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Abstract: Suppose n nodes with n0 acquaintances per node are randomly deployed in a two-dimensional 

Euclidean space with the geographic restriction that each pair of nodes can exchange information 

between them directly only if the distance between them is at most r, the acquaintanceship between 

nodes form a random graph, while the physical communication links constitute a random geometric 

graph. To get a fully connected and secure graph, we introduce a secrecy transfer algorithm which 

combines the random graph and the random geometric graph via an introduction process to produce an 

acquaintanceship graph Gn,n0. We find that the maximum component of graph Gn,n0 transitions rapidly 

from small components to a giant component when n0 is larger than a threshold, the threshold is 

derived, and applications for sensor networks are presented. 
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I.  INTRODUCTION 

Suppose at a classroom with n students, each of whom initially has n0 acquaintances who are 

randomly chosen among them. Now mention to one of them a message, but ask that student to 

share this message only with his or her acquaintances. Assume students are not allowed to leave 

their sites, and can talk only with adjacent students. At first, students are isolated from each other. 

If two adjacent students are acquainted with each other, a link forms between them. As a 

consequence, subtle paths start connecting students who are still strangers to each other. For 

example, though John has not met Mary yet, they have both met Mike, and so there is a path from 

John to Mary through Mike. If John and Mary are neighbors, chances are that now they become 

new acquaintances through the introduction of Mike, and a link forms between them. As time 

goes on, some small acquaintance groups emerge. By following the links in the group, one can 

now find a path between any two students in the same group. Further, two stranger students, say 

Alice and Bob, belonging to different groups may be adjacent, but if there are any two students in 

the two groups respectively familiar with each other, Alice and Bob may use them as introducers 

to get common acquaintance and establish a link between them. Then, two groups melt to form a 

larger group. By repeating this process, the students will be increasingly interwoven by such 

links, creating a web of acquaintances. We denote this construction as secrecy transfer and the 

resulting network as an acquaintanceship graph. We are here interested in the question: for which 

value of n0 is there likely to be a connected acquaintanceship graph that includes all the students 

after the secrecy transfer process? 

The acquaintanceship graph, denoted as Gn,n0, combines random graph [1] and random geometric 

graph [2]. A random geometric graph Gn,r is a graph resulting from placing n nodes randomly in a 

plane and connecting each pair of nodes iff their Euclidean distance is at most the radius r, 

whereas a random graph Gn,p is a graph with n nodes in which each edge (out of the  possible 

edges) is chosen independently at random with a probability p. Random graphs and random 

geometric graphs have been studied extensively, but in a separate way. Random graph and its 

variations have been used as models of social structure in, for example, epidemiology[3], while 

random geometric graph is always viewed as a wireless communication network[4][5], such as 

Ad hoc, Mesh, or sensor network. In fact, random graphs and random geometric graphs have 

different structural properties. Any two nodes in a random graph can be connected by a link with 

certain probability regardless of their geographical position. Random key graphs have recently 
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been used by Di Pietro et al.[6] to model the random key predistribution scheme of Eschenauer 

and Gligor[7]. The random key graph is a random graph obtained as follows. n nodes, each 

assigned a subset of keys, are distributed uniformly at random on the given field. An edge is 

added if two nodes are within a radius r and share at least one common key. Formally, the 

resulting graph, matching a random graph with identical link probability to a random geometric 

graph, can be considered as the initial graph of the acquaintanceship graph Gn,n0. Note that, unlike 

random key graphs, secrecy transfer is a growth model, and can be considered as a stochastic 

process.  

We are interested in the crucial property, connectivity, of the resulting acquaintanceship graph. 

Intuitively, we think that there is a threshold value. If n0 is larger than that value and the 

underlying graph Gn,r is connected physically, the graph Gn,n0 may be connected. In [8], we use 

secrecy transfer to enhance the security performance of key infection[9], but do not explore its 

properties. In this paper, some results are given and complemented by simulations. 

 

II. SECRECY TRANSFER 

Let n nodes distributed uniformly in a field, each of them has n0 acquaintances. Assuming nodes 

A and B are adjacent. At first, A and B are connected if they are acquainted with each other (Fig. 

1a). If A and B are connected by a path, then an edge A-B is added (Fig. 1b). As time goes on, 

the graph Gn,n0 evolves continuously and gradually consists of components. If node A belongs to 

component , and B has acquaint with at least one of nodes in , say node C in , we 

connect A and B by a new edge (Fig. 1c). For the case where A and B belong to different 

components  and , if there exist two familiar nodes C and D in  and  respectively, 

we introduce an edge between A and B (Fig. 1d); Otherwise, A and B are disconnected at present 

stage. Continuing this process, n nodes are turned into a graph Gn,n0. 

 

Fig. 1. Secrecy transfer. 
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Fig. 2.  An example of the secrecy transfer, with n=500 nodes randomly distributed over a 500×

500m
2
 field, n0=20, and r=35m. 

 

As depicted in Fig. 2, 500 nodes are randomly distributed over a  field, , and 

the radius . At first, two adjacent nodes connect with probability , and we get 

the initial graph , as illustrated in Fig. 2a. After repeating secrecy transfer, it gradually turns 

to be the graph in Fig. 1f, which approximates to random geometric graph . 

One of our goals is to design a security mechanism to enable any two adjacent nodes to establish 

a pairwise key after they are deployed. Suppose every node in the network has been loaded 

before its deployment with n0 secret keys, each of which is shared with one of its acquaintances. 

(a) (b) 

(c) (d) 

(e) (f) 
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Let nodes A and B be two adjacent nodes, which means their Euclidean distance is at most the 

radius r. If A and B happen to be acquaintances, they must share a key  which can be used 

to protect their communication link. If A and B are not acquaintances, but are connected by an 

existing path, A can generate a new key  and send it to B along the secure path. Then, the 

key  is shared between A and B. As more secure edges are added to the graph , larger 

components emerge. Suppose A belongs to a component , if node B is familiar with a node 

, which means that nodes B and C have a shared key . In this case, node A randomly 

generates a key , and sends it along the trusted path in the component  to node C. Node 

C encrypts  with the key , , and sends the result back to A. Node A, then, 

sends  to B via the unsecure channel. Finally, node B gets key , for it has the key 

. In another case, where nodes A and B belong to different components  and , but 

node  is familiar with node , as Fig. 1d. Node A first sends a key  to node C. 

Node C encrypts  with key  which is shared with node D, and sends  to 

node D via nodes A and B. For node D has , it can decrypt the message  to obtain 

, as plotted in Fig. 3. 

 

Fig. 3. Secret key establishment. 

 

Given a randomly deployed network with n nodes, we can view it as a random geometric graph 

 with each edge representing a possible communication link. Without the protection of a 

secret key, an adversary can eavesdrop conversations between two nodes. If each node has 

several trusted nodes initially, the trust relationship can be considered as a random graph  

with each edge connecting a pair of nodes which have established a secret key. However, random 

graph does not consider the transmission radius of nodes, but simply assumes any two nodes have 

the same probability p to establish a connection. When the distance between two nodes is larger 

than the radius r, they cannot communicate directly. Roughly speaking,  reflects the logical 
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trust relationship between nodes, while  depicts the physical communication structure of 

nodes in the network. Secrecy transfer constructs a graph  from  and , and turns it 

to a secure random geometric graph approximate to  by adding secure edges to it. 

 

III. CONNECTIVITY THRESHOLD 

 

The component structure of  changes gradually as the secrecy transfer is applied. As 

illustrated in Fig. 2, at first, the greatest component of  is tree or cycle of small order. 

Gradually, a giant component emerges, swallowing the whole network. Suppose two adjacent 

components,  and , have respectively  and  vertices, node A in  and B in  

are adjacent. We first estimate the probability  that two components ,  may get 

connected and melt into a larger component. 

Let random variable  be the total number of nodes with whom the nodes in component  are 

familiar,  be a bernoulli random variable, where  when the cycle of acquaintances of 

node i includes at least one node in the component ,   otherwise. Therefore,   

 

If component  consists of  nodes, we have the probability of  

  where . 

Thus, the expectation of random variable  is . 

For  are mutually independent, the expectation of  is 

 

   For a component of order , the cycle of acquaintances of this component may consist of 

 nodes on average. Let , the probability  that there is at 

least one common acquaintance between component  and  is  

 

For example, for , , and , the probability  tends to 1 when 

. This provides intuition that, a component of order 200 is attractive and will swallow 

nodes nearby to form a larger component, a kind of rich get richer phenomenon. For two 

component of order , the probability  approximates 1 if . In 
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general, the larger the components, the more likely they are to be mixed together. Popularity is 

attractive. 

In a random graph  with n vertices and  edges, if  with , the greatest 

component has (with probability tending to 1 for ) approximately  vertices. As a 

special case, when , , such large component in  will swallow the whole 

network whp. if the network is connected physically. 

To determine the value n0 which will guarantee the connectivity of , we employ the 

well-known algorithm [10] to generate random graphs  with n nodes and n0 links per node 

where , then deploy the nodes into a square region to obtain a random topology. For 

, , and  varying, we repeat our simulations 100 times to yield an acceptable 

confidence of results. For each simulation, we measure empirical values for the maximum 

component and the second component for each trial, averaged over 50 random topologies. In 

Fig.4, an interesting phenomenon observed is a phase transition as n0 increases. There is a critical 

value of n0, above which the graph will almost surely be connected. The maximum component 

transitions rapidly from a component of small size to a giant component when . Similarly, 

the size of the second component decreases as . 

 

Fig 4. Size of the maximum and second components in graph  for , . 

 

Within this context, the question is, under what conditions is the graph  be connected? 

More specifically, how can we choose n0 such that with high probability, the graph  

constructed by secrecy transfer will be connected.  

Consider an arbitrary pair of adjacent nodes A and B in graph  which have not established 

secret key between them. If  is connected, there is at least one path in graph , say 
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 between nodes A and B. Given any adjacent nodes in path , say  and 

, there must exist a path  from  to  in graph , if graph  is 

connected. Thus, arbitrary pair of nodes can establish a secret link in graph  by secrecy 

transfer. Hence, by the addition of secure links,  can be eventually turned into a secure and 

connected graph which is approximate to .  

Thus, to get a fully connected graph ,  two conditions must be satisfied. First, the graph 

 must be connected, which means that, given the value n and a deployment region, the value 

r should be large enough to guarantee a connected graph . Assume n nodes are uniformly 

deployed in a unit square , the well-known connectivity threshold  [5]. In 

this paper, we set the radius r to be above this critical value to ensure the random geometric graph 

 be fully connected. Second, the value n0 must be large enough to get the random graph  

fully connected. For a random graph , when p is zero, the graph does not have any edge, 

whereas when p is one, the graph is fully connected. Erdös and Rényi [1] showed that, for 

monotone properties, there exists a value of p such that the property moves from nonexistent to 

certainly true in a very large random graph. The function defining p is called the threshold 

function of a property. Given a desired probability  for graph connectivity, the threshold 

function p is defined by 

 

where  and c is any real constant. 

Therefore, given n we can find p for which the resulting graph  is connected with desired 

probability . Thus, the connectivity threshold of  is 

 

 

IV.   CONVERGENCE ANALYSIS 

 

Consider a graph  of n nodes with n0 acquaintances per node randomly selected among the 

nodes in the graph, we are also interested in the time needed for secrecy transfer to reach a stable 

state. The speed of the convergence of secrecy transfer depends on the values of n0, r for given n. 

To gain insight, we first consider the value r and perform a simulation-based study of it. 
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Employing a uniform random generator, we position  nodes in a square planar region of 

, following our deployment from Section 3. For each random topology, we estimate 

the speed of the convergence of secrecy transfer as the number of rounds that it needs to perform 

to reach a stable state. At each round, each pair of adjacent nodes in the graph  employ 

secrecy transfer to try to get connected. If there is no new edge is added in this round, secrecy 

transfer terminates. We observe from Fig. 5 that, as the value r increases, the stable state is 

reached with a speed that is faster, and for value , the number of rounds reaches its peak when 

 approximates to its connectivity threshold. 

Conventionally, a wireless network consists of some nodes as supernodes, those using a 

communication radius greater than used by normal nodes. The use of these supernodes lead to 

important characteristics of complex networks [11]: a small average shortest path length between 

all nodes, and a high cluster coefficient, which help us saving network resources, avoiding 

excessive communication, and reducing the time to data delivery. Fig. 6 depicts plots of a secrecy 

transfer with  nodes deployed over a  field, , , among them 

there are 25 supernodes with a larger communication radius . 

 

Fig 5.  Value n0 vs. number of rounds of secrecy transfer for various values of the radius r. 
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Fig 6. Secrecy transfer process in a heterogeneous network. 

 

 

Fig 7. The maximum component and rounds of secrecy transfer process in heterogeneous 

networks. 

 

From the simulation results illustrated in Fig. 7, we conclude that, compared to the homogeneous 

network case, for a heterogeneous network with supernodes, as the radius of supernodes  

grows, the value of n0 required to maintain connectivity of graph  decreases, the speed of 

the convergence of secrecy transfer accelerates. Hierarchically, the supernodes can form a higher 

layer, while the normal nodes constitute a lower layer of the network. An implication of a 

heterogeneous network is that it has better performance with regard to improving energy, power 

and topology control, scalability, and fault-tolerance and routing efficiency. 
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V. IMPLEMENTATION OF SECRECY TRANSFER 

 

In this section, we elaborate the implementation method of secrecy transfer. The method contains 

three phases: the initialization phase, the secrecy transfer phase, and the update phase. To 

implement secrecy transfer efficiently, we use Bloom Filter [15] for membership queries. 

Bloom Filter: A Bloom Filter is a popular data structure used for membership queries. It 

represents a set  using  independent hash functions  and a string of 

 bits, each of which is initially set to 0. For each , we hash it with all the  hash 

functions and obtain their values  ( ). The bits corresponding to these values are 

then set to 1 in the string. To determine whether an item  is in , bits  are checked. If 

all these bits are 1s,  is considered to be in . 

Since multiple hash values may map to the same bit, Bloom Filter may yield false positives. That 

is, an element is not in  but its bits  are collectively marked by elements in . If the hash 

is uniformly random over m values, the probability that a bit is 0 after all the n elements are 

hashed and their bits marked is . Therefore, the probability for a false positive 

is . The right hand side is minimized when  in which 

case it becomes . 

 

Fig 8. Secrecy transfer phase. 

 

Initialization phase: 

We first generate a random graph with n nodes and  links per node. For each link a secret key 

is assigned to it. Each node stores the ID of its neighbors and the corresponding secret key 

between them. For instance, if node i has  neighbors , it constructs an 
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acquaintanceship set  where  is the assigned secret key 

between node i and its neighbor . After that nodes are deployed randomly over a field. 

Secrecy transfer phase: 

Suppose two adjacent components,  and , have respectively  and  nodes, nodes 

 and  are adjacent. For component , a component head is selected
1
. He 

stores all the ID of nodes belonging to the component  in a component member set  

 where . 

Each node stores a Bloom Filter  which contains all the nodes in the acquaintance circle of 

. i.e., the nodes in  and the acquaintances of node i for all . If an adjacent node k is 

added to , the Bloom Filter  of node k is inserted into , i.e., a new Bloom Filter 

 for the new component  is created, i.e., . 

If two components  and  get connected and melt into a larger component , a new 

Bloom Filter of component  , , is created and stored in nodes of 

. To further improve the performance, not all nodes in  or  need to update its  

or  to , only nodes whose neighbors are not all connected to them need to store the 

updated Bloom Filter  of the new component . As depicted in Fig. 8,  and  

melt into a larger component , an isolated node  is adjacent to nodes , , , and G. 

After  and  get connected, only nodes A, B, F, and G in  have unconnected 

neighbor. Therefore, they need to store the new  and will broadcast it later. 

Next, we give an overview of the operations of secrecy transfer. In general, the operation of 

secrecy transfer is initiated by a new created component. Let  be a new component that has 

``swallowed'' node H, nodes A and F have already updated their  (to insert the ID of node 

H into it), and let  be an adjacent component of . After that, nodes A and F broadcast 

 to their adjacent nodes B and E. On receiving the  from component , node B 

sends a query message containing  to the component head of , say node I, where the 

component member set of , , is stored. The component head I then 

                                                             
1
 At first after initialization phase, each node is a component head of its own since all nodes are 

isolated. After several rounds of secrecy transfer process, some large components emerge. To 

reduce the communication cost, a node is selected to be a component head according to its 

centrality in the component. To simply the procedure, the node with the highest degree is chosen 

to be the component head 
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determines whether the nodes in set  are in the Bloom Filter . If a node, say 

, is found in the Bloom Filter , node I answers node B by sending D to it. Node 

B then tells A that there is a node  belonging to the acquaintance circle of component 

. 

 After that, nodes A broadcasts a query message with the ID of node D in component . Each 

node in  verifies whether node D belongs to its acquaintanceship set. As illustrated in Fig. 8, 

if the acquaintanceship set of node  contains node D, i.e., , the 

node C transmits a response message (C, D) to node A. After obtaining the acquaintance node 

pair (C, D) from C, node A knows that nodes  and  are acquaint with each 

other (they have a shared key ). Now nodes A and B can establish a secret key . 

Update phase: 

After the secret key  between nodes A and B is established, two components become a 

larger component , we then should update the acquaintance circle of  for nodes who 

have unconnected neighbors. A new component head is also need to be selected according to the 

degree distribution of nodes in . As to the network in Fig. 8, if node I is the new component 

head of , the component member set is updated to be 

 

Finally, if nodes have updated their Bloom Filter , they broadcast the new  to 

their neighbors to find chances for new links. Recursively, this procedure is applied until there is 

no node has updated its Bloom Filter. 

 

Security analysis 

As discussed in Section II, secrecy transfer is robust against eavesdrop attack, for each edge is 

added via the existing trustiness between nodes. In this subsection, we study the resilience of 

secrecy transfer against the node compromise attack. Let  denote the number of nodes that 

have been captured. Suppose the compromised nodes are independently and random distributed 

among the entire deployment region. 

Theoretically, as depicted in Fig.8, if any node in the paths A-F-C and D-I-B is compromised, the 

key  between nodes A and B is not secure. Suppose the length of two paths are  and , 

respectively. It is easy to estimate the probability that a new established key  is 

compromised as following 
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where n is the number of node in the network. 

Unfortunately, even if all nodes in two paths are not compromised, the key  may be 

unsecure. For instance, let a path from A to C be , and all nodes in 

the path have not been compromised. Node A sends   to  by sending ,  

then transmits  to node  until  reaches the last node C. If 

 are not compromised,  is still secure after it is transmitted across 

the path. However, if a key, such as , is compromised, an adversary may eavesdrop on the 

communication flows between nodes  and  to obtain , thus  is leaked. 

In general, if there are compromised nodes in the network, any key established by secrecy 

transfer between two neighbors  and  may be unsecure unless nodes  and  are 

acquaint with each other initially. For any pair of acquaintance nodes, the secret key between 

them is preloaded before the network is deployed and is considered unbreakable (unless the node 

is compromised). As to any key established by secrecy transfer, compromised nodes may degrade 

its security since lots of nodes are involved in the process of the negotiation of a new link key. 

In order to set up a more secure channel between nodes A and C, it is reasonable to use the 

acquaintanceship set of nodes. Suppose in a path , (A, ), ( , 

), and ( , C) are three pair of acquaintances. To send a secret key  to C, node A can 

send  to ,  then sends  to . At last, node C can get 

 from . The advantage of this method is that all communications are encrypted 

with pre-distributed keys. If nodes A, C, , and  are not compromised, the key  is 

secure after the transmission. However, such a secure logical path in a set of nodes may not exist. 

For a path of l nodes, their initial acquaintanceship can be viewed as a random graph , where 

 and . If  is connected, a logical path exists. 

If an adversary is not present at the network before secrecy transfer has completed, or it takes 

more time than a secure interval to compromise nodes, the communication links established by 

secrecy transfer are secure; otherwise, undetected malicious nodes may degrade the security of 

secrecy transfer and jeopardize the network.  In [16], authors investigated the potentially 

disastrous threat of node compromise spreading (via communication and pre-established mutual 
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trust) in wireless sensor networks, and proposed an epidemiological model to investigate the 

probability of a breakout. This model can be adapted to analyze the spread of malicious behavior 

of compromised nodes in the process of secrecy transfer. But how to design efficient 

countermeasures is still unknown. 

 

V.  APPLICATIONS OF SECRECY TRANSFER 

 

Sensor networks have been envisioned to consist of groups of lightweight sensor nodes that may 

be randomly and densely deployed to observe data within a physical region of interest. The nodes 

form an ad hoc multihop network, communicating readings to base stations. The connectivity of 

these self-organizing networks is critical for reliable sensing and inference capabilities [12]. 

Conventionally, sensor network is modeled as a random geometric graph , two nodes A and 

B establish a bidirectional link if they are within a radius r. To protect the sensitive data in hostile 

environments, secret keys should be established to achieve data confidentially, integrity and 

authentication between communicating parties [13]. The first practical key predistribution 

scheme for sensor network is random key predistribution scheme introduced by Eschenauer and 

Gligor [7]. For a pool size  keys, 250 keys need to be stored in a node’s memory to 

have the probability that they share a key in their key sets to be . A major advantage of 

this scheme is the exclusion of the base station in key management. Disadvantages of it are that it 

is not suitable for sparse deployed networks where the number of adjacent nodes of any node is 

small, and the storage overhead is still high for lightweight nodes (many keys in node's key set 

are not used finally). As mentioned previously, secrecy transfer can turn a random graph to a 

secure random geometric graph. If the secrecy transfer is applied with random key predistribution 

scheme, the storage overhead of nodes is lower.  

In [14], an asymmetric key predistribution scheme AKPS for sensor network is proposed. In 

AKPS, each node only stores two secret values initially, a large amount of storage is shifted to 

keying material servers (KMS). If AKPS needs to provide public keying material for any pair of 

nodes, a KMS should store  public keying material for a network of n nodes. Roughly 

speaking, AKPS is not viable for arbitrary large network. We find that, if secrecy transfer is used, 

a KMS does not need to be preloaded with  public keying material. Specially, suppose  out 

of  public keying material are randomly picked, the initial probability that two arbitrary 
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sensors can establish a secret key is , which means that, any nodes has  

acquaintances on average. As before, if  is larger than the connectivity threshold in graph 

, we can repeat the construction process of secrecy transfer to get a connected graph  which 

will guarantee that any pair of adjacent nodes can establish secret keys. 

 

VI.  CONCLUSIONS 

 

This work presented a secrecy transfer algorithm which is directly based on the idea that 

networks form primarily by people introducing pairs of their acquaintances to one another. The 

resulting network, showing both properties of random graph and random geometric graph, may 

not only model the introduction process in social networks, but also be used to protect the 

network. In fact, secrecy transfer, a localized algorithm which does require global knowledge of 

the network, can achieve the desired global behavior. 

If an adversary is not present at the network before secrecy transfer has completed, or it takes 

more time than a secure interval to compromise nodes, the communication links established by 

secrecy transfer are secure; otherwise, undetected malicious nodes may degrade the security of 

secrecy transfer and jeopardize the network. How to build a distribution model for the spread of 

the malicious behavior of compromised nodes and design efficient countermeasures against such 

active attack are parts of our future researches. 
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