

transmissions than epidemic routing; (2) adaptive spray mechanisms shown prominent 

superiority in adaptability for dynamic networks; (3) adaptive spray mechanisms exhibited 

great scalability; (4) adaptive spray mechanisms were a class of efficient delay-bounded routing 

mechanisms for opportunistic networks and are suitable for different applications. Specifically, 

ASS is efficient in resource sensitive opportunistic networks with relaxed delay constraint. 

Contrarily, ABS is suitable for the case with strict performance constraint. AMS is a more 

general and flexible adaptive spray routing. 
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