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Abstract- Outlier detection plays a crucial role in secure monitoring in Wireless Sensor Networks 

(WSN). Moreover, outlier detection techniques in WSN face the problem of limited resources of 

transmission bandwidth, energy consumption and storage capacity. In this paper, similar flocking 

model is proposed and a cluster algorithm based on similar flocking model (CASFM) is put forward to 
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detect outliers in real-time stream data collected by sensor nodes. The similar flocking model improves 

the Vicsek model by introducing the similarity between individuals and velocity updating rule, which 

causes similar objects to cluster quickly. In order to save energy, CASFM algorithm preprocesses 

similar data on the sending sensors first, which greatly reduces the transmission of similar data. So the 

communication overhead is decreased. With the characteristics of self-organization and fast 

convergence of flocking model, stream data can be clustered quickly. The experimental results show 

that the proposed algorithm can detect outliers effectively with less energy consumption. 

 

Index terms: Wireless sensor network, Outlier detection, Stream clustering, Flocking model. 

 

I. INTRODUCTION 

 

Wireless Sensor Network(WSN)，which is listed as one of the most influential technology in the 

twenty-first century, has been used in many fields, such as military control, environmental 

monitoring and forecasting, health caring, intelligent home, urban transport and security 

monitoring [1]. In most applications, the accuracy and reliability of data collected by sensors 

make great contribution to the decision-making. The distributed environments of wireless sensors 

are different, and some even work in the harsh environment, so that the value of collected data 

may be deviated. Typically, the data sets which are obviously inconsistent with other data 

observations are called outliers. In traditional research, outliers are often ignored or treated as 

noise. However, these "noise" data may convey some important abnormal signal, for example, in 

environmental monitoring, outliers may indicate impending weather disasters; in military control, 

the outlier data may mean dangerous invasion; in health caring, the outlier data may indicate bad 

health conditions; in urban traffic monitoring, outlier data may mean traffic accidents. If we 

discard outlier without any analysis, it would result in the loss of important information. 

Therefore, outlier detection is a key task in the WSN and has become a hot issue in the research 

of WSN. 

The resources of sensors are very limited in WSN, and the data from sensors form a large number 

of distributed real-time data stream, therefore, most traditional data mining methods are not 

directly applicable to WSN. An outlier detection approach based on similar flocking model in 

WSN is proposed in this paper. Firstly, we introduce flocking model into WSN. Inspired by the 

phenomenon of rapid aggregation of individuals in the same population, we propose a similar 
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flocking model. Then, a stream clustering algorithm based on similar flocking model (CASFM) 

is presented to detect outliers by clustering the real-time data stream collected by sensors. In 

order to save the resources, especially the energy of sensors, the presented algorithm reduces the 

transmission of similar data on data collection sensors by using the feedback cluster information 

from cluster heads. In addition, the cluster algorithm can aggregate stream data rapidly by 

introducing the similar neighbors and the velocity updating rule in similar flocking model to let 

similar individuals cluster quickly, so that the computational energy can be saved. Finally, the 

experiments are carried out. The results show that CASFM can not only achieve a high precision 

of outlier detection, but also save the energy. 

The rest of this paper is organized as follows. Related work on outlier detection techniques based 

on clustering is presented in Section II. Similar flocking model we proposed is described in 

Section III. Our outlier detection model in WSN and the stream cluster algorithm based on 

similar flocking model are elaborated in Section IV. Experimental results and the performance 

evaluation are reported in Section V. Finally, the paper is concluded in Section VI. 

 

II. RELATED WORK 

 

The outlier detection methods in WSN can be roughly divided into the following categories: 

statistics based method, nearest neighbor based method, clustering based method, classification 

based method and spectral analysis based method [2]. Among these methods, clustering based 

method does not need prior knowledge and has low computational complexity, so it has been 

proven to be an effective approach to provide better data aggregation and conserve the limited 

energy resources for large WSNs [3].  

Korjani MM, et al. proposed a distributed detection model in WSN, which detected outliers by 

classifying sensor data through genetic-fuzzy clustering algorithm [4]. Amirhosein T, et al. 

proposed a communication efficient distributed clustering algorithm for WSN by improving 

distributed k-means algorithm [5]. In order to reduce the communication overhead, only 

summarized information was transmitted and computations were performed locally in clusters as 

much as possible [5]. This algorithm keeps the clustering quality and reduces communication 

overhead. However, clustering heads still require a large amount of data processing when the 

number of sensors is relatively high. Hakkilo S, et al. proposed a distributed WSN data 
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stream clustering algorithm based on fuzzy clustering(SUBFCM) [6]. To minimize energy 

consumption of sensor nodes, SUBFCM followed the strategy of trading-off communication for 

computation through distributed clustering and successive transmission of local clusters. Masud 

et al. proposed a distributed anomaly detection algorithm by clustering ellipsoids in WSNs [7]. 

This algorithm learned an ellipsoid boundary for normal data at each sensor, then clustered these 

ellipsoids at a global level to model normal behavior and detected unusual events. Rajasegarar et 

al. proposed a distributed global outlier detection algorithm, in which the goals of detecting 

outlier and reducing energy consumption were realized by clustering and merging clustering 

results [8]. 

Currently, most clustering algorithms in WSN focus on designing better network topologies or 

routing protocols to extend network lifetime by clustering sensor nodes [9,10], while few 

algorithms pay attention to clustering real-time data stream collected by sensor nodes to monitor 

and detect outlier. In the network environment of limited resource, a well-designed algorithm 

should not only ensure the accuracy of detection, but also meet the requirement of saving 

network resources. This paper will introduce flocking model to WSN and propose the similar 

flocking model. Furthermore, the clustering algorithm based on similar flocking model is 

presented to find outliers in real-time data stream collected by sensor nodes and to realize the 

anomaly detection and monitoring while controlling the energy consumption. 

 

III. SIMILAR FLOCKIING MODEL 

 

Flocking is a cooperative behavior of social animals such as birds and fish. Through the 

interaction between individuals, these social animals can automatically line up in groups without 

centralized coordination and global information, which shows the swarm intelligence. The 

flocking model simulates the animals’ distribute-controlled aggregation movement to achieve 

complex functions. The representative models are biod model [11] proposed by Reynolds, Vicsek 

model [12], leader-follower model [13], and so on. In these models, Vicsek model is a basic 

model of multi-individual system. It aims to research the clustering behavior in non-equilibrium 

system and it has some key characteristics of a complex multi-individual system [12]. Flocking 

model has been used for text clustering by Cui, et al, and the experimental results show that the 

clustering algorithm based on flocking model has higher accuracy, faster convergence speed than 
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k-means and ant colony algorithm. Moreover, it can cluster dataset for any shape, size and 

density and the clustering result is stable [14]. 

The Vicsek model is simple and has the advantage of fast convergence with the flocking essence, 

so it is very suitable for a resource-limited distributed environment, like WSN. In this paper, we 

improve the Vicsek model and propose a similar flocking model. By improving the heading rule, 

similar individuals will have similar moving direction gradually, and by introducing the speed 

updating rule, similar individuals will cluster quickly. Furthermore, we propose an outlier 

detection approach based on similar flocking model to detect outliers in WSN by clustering the 

real-time data stream collected by wireless sensor nodes. Meanwhile, in order to save the energy 

of sensor nodes, the nodes process the data stream locally and reduce the transmission of similar 

data. 

 

a. Vicsek Model 

Vicsek model [12] is a discrete-time system consisting of multiple autonomous individuals called 

particles. Each particle moves in a two-dimensional plane at a constant velocity, and its heading 

angel is the vector average of heading of its neighbors. The initial position of each particle is 

distributed in the plane randomly, and the initial heading is distributed in the interval [ , ]
2 2

 
 . 

Assume that current position of particle i is ( ( )ix t , ( )iy t ) at time t, and the velocity is v. The 

position updating rule is： 

( 1) ( ) cos ( ),
   1, 2,...,

( 1) ( ) sin ( ),

i i i

i i i

x t x t v t
i N

y t y t v t





  


  
                               (1) 

where ( )i t  is the heading of individual i at time t. The linear form of the heading updating rule 

is:  

( )

1
( 1) ( )

( ) j N ti i

t t
i jn t
 



                                                                    (2) 

where ( )iN t  denotes the set of neighbors of individual i at time t, shown as (3). And n(i) is the 

number of individuals in ( )iN t . 

( ) { | ( ) } 0i ijN t j d t r r  ，                                                             (3) 

where 2 2( ( ) ( )) ( ( ) ( ))ij i j i jd x t x t y t y t    ,  r is the neighborhood radius. 
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b. Similar Flocking Model 

Vicsek model researches the clustering behavior in multi-individual system, but it does not take 

into account the difference between species or individuals and its effect on aggregation. 

Therefore, in order to let the individuals belonging to same species gather quickly and different 

kinds of individuals separate rapidly, similar flocking model is proposed, in which similarity 

between individuals and velocity updating rule are introduced. Correspondingly, the heading and 

the position updating rules are improved. Using similar flocking model to cluster the real-time 

data stream collected by sensor nodes, data will be treated as individuals and each individual 

moves according to the position and heading of the similar and nearby individuals. The improved 

rules are as follows: 

Similar neighbors: 

( ) { | ( ) ( , ) } 0,  0 1i ijSN t j d t r sim i j r       ，                (4) 

where   is similarity threshold, sim(i,j) is the similarity between individual i and j. It can be 

described by the value of cosine angle of characteristic vector Pi and Pj : 
( , )

( , )
|| || || ||

i j

i i

P P
sim i j

P P



. 

The heading updating rule is： 

( )

1
( 1) ( )

( ) j SN t

t t
i jsn t

i i

 


                                                 (5) 

The heading angle is updated by similar neighbors instead of neighbors, which makes the similar 

individuals attain a common heading angle quickly. The velocity updating rule: 

( 1) ( )simv t P v t                                                                                         (6) 

here, simP  is the similar characteristic factor,   ( )

( , )

( )

SN t
i

sim

sim P P
i cc

P
sn t

i





, ( )iSN t  is the set of similar 

neighbors, and sn(i) is the number of similar neighbors. 

The position updating rule is： 

( 1) ( ) ( 1) cos ( 1) ,

( 1) ( ) ( 1) sin ( 1) ,

x t x t v t t t
i i i

i 1,2,...,N
y t y t v t t t
i i i





      
 

      

           (7) 
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This rule indicates the movement trace of aggregated individuals in space. Δt is the time step, 

θi(t+1) denotes the heading of next time t+1, and ( ( )ix t , ( )iy t ) is the position of individual i at 

time t.   

Similar characteristic factor simP  is the mean value of similarity between individual i and its 

similar neighbors. It is used to control the moving velocity and the position change of i. If the 

similarity between individuals is high, the velocity is fast and the position updating step becomes 

larger. In addition, the heading among similar individuals will be consistent gradually. The 

velocity updating rule is used to regulate the speed of individuals to aggregate similar individuals 

and separate different individuals quickly. The heading updating rule is used to calculate the next 

direction of individual i through headings of its similar and nearby individuals, so the similar 

individuals are getting closer. According to the improved rules, the position of individual at time 

(t+1) is updated through the heading at time (t+1), which makes the individuals’ positions be 

synchronized faster than through the direction at time t in (2). So the similarity between 

individuals is considered through the similar characteristic factor simP . Different species of 

individuals will show big difference in position and heading when they are moving, so that they 

can be divided into different clusters, and the individuals with higher similarity will be more 

likely to be in the same  cluster. 

 

IV. OUTLIER DETECTION BASED ON SIMILAR FLOCKING MODEL IN WSN 

 

a. Outlier Detection Model in WSN 

The outlier detection model proposed in this paper is based on similar flocking model described 

above and detects outliers by clustering stream data collected from sensor nodes. It can be used in 

the applications of forest fire prevention, environmental monitoring, and so on. 

In wireless sensor networks, hierarchical topology is a typical network topology structure, which 

is widely used in monitoring systems. The model in this paper is applicable to hierarchical WSN, 

as shown in Figure 1. 
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Figure 1. Hierarchical topology structure of WSN 

The sensor nodes are responsible for data acquisition, and each sensor node will preprocess the 

raw stream data locally and send necessary information to its cluster head. After receiving the 

data sent by the sensors within its region and storing them in cache, cluster head clusters the data 

stream locally and distinguishes the local outliers. Then it discards the original data from sensors; 

Afterwards, cluster heads send the local clustering results and local outliers to the sink node. The 

sink node will gather all local results and cluster them globally to produce global outliers. The 

software model of outlier detection is shown in Figure 2. The local preprocessing module running 

on the sensor nodes preprocesses the raw stream data to reduce the amount of data sent to cluster 

head. The stream clustering algorithm based on similar flocking model is deployed on cluster 

heads and sink node to detect local outliers and global outliers respectively. 
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Figure 2. Outlier detection model in WSN 
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As the energy, processing power and storage capacity of sensor nodes are very limited, in order 

to prolong the life cycle of the entire network, not only high detection rate and low false alarm 

rate should be achieved, but also minimum consumption of network resources should be kept, 

especially the energy consumption. In the model proposed in this paper, the stream clustering 

algorithm based on similar flocking model running on cluster headers and sink node is simple, 

effective and fast convergent, so the computational energy consumption will be controlled. By 

local preprocessing on the sensor nodes and the local clustering on cluster headers, the amount of 

data transferred between nodes is minimized and the energy consumption of data transmission is 

reduced. 

 

b. Distinguishing Outliers 

There is no rigid mathematical definition of outliers at present, and different detection techniques 

have different ways to distinguish outliers. Since the method proposed in this paper detects 

outliers by clustering, a data point or a small cluster which is distant from rest clusters will be 

defined as an outlier [15]. Relevant definitions are given below: 

Definition 1. Cluster characteristic tuple: is summarized information of a cluster. It can be 

expressed by a tuple consisting of five elements: CF=<E, dtotal , dmax , dmin , λ>. 

where E is the center of a cluster, 
1 n

i

i

E P
n

  , Pi represents the characteristic vector of data 

object i in a cluster; dtotal is the total distance from each data object to cluster’s center E; dmax , 

dmin are the maximum radius and minimum radius from each data object to the cluster center 

respectively;   is the number of data objects in a cluster. 

Definition 2. Clustering compact degree: is a compact degree of data objects in a cluster, and 

its value can be calculated by clustering characteristic tuple CFc of cluster c, that is: 

 
max

min

.
  .  -    

.

.
 -  .

.

c total
c

c

c total
c

c

CF d
CF d

CF
CluCom c

CF d
CF d

CF





                               (8) 

here, 
.

.

c total

c

CF d

CF 
 is the average distance from each data object to its cluster center.  CluCom c  

reflects the distribution degree of data points in a cluster. If the data points in a cluster are 
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distributed evenly, the value of cluster compact degree is close to 1; On the contrary, the higher 

the value is, the more irregular data points distribute. 

Definition 3. Outlier: If cluster c satisfies following conditions, it is considered as an outlier. 

(a) .c   

(b) 
. .

( )
. *.

c total total

c

CF d CF * d
dist c

CF CF 
                                                              (9) 

(c)    0CluCom c 1+ ,    

( )dist c  is defined as the exception factor of a cluster. It represents the degree of difference 

between cluster c and other clusters. It can be calculated through the distance between them; 

.

.

c total

c

CF d

CF 
 is the average distance from each data point in cluster c to cluster center of c; 

*.

*.

totalCF d

CF 
 is the average distance from the cluster center of c to that of other clusters. Condition 

(a) indicates that the data points in cluster c are very few; condition (b) indicates the dissimilar 

degree of cluster c; condition (c) indicates the distribution degree of data points in cluster. 

 

c. Stream Clustering Algorithm based on Similar Flocking Model (CASFM) 

CASFM is deployed in the cluster heads and sink nodes. Data points in data stream act as 

autonomous individuals. They move in the virtual space according to the information of 

themselves and their similar neighbors, and then evolve into clusters. In the process of stream 

clustering, each data point will be mapped to a two-dimensional space first. Then it will move 

according to the position and heading updating rules, meanwhile its moving speed will change 

based on the velocity updating rule defined in similar flocking model. After certain times of 

iteration, the data points will gradually be formed to different clusters. If the cluster satisfies the 

definition of outlier, it would be treated as an outlier; else it would be a potential cluster. 

Although the behavior of each data point is only influenced by neighbor data, these local rules 

will result in global behavior of data stream clustering after certain times of iteration, which can 

produce the final clustering results and generate outliers. 

The algorithm process is roughly divided into two phases: cluster initialization and cluster 

maintenance. During the cluster initialization phase, each sensor sends the real-time stream data 

collected in the initial cycle to its cluster head, and then cluster head performs an initial clustering 
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process: data points are assigned to a two-dimensional space randomly and then move according 

to the rules in similar flocking model. After many times of iterations, data points with similar 

characteristics will be grouped together. So the normal clusters and local abnormal clusters will 

be produced. Finally, the initial data stream will be discarded to release the storage space.  

In the cluster maintenance phase, each sensor preprocesses the raw stream data and then sends 

the result to the cluster head. Cluster head compares the similarity between received data and the 

initial clustering results, and then decide whether the points should be added to the known 

clusters. If they are similar, the algorithm will update the cluster characteristic tuples. Otherwise, 

the data points will be mapped to the two-dimensional space and move iteratively to get a new 

clustering result. Finally, the cluster results will be fed back to each sensor. 

The cluster head locally clusters data stream collected by the sensor nodes within its field, and 

then transmits the results to the sink node. The sink node compares the local clustering 

information coming from the cluster heads, and then clusters the local results again to get global 

clusters. At last, the algorithm distinguishes outliers according to the clustering results and 

outputs outliers. The algorithm is described as follows: 

Algorithm 1：stream clustering algorithm based on similar flocking model (CASFM) 

Input： 

X：data stream sent from sensor or cluster head {{x1
1
, x2

1
, x3

1
,…, xm

1
}, …,{ x1

j
, x2

j
, x3

j
,…},…},  

xk
j
 represents the data point from sensor j at time k. 

Output： 

CF：the set of cluster characteristic tuples{CF1,CF2,…,CFnum};  initial value of CF is null; 

OT：the set of outlier clusters; 

OWID：the set of sensors collecting abnormal data; 

Begin 

if ( firstflag ) // the data points are mapped to the two-dimensional plane at the first run 

{   

MaptoPlane(X); 

Firstflag = false; 

} 

for i=1 to M do {  //Clustering and cluster maintenance; M is the number of iteration 
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for (xk
j
 ∈  X ) {  //for each data point  

move(xk
j
);  //move by updating rules in similar flocking model 

if type(xk
j
) = cluster //if xk

j
 is cluster characteristic tuple after local processing 

{ 

          c = GetMostSimilarCluster(xk
j
, CF); 

if (c) {  // c exists 

d = E-distance(xk
j
, c ); 

                  if( d < ε )     //if the similarity between xk
j
 and cluster c is less than threshold ε  

                          form-micro-cluster(CF);  

//form macro cluster and update the cluster characteristic tuple 

}   

endif  //if(c) 

else    // xk
j
 is a real-time collected data point  

{ 

ComputerE-distance(xk
j
, CF);   

//calculate the distance from data point xk
j
 to the center of all clusters 

c = GetNearestCluster(xk
j
, CF);  

if ( c)   // xk
j
 can be merged with cluster c 

                merge-cluster(xk
j
, c); //merge xk

j
 into cluster c 

          updateCF(c); 

} 

end if 

end for  // xk
j
 

end for      // i 

Formcluster(CF);        //produce new cluster characteristic tuples  

for(CFi∈CF)  //for each cluster, distinguish whether it is outlier according to the definition 3 

          judgeOutlier(OT, OWID);   

Output OT, OWID; 

End 
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d. Data preprocessing on data sending sensors 

As data transmission consumes much more energy than computing and data sensing in wireless 

sensor networks [16], in order to reduce the energy consumption for data transmission, CASFM 

preprocesses the real-time data stream locally on sensor nodes. According to the clustering results 

feeding back from cluster head, sensor nodes reduce the transmission of similar data greatly.  

The sensors send the raw stream data to the cluster head only in the first cycle, and the cluster 

head clusters the data and then feeds back the results (the value of cluster center and cluster 

radius) to the corresponding sensors. The subsequent data collected by the sensors will be 

compared with the local cluster results fed back from cluster head. If the distance is less than the 

radius threshold, sensors will not send the raw stream data to the head node. It just updates the 

cluster characteristic information which will be sent to cluster head periodically. If the distance is 

greater than the radius threshold, the data will be sent to the cluster head and taken part in the 

local clustering. As the environment of sensors is stable, the values of collected data are very 

close. Only when an abnormal event occurs, will the value of collected data change significantly. 

Therefore, sensor nodes can effectively reduce the amount of data by a similar data processing on 

collected data stream. This process is also suitable for cluster heads before cluster heads send 

data to sink node.   

 

e. Analysis of energy consumption 

The outlier detection model in this paper is developed for WSN of hierarchical topology, and the 

total energy consumption includes the following aspects: data collection, preprocessing, 

transmission and reception on the sensor nodes; data reception, transmission, and algorithm 

execution on cluster heads; data reception and algorithm execution on the sink node.  

The energy consumption model of each sensor node is the first order radio model proposed by 

Heinzelmann W R [17]. In this model, the energy consumption of sending k bits at a distance of d 

meters is: 

2( , )T elec fsE k d kE k d                                                                  (10) 

The energy consumption of receiving k bits is: 

( )R elecE k kE                                                                                  (11) 
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where, elecE
is transceiver circuitry energy, and fs

 is transmitter amplifier energy. As shown 

above, when the distance is a constant, the amount of transmitted data is the key factor which 

influences the energy consumption. 

Total energy consumption can be calculated by the following equation: 

sintotal comp transc sen g sleepE E E E E  ＝
                                            (12) 

where comp sensors cluster sinkE E E E  
 is the total energy consumption for the algorithm 

execution. sensorsE is the computational energy consumption for similar data processing on 

sensors. clusterE
 and sinkE

denote the energy consumption of cluster heads and sink node for 

the algorithm execution respectively. Energy consumption of algorithm execution can be 

simulated by computer. 

transc Ss Rs Sch Rch RsinkE E E E E E    
 is the total energy consumption of communication 

among sensors. SsE
 and RsE

 are the energy consumption for data sending and data receiving 

on sensor nodes respectively; Likewise, SchE  and RchE  represent the energy consumption for 

data sending and receiving on cluster heads; RsinkE
 is the energy consumption for receiving data 

on sink node. Here, energy consumption for data transmission is calculated according to equation 

(10) and (11). 

sensingE  is the energy consumption for detection; sleepE  is the energy consumption of sensors 

on sleep mode. 

From equation (12), we can know that when the transmission links and the distance are 

determined, the communication energy depends on the amount of transmitted data. In order to 

reduce the communication overhead, the similar data processing algorithm on sensor nodes will 

reduce the transmission of similar data by only sending quite different data or summarized 

information to cluster head instead of raw stream data. So the amount of data sent by sensors and 

received by cluster head is very small. Especially when the nodes in sensor network are 

distributed densely and the observing areas are overlaid, the collected data tend to have high 

similarity and redundancy. Therefore, removing these similar, duplicate data can greatly reduce 

the amount of data transmitted, which can effectively reduce the energy consumption. In 

addition, the algorithm in this paper detects outliers by clustering. It can be seen that the 
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algorithm will send the updated cluster characteristic tuple instead of raw stream data during the 

time cycle ΔT of similar data preprocess on sensor nodes, when the multiple data objects 

collected by a sensor are in a known cluster radius. Therefore, it can greatly reduce the energy 

consumption of communication. 

On cluster heads, similar flocking model keeps the nature of Vicsek model, such as simplicity 

and fast convergence. The clustering algorithm based on similar flocking model can cluster 

similar objects in a self-organization way as soon as possible. It can also cluster data distributed 

with any shape at one time rather than traditional two-phase framework. To a certain extent, this 

algorithm can reduce the computational energy consumption. 

 

V. EXPERIMENTAL RESULTS AND EVALUATION 

 

a. Experimental environment 

Several experiments were performed to evaluate the performance of CASFM. Three algorithms 

were compared, i.e., CASFM, SUBFCM [6] and the anomaly detection algorithm by clustering 

ellipsoids [7], which was called as ADCE for simplicity. The experimental data used in this paper 

came from the laboratory of Berkeley University, which was collected by 54 sensors deployed in 

the Intel Berkeley Research lab from 28 February to April 5 in 2004 [18]. The experimental data 

included the indoor information of humidity, temperature, light intensity, voltage and topology 

information, etc. Each sensor produced a reading every second. Experiments took the values of 

temperature and humidity as input data, and the topological information was used to establish 

spatial neighbor relationship. The time cycle of processing data on cluster head node ΔT=1min. 

The algorithm was implemented on Matlab R2009a, and the machine was configured with Intel 

dual-core 2.0GHzCPU, 3G RAM, Windows XP Operating System. 

In our experiments, 8 sensors formed one group according to their successive number to simulate 

hierarchical topology, therefore, 7 groups were produced and there are 6 sensors in the last group. 

Each group chose a sensor as cluster head dynamically according to the remaining energy. A 

virtual sensor was added as the sink node, whose number is 0. 

The energy consumption parameters were set according to SUBFCM, elecE =50nJ/bit, fs ＝

100pJ/bit/m2. Other parameters were selected by large number of experiments as follows: the 

initial velocity v = 1000, ε = 0.24, ζ = 10, iteration number M = 100. 
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During the initialization of the algorithm, the data initial position in a two-dimensional space that 

data point mapped to is based on the sensor’s position which the data point belongs to. The 

position of sensors is defined by two attributes, x and y, which are the coordinates in the plane. 

The locations of sensors have been specified in experimental data set. 

 

b. Experimental Results and Evaluation 

The experiments evaluated the algorithm from detection rate, false alarm rate and energy 

consumption. As SUBFCM is only a stream clustering algorithm, we distinguished outlier using 

definition 3 in this paper to compare the effects of outlier detection.  

 

b.i Detection rate and false alarm rate 

Table 1 shows the detection rate and false alarm rate of three algorithms. It can be seen that the 

detection rates of three algorithms are nearly 100%. But CASFM has less false alarm rate than 

other two algorithms. ADCE focuses on the local detecting results of sensors and ignores the 

global characteristic of sensor network. Because SUBFCM depends on the parameters setting of 

clustering, it can’t guarantee low false alarm rate. In CASFM, few parameters need to be set in 

advance. Moreover, each data point is autonomous, and through the self-organization of similar 

flocking model, data move and cluster by themselves. So the false alarm rate is low. The results 

show that CASFM is a better algorithm for outlier detection. 

 

Table 1: Comparison of the detection rate and false alarm rate 

Algorithm Detection Rate False Alarm Rate 

ACDE 99% 1.2% 

SUBFCM 100% 0.88% 

CASFM 100% 0.74% 

 

b.ii  Energy consumption 

On the basis of original data set, the experiments are performed to evaluate the energy 

consumption by changing the distance between sensors and adding some sensors, whose data are 

part of original data. Figure 3 shows the total energy consumption of all sensors. It can be seen 

that when the distance is no longer than 40 meters, there is little difference about the energy 
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consumption of three algorithms. When the distance is getting longer gradually, the energy 

consumption of CASFM is lower than ADCE and SUBFCM and the gap is increasing. This is 

owing to the similar data processing on sending sensors. When the environment is normal, the 

data collected by sensors are very similar. Large amount of raw data do not need to be sent, 

which cut down the communication overhead and energy consumption greatly.  

 

Figure 3. Comparison of energy consumption while changing the distance between sensors 

Figure 4 shows the influence on energy consumption when the number of nodes increases. The 

added sensors are the same as original deployed sensors, for we duplicate some data of different 

time from original data set as the observations of added sensors. The distance between every two 

sensors are set to 100m, other parameters are not changed. It can be seen that when the number of 

nodes increases, CASFM consumes the lowest energy in three algorithms. It is due to the self-

organization of similar flocking model and similar data processing on sensors. SUBFCM has the 

highest energy consumption when there are more sensors. The reason is that the information 

exchange between sensor and cluster head is more frequent during clustering when the number of 

sensors rises. ADCE transmits data locally, so its energy consumption is between that of 

SUBFCM and CASFM. The results show that CASFM can save more energy than the other two 

algorithms, especially in large-scale WSN. 
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Figure 4. Comparison of energy consumption for different number of sensors 

 

VI. CONCLUSIONS 

 

In this paper, similar flocking model and a stream clustering algorithm based on similar flocking 

model (CASFM) are proposed to detect outliers in WSN. Through the self-organization property 

of the similar flocking model, CASFM can cluster data with any shape quickly and reduce the 

algorithm complexity. Considering the limited resources of wireless sensors, sensors only send 

necessary data according to the cluster characteristic information fed back from cluster head or 

sink node to decrease the transmission of similar data significantly. So the energy consumption 

can be decreased greatly.  The experimental results show the effectiveness of CASFM in outlier 

detection and energy saving. 

The algorithm proposed in this paper only considers the case that sensors are in a homogeneous 

network and there is no loss of data. When the sensor nodes are in a heterogeneous or unstable 

environment, how to effectively detect outliers is one of our future works. In addition, we are 

investigating other detection techniques and their applications. 
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