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Abstract - The lack of automation and the limited performance of current image processing techniques 

pose critical challenges to the efficient and timely use of the large amount of data made available by 

aerial and space based assets. The imitation of fast adaptation and inference capability of human visual 

system appears to be a promising research direction for the development of computational algorithms 

able to deal with large variations in image content, characteristics and scale as those encountered in 

satellite imaging. The paper explores the potential use of an improved computational model of visual 

attention for the complex task of building identification in satellite images. It contributes to extend the 

envelope of application areas of such models and also to expand their current use from single object to 

multiple object detection. A set of original weighting schemes based on the contribution of different 

features to the identification of building and non-building areas is first proposed and evaluated against 

existing solutions in the literature. A novel adaptive algorithm then chooses the best weighting scheme 
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based on a similarity error to ensure the best performance of the attention model in a given context. 

Finally, a neural network is trained to predict the set of weights provided by the best weighting scheme 

for the context of the image in which buildings are to be detected. The solution provides encouraging 

results on a set of 50 satellite images.  

 
Index terms: Visual attention, weighting schemes, neural networks, building detection, satellite images. 

 

 

I. INTRODUCTION 

 

The mainstream adoption of the geospatially-enabled web and of other spatial information 

production tools for digital maps and geographical information systems is attested by the 

increasing availability of high resolution digital satellite and aerial images. The ability to deal 

with such data has become a critical requirement to ensure highly automated processing and full 

use of the growing volume of spatial images in a timely manner. As the current generation of 

algorithms for feature extraction and recognition seems to have somewhat reached its limits, the 

recent years marked an increasing interest in algorithms inspired from biological human vision. 

While the research in this direction evolved significantly over time, most of the proposed 

biological visual-inspired systems have been tested for a limited number of images in simplistic 

scenarios. Up to now, none of the computational attention models was demonstrated to work 

under such a wide range of image contents, characteristics and scales as those encountered in 

satellite imaging. 

This paper tackles the issue of building recognition in satellite images. It explores the potential 

use of an improved computational model of visual attention for this task. Visual attention models 

highlight areas of high interest based on a set of features such as color, intensity, and orientation. 

The current model also accounts for texture as an additional feature, as texture is believed to play 

a critical role for object detection in human vision, particularly in cluttered scenes. A set of 

original weighting schemes is proposed to enhance the detection of desired objects in an image, 

based on the contribution of different features to the desired (e.g. buildings) versus non-desired 

(e.g. non-building) areas. Since it is known that the human visual system is effective due to its 

capability to adaptively determine which features to use in a given context, the paper also 

proposes an original adaptive algorithm to choose the best weighting scheme (and concomitantly 
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the best set of weights) to highlight desired areas and a mechanism to predict the best scheme in a 

given context. 

 

II. RELATED WORK 

 

Recent years witnessed an increased interest in computational models that mimic the human 

sensing perception [1], the human visual system, and particularly the human visual attention.  

The main idea of such systems inspired from visual attention is to compute several features 

derived from a color image and fuse their saliencies into a representation called saliency map. 

The strategy to combine these feature maps into the saliency map is still a challenge. Minimalist 

approaches select one feature map to represent saliency. Walther et al. [2] select the feature map 

that contributes the most to the saliency map, while Gopalakrishnan et al. [3] choose the saliency 

map as either the color or the orientation map. Kim and Kim [4] use a variance measure to choose 

the most discriminative feature among a set of linear and non-linear color combinations. In [5] 

only spatial color contrast is used as a feature. Other approaches study appropriate weighting 

schemes to enhance the saliency map. The model of Itti and Koch [6] integrates color, 

orientation, and intensity features using non-iterative or iterative normalization, or using feature 

weights learned from a training set. Zhao and Liu [7] propose a sparse embedding feature 

combination strategy for the color, intensity and orientation feature maps. In [8], spatial 

compactness and saliency density are used to weight dynamically the color, intensity and 

orientation feature maps. Hu et al. [9] propose a local context suppression strategy to adaptively 

combine intensity, color, and texture attention cues. In [10], a complex unsupervised filter 

method is proposed for the identification of relevant color and texture features. Vu and 

Chandler’s algorithm [11] adaptively selects low-level features such as contrast, sharpness, and 

edge strength for main subject detection in images based on statistics. Frintrop [12] uses a 

learning mechanism for storing target-relevant features and excites or inhibits features to obtain a 

target-dependent saliency map. The approach of Goferman et al. [13] aims at detecting the image 

regions that are representative for a scene, instead of a single subject. Murray et al. [14] expand a 

low-level visual model that predicts color appearance for saliency estimation. A different stream 

of saliency detectors does not take inspiration from visual attention but rather capitalizes on 

image frequency [15-18], on spatiotemporal cues [19], on regional contrast [20] or on natural 
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image statistics [21]. Most of these solutions are tested in simplistic scenarios, on images 

containing usually one object. In our previous work, a model inspired from visual attention was 

used with success for a real-world task, in the context of multi-view vehicle category 

identification [22]. This paper explores the use of visual attention models in the more complex 

context of satellite imaging, characterized by a wide range of image content variations and by 

multiple small objects against a cluttered background. 

 

III. PROPOSED APPROACH 

 

The computation of feature and conspicuity maps follows largely the bottom-up model of Itti [6]. 

Initially, one or several image pyramids are created from the input image to enable the 

computation at different scales. Several features are then computed in parallel and feature-

dependent saliencies are computed for each channel. Aside from the intensity, color and 

orientation feature maps of Itti, the proposed model also incorporates an additional color feature, 

the DKL color code, and a contrast map. Center-surround operations, modeled as a difference 

between fine and coarse scales, are applied on all features. Each set of features is stored in feature 

dependent saliency maps, called conspicuity maps, in form of grayscale images where the 

intensity of each pixel is proportional to its saliency. At this level, two other conspicuity maps are 

introduced in the model, both being measures of texture. The first one is the local standard 

deviation and the second one is the local entropy, a statistical measure of randomness that 

characterizes the texture of an image. After normalization, all these maps are combined in the 

final saliency map.  

 

a. Computation of Conspicuity Maps 

The RG-BY color opponency feature maps and the corresponding conspicuity map, CC, are 

computed as in [6], for the center-scales, c={2,3,4} and the surround scales, s=c+δ, δ={3,4}. In 

the biologically-inspired DKL color code, colors are represented using a luminance axis and two 

opponent chromatic axes: one axis along which chromaticity varies without changing the 

excitation of blue-sensitive cones, and one axis along which chromaticity varies without change 

in the excitation of red-sensitive or green-sensitive cones. Details of the RGB to DKL conversion 

are available in [23]. Typical center-surround operations are applied on the 3 color components 
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prior to the computation of the DKL color code conspicuity map, DC. The intensity is computed 

as I = (R+G+B)/3 where R, G and B are the red, green and blue color channels respectively and 

the orientation information is obtained based on Gabor pyramids for the orientations {0o, 45o, 

90o, 135o}. The intensity and orientation conspicuity maps are denoted IC, and OC, respectively. 

The contrast map, RC, is computed based on the global standard deviation of pixel intensities. 

Two more conspicuity maps are introduced to bring additional texture information that is 

believed to play a critical role to capture visual attention in images that contain many small 

objects present in a cluttered background [8], as is the case in satellite imaging applications. This 

extra texture information is not computed on a pyramid of images, but directly on the input 

image. The first texture conspicuity map, TC, is based on the local standard deviation of an image 

in a 3-by-3 neighborhood, while the second map, EC, is composed of the local entropy value, e, 

of the 9-by-9 neighborhood around the corresponding pixel in the input image as described in 

[24]. The final saliency map, S, is computed as a weighted sum of the conspicuity maps, such as:  

 

7
ECwTCwRCwOCwICwDCwCCwS etroidc ⋅+⋅+⋅+⋅+⋅+⋅+⋅=                           (1) 

 

For the standard bottom-up saliency map [6], the weighting coefficients, wα, α = {c, d, i, o, r, t, 

e} are all set to 1. The seven conspicuity maps are therefore contributing equally to the saliency 

map. 

 

b. Alternative Weighting Schemes 

The saliency map computed with all unitary weights using eq. (1) with wα=1, ∀ α ∈  {c, d, i, o, r, 

t, e} typically highlights all the areas of high interest. However, if one wants to identify only one 

particular type of object in an image, for example buildings, the areas corresponding to buildings 

in the saliency map should be the most prominent. In the human visual system this is achieved by 

top-down visual attention, which is a goal-oriented attention. To mimic such goal-oriented 

behavior, the conspicuity maps that contribute most to make object areas prominent should be 

further excited (i.e. weighted stronger), while those that contribute more to non-desired areas in 

an image should be inhibited (or eliminated altogether). A novel approach is proposed in this 

paper to achieve this sort of behavior. Desired object areas are first manually extracted in a 

sample set of images. The segmented image is binarized to create a mask, MS, in which the areas 
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of interest (e.g. buildings) are white (1). The purpose of this mask is twofold: it helps gauge the 

contribution of conspicuity maps and it serves as a reference for the evaluation of the quality of 

different saliency maps resulting from different weighting schemes introduced in eq. (1). The 

contribution, bd(FM), of each conspicuity map, FM, to the saliency map is computed first for the 

desired areas as the mean value of each conspicuity map within the desired areas: 

 

)),((
)(

jiFMmeanb dFMd = , { }1),(),( == jiMSjiFMFMd                                    (2) 

 

Similarly, for the non-desired areas, the contribution is: 

 

)),(()( jiFMmeanb ndFMnd = , { }0),(),( == jiMSjiFMFM nd                               (3) 

 

with FM being each of the conspicuity feature maps computed in section III.a, that is CC, DC, 

IC, OC, RC, TC, and EC respectively. Three novel weighting schemes are proposed below which, 

based on the contributions of the respective conspicuity maps computed in eq. (2) and (3), 

enhance those areas representing objects of interest, here buildings. 

 

Differential Weighting (E-I D-ND or E D-ND): In this approach, the weights associated with 

each conspicuity map are set based on the difference between the contribution of desired areas 

and the contribution of non-desired areas. Therefore the scheme excites (“E”) those conspicuity 

maps for which the contribution to the desired areas is larger than to non-desired areas, that is 

)()( FMndFMd bb > . Reversely, the feature maps for which the contribution to the non-desired areas 

is larger, that is )()( FMndFMd bb < , are inhibited (“I”). The weight for each conspicuity map is 

defined as:  

 

},,,,,,{,)()()( ECTCRCOCICDCCCFMbbw FMndFMdNDDIEFM ∈−=−−                         (4) 

 

with the possibility that some of the weights )( NDDIEFMw −−  are negative.  

Alternatively, the conspicuity maps for which the contribution to non-desired areas is higher can 

be ignored by setting the corresponding weights to 0:  
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

 >−

=− otherwise
bbifbb

w FMndFMdFMndFMd
NDDEFM ,0

, )()()()(
)(                                       (5) 

 

This latter scheme excites only, as the inhibitory weights are set to 0. The final saliency map, S, is 

computed using eq. (1), but with the seven weights respectively computed in eq. (4), or eq. (5). 

Ratio Weighting (E-I D/ND): This scheme is an exciting and inhibiting scheme in which the 

weights of the feature maps are scaled according to the ratio between the contribution of desired 

and non-desired areas:  

 

)()()/( / FMndFMdNDDIEFM bbw =−                                                        (6) 

 

The conspicuity maps that contribute more to non-desired areas are inhibited in a similar fashion 

to what is proposed by Frintrop [12], that is with an amount equal to the inverse of the 

corresponding weight computed using eq. (6) if the respective weight is smaller than 1. In this 

case, instead of using eq. (1), the final saliency map, S, is computed as: 
 

1
)/(

1)/( )/()/(
|1| <

−
>− −−

⋅−⋅= ∑∑ NDDIEFMNDDIEFM w
FM NDDIEFM

w
FM

NDDIEFM FM
w

FMwS                  (7) 

 

where },,,,,,{ ECTCRCOCICDCCCFM ∈ . The pixels of S with negative values are set to 0. 

 

Differential Ratio Weighting (E (D-ND)*D/ND or E-I (D-ND)*D/ND): This scheme is a 

combination between the two previous schemes. The weights of the feature maps that contribute 

more to desired areas are made stronger due to the multiplication operation between the 

differential and ratio components and those that contribute less are either ignored (as in eq. (5)): 

 

)/()()/)*(( NDDIEFMNDDEFMNDDNDDEFM www −−− ⋅=                                       (8) 

 

or inhibited (as per eq. (4)): 

 

)/())(()/*)(( NDDIEFMNDDIEFMNDDNDDIEFM www −−−−− ⋅=                                  (9) 
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For the ratio component, ))/(( NDDIEFMw − , the weights are computed as in eq. (6). Finally, eq. (1) is 

used to obtain the final saliency map, S, but with the seven weights respectively computed in eq. 

(8) or eq. (9).  

The following two schemes are based on solutions already proposed in the literature and are 

included here for enabling a formal comparison with the novel weighting schemes: 

 

Ratio Weighting Based on Most Salient Region (MSR): This scheme is similar to the one 

proposed in [12], with the exception that the uniqueness function is ignored in order to allow for 

the detection of multiple objects in an image. In this case only the top 5% of the most salient 

points, MSR, are used in the computation of the weights as opposed to eq. (6) where the mean of 

the entire saliency map is used: 

 

)()()( / FMndFMdMSRFM MSRMSRw =                                                   (10) 

 

1
)(

1)( )()(
|1| <> ⋅−⋅= ∑∑ MSRFMMSRFM w

FM MSRFM
w

FM
MSRFM FM

w
FMwS                                 (11) 

 

where },,,,,,{ ECTCRCOCICDCCCFM ∈ . As in eq. (7), the pixels of S with negative value are 

all set to 0. 

 

Statistics-Based Weighting (Statistics): This scheme is similar to the one proposed in [11]. It 

does not take into account the contribution of each conspicuity map to the final saliency map, but 

rather computes a statistic measure of its utility, αi, as a sum of its variance and kurtosis. These 

measures are sorted in descending order and a weight of 1 is assigned to the conspicuity map 

with greatest statistic, 2/3 to the second greatest statistics, 1/3 to third greatest statistics and 0 to 

all the other ones. 
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As in [11], the saliency map is computed as defined in eq. (1) by replacing the values of weights 

with those computed in eq. (12). The saliency map is then normalized and rescaled to [0, 1]. 

 

c. Vegetation and Shadow Removal 

To further improve the detection of building areas, domain-specific knowledge is introduced by 

means of two color invariants for the detection of vegetation areas and of shadowed areas in 

satellite images, as proposed in [25]. The color invariant, v, which defines vegetation areas, 

builds upon the green (G) and blue (B) channels of the color satellite image and is defined as: 

 

 







+
−⋅=

BG
BGv arctan4

π
                                                                  (13) 

The invariant, s, which defines shadow areas, also includes the red (R) color channel and the 

global intensity (I) value. It is formulated as: 












+++

++−⋅=
222

222

arctan4
BGRI
BGRIs

π
                                                        (14) 

The resulting images of these invariants are then Otsu thresholded to decide what pixels belong 

to vegetation and shadow areas. The resulting pixels representing vegetation and shadows are 

used to mask the corresponding areas in the saliency map to further improve building detection. 

 

d. Adaptive Selection of Best Weighting Scheme 

In order to evaluate the most appropriate weighting scheme for an image, a measure of similarity 

is computed between the manually segmented mask image, MS, (considered as a reference) and 

any of the weighted saliency maps, S, with or without the vegetation and shadow removal. The 

similarity is computed as a normalized cross-correlation (NCC): 
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where MS  and S  represent the average values of pixels over the entire MS and S maps 

respectively. The best weighting scheme is selected as the one that obtains the largest NCC value, 

as a larger value denotes a higher similarity. 

 

e. Learning of Winning Weights  

Up to now, the proposed solution determines the best weighting scheme based on a set of 

manually segmented images. In order to ensure the generalization capability and remove the 

constraint imposed by the need of a prior manual segmentation, a neural network architecture is 

used to learn the association between the best weights as determined in section III.d with the 

corresponding image content. To quantify the content of an image, a measure of the energy of the 

conspicuity map is used, given that the energy inherently depends on the content. At the 

presentation of a similar context, that is a previously unseen satellite image containing buildings, 

the network is able to provide an estimate for the set of optimal weights to ensure the detection of 

buildings or other objects that the system would be trained to detect. A feedforward neural 

architecture with 17 hidden neurons (H1, …, H17) and sigmoid activation function, as illustrated 

in Fig. 1, is trained with the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton variant 

of backpropagation [26] for 1500 epochs, on 75% of the images in the dataset. The other 25% of 

images are used for testing.  
 

ECC

EDC

...

H1

H17

H2

EIC

EOC

ERC

ETC

EEC

wCb

wDb

wIb

wOb

wRb

wTb

wEb

 
 

Figure 1. Neural network architecture. 
 

The network receives at the input a vector [ECC, EDC, EIC, EOC, ERC, ETC, EEC] composed of the 

energy computed on each conspicuity map, CC, DC, IC, OC, RC, TC, and EC respectively, 

which is computed as: 
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(16) 

 

The network outputs the set of weights [wCb, wDb, wIb, wOb, wRb, wTb, wEb] that correspond to the best 

weighting scheme to apply with the corresponding context of the images on which the 

conspicuity maps were computed. These weights correspond to the winning scheme derived in 

section III.d and are used for training. The training error achieved is of order 0.0006, while the 

testing error is of order 0.015. The use of such a neural architecture provides a straightforward 

and efficient way to assign the optimal weighting scheme from a rapid examination of the energy 

contained in each of the conspicuity maps of a given image, energy that inherently depends on 

the image content and indirectly captures its context. This extra stage generalizes the use of the 

proposed visual attention model with a learning technique for application to a broad set of images 

that are not used for initial tuning or training. 

 

IV. EVALUATION ON SATELLITE IMAGES 

 

The proposed solution is tested on a dataset of 50 satellite images [27].  
 

 
(a) (b) (c) (d) 

 
Figure 2. Sample of satellite images from the dataset. 

 
Each has a resolution of 256×256 pixels and contains residential areas with different topologies 

and complexities. Fig. 2 shows samples from the dataset, while Fig. 3 illustrates an example of an 

image and the corresponding seven conspicuity maps computed in section III.a. It can be seen 

that different maps highlight different characteristics of the initial image. While one can notice 

that there is a significant difference between the RG-BY color conspicuity map (Fig. 3b) and the 

DKL color conspicuity map (Fig. 3c), it is difficult to judge which one is better unless the 

purpose of the application is known.  

},,,,,,{,),( ECTCRCOCICDCCCFMjiFME
i j

FM ∈=∑∑
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 

Figure 3. (a) Image and corresponding feature conspicuity maps: (b) RG-BY color, (c) DKL 

color, (d) intensity, (e) orientation, (f) contrast, (g) texture, and (h) entropy. 
 

If one wants, for example, to identify buildings in an image, the areas corresponding to buildings 

in the saliency map should be the most prominent, as explained in section III.b. To achieve this, 

desired object areas are manually extracted in a sample set of images. An example is shown in 

Fig. 4.  
 
 

(a) (b) (c) 
 
Figure 4. (a) Initial image, (b) manually segmented buildings and (c) corresponding mask image. 
 

The segmented image is binarized (a threshold of 0.18 was identified by trial and error) to create 

a mask, MS, in which the building areas are white (1), as illustrated in Fig. 4c. The purpose of 

this mask is twofold: it helps gauge the contribution of conspicuity maps and also serves as a 
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reference for the evaluation of the quality of different saliency maps resulting from different 

weighting schemes applied in eq. (1) or eq. (7). Using as reference the mask, MS, shown in Fig. 

4c, the average contribution of each conspicuity map to building areas is computed using eq. (2) 

and to non-building areas using eq. (3). The contributions to the desired areas, )(FMdb , and to non-

desired areas, )(FMndb , for the image in Fig. 4a are shown in Fig. 5. 

 

 
Figure 5. Contribution and standard deviation of contribution of conspicuity maps to building 

(desired) and non-building (non-desired) areas for the image in Fig. 4a. 

 

As the contribution of different conspicuity maps to building and non-building areas varies with 

the content of the image, the adjustment of weights is performed separately on each image from 

the entire dataset before the trends are captured by the neural architecture introduced in section 

III.e. An analysis of the standard deviation of the contribution graphs, similar to Fig. 5, for every 

image in the dataset leads to the conclusion that no conspicuity maps should be eliminated from 

the model due to a high deviation (marked by segments in Fig. 5) and a low contribution.  

Fig. 6b shows a saliency map obtained using all equal unitary weights in eq. (1) as discussed in 

section III.a. Fig. 6c to Fig. 6i present the saliency maps computed over the image of Fig. 6a for 

all the proposed and comparative weighting schemes defined in section III.b. For each image in 

the dataset, the best weighting scheme is identified based on the normalized cross-correlation, 

defined in section III.d. For example, in this case, the E-I D/ND weighting scheme illustrated in 

Fig. 6e obtains the highest normalized cross-correlation value and is selected as the winner. 
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(a)    

 
(b) (c) (d) (e) 

 
(f) (g) (h) (i) 

 

Figure 6. (a) Original image and saliency maps for (b) unitary weights, (c) E-I D-ND, (d) E D-

ND, (e) E-I D/ND, (f) E (D-ND)*(D/ND),  (g) E-I (D-ND)*(D/ND), (h) MSR and (i) Statistics. 
 

Furthermore, using the color invariants defined in section III.c and Otsu thresholding, the 

vegetation and shadow areas can be easily identified, as illustrated in Fig. 7. 
 

 
(a) (b) (c) (d) 

 

Figure 7. Identified (b) vegetation and (c) shadow areas (shown in black) and (d) image after 

removal of vegetation and shadow areas from the original image (a). 
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The figure shows the areas of vegetation and shadow in black, in Fig. 7b and 7c respectively, for 

the image in Fig. 7a.  Fig. 7d shows the result of masking the initial image to remove the detected 

vegetation and shadow areas, demonstrating that color invariants are reliable to correctly identify 

these areas. Similarly, the saliency maps obtained using the various weighting schemes can be 

masked to improve the success rate of building detection by eliminating distractors in the 

vegetation and shadow areas. Table I presents for both the case with vegetation and shadow 

removal (VSR) and the case without vegetation and shadow removal (NVSR), the determination 

of the winning weighting schemes as a percentage of the number of selections over the entire 

image dataset in the first two colums, and the associated average NCC value for each of the 

winning schemes in the last two columns. 
 

Table I. Frequency of use and average NCC value for the various weighting schemes. 
 

Weighting Scheme Frequency of use Average NCC 
VSR NVSR VSR NVSR 

Equal weights 0% 0% N/A N/A 
E-I(D-ND) 4% 48% 0.4058 0.2630 
E(D-ND) 28% 4% 0.4364 0.2625 

E-I (D/ND) 6% 14% 0.4536 0.3483 
E(D-ND)D/ND 52% 6% 0.4908 0.3101 

E-I(D-ND)D/ND 0% 16% N/A 0.2776 
MSR 8% 12% 0.3664 0.2339 

Statistics 2% 0% 0.1005 N/A 
 

A N/A value in the average NCC columns indicates that the corresponding weighting scheme is 

never selected as a winning scheme. It can be first observed that the selection of the winning 

scheme varies significantly with and without the use of vegetation and shadow removal and that 

the removal of vegetation and shadow areas improves the overall matching between the detected 

building areas and the manually segmented mask images used as reference, as reflected by the 

higher average NCC values with VSR. The proposed weighting schemes, with highlighted NCC 

values in the table, are more frequently selected than the ones already proposed in the literature, 

denoted as “Equal weights”,“MSR” and “Statistics”, and also lead overall to better performance, 

demonstrated by the higher average NCC rates, with and without vegetation removal. Fig. 8 

presents the saliency map for the same image, shown in Fig. 8a, obtained with equal weights in 

column (b), with the winning scheme when the shadow and vegetation are not removed in 

column (c), and with the winning scheme with shadow and vegetation removed in column (d).                             
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(a) 

 (b) (c) (d) 
 

Figure 8. (a) Original image and saliency maps (upper row) and top 5% salient points (bottom 

row) for (b) equally weighted map, and (c) winning weighting scheme with NVSR and (d) 

winning scheme with VSR. 
 

The upper row shows the corresponding saliency map, while the second row shows the 5% most 

salient points in each of the saliency maps extracted from the initial image based on the 

corresponding location in the saliency map. It can be observed that the performance for building 

detection is improved when weighting schemes are used rather than all unitary weights, and also 

with the removal of shadows and vegetation. Additional results for other images extracted from 

the dataset, highlighting the top 25% salient points obtained using the proposed winning 

weighting scheme with VSR are shown in Fig. 9. The value of 25% is selected to permit the 

detection of multiple buildings. These cases demonstrate the capability of the proposed method to 

extract areas of potential interest for building detection. 
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Figure 9. Results obtained using the winning schemes with VSR (even rows) over other image 

samples (odd rows) from the dataset for top 25% salient points. 

 

Fig. 10 compares the results obtained with other salient region detectors from the literature and 

on a different image. It demonstrates how most methods do not deal well with multiple entities of 

objects of interest as those appearing in satellite imaging. This fact is, in general, related to the 

lack of context knowledge which is efficiently captured with the proposed approach. Here, the 

saliency is weighted adaptively in accordance with the context, defined by regions that show 

objects of interest during the tuning of the weights. 
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(a) (b) (c) (d) 

 
(e) (f) (g) (h) 

 
(i) (j) (k) (l) 

 

Figure 10. Comparison with other saliency detectors: (a) initial image and results for top 15% 

salient points using (b) proposed method with NVSR and (c) with VSR, (d) Itti’s bottom-up 

model, (e) Frintrop’s bottom-up model, (f) (Murray et al. 2011), (g) (Achanta and Susstrunk 

2010), (h) (Zhai and Shah 2006), (i) (Goferman et al. 2010), (j)-(k) HC, RC (Cheng et al. 2011) 

and  (l) (Hou and Zhang 2007). 
 

To further quantify the results, the potential for building detection is evaluated for each of the 

methods. In order to count the number of buildings that can be detected, the top 25% saliency 

points are selected from the saliency map and the result is binarized (for a threshold = 0.18, that 

is the same value used for the identification of buildings in the reference mask image). An AND 

operation is performed between the reference mask image and the binarized top 25% saliency 

map that reveals that the buildings are successfully detected (and therefore have the potential to 

be recognized) in an image. All the resulting regions with an area smaller than a threshold (e.g. 
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150 pixels) are removed to eliminate the outliers. Some examples obtained using this procedure 

are shown in Fig. 11 for the same image as the one illustrated in Fig. 2d.  
 

 

   

(a)    

 
(b) (c) (d) (e) 

 
(f) (g) (h) (i) 

 
(j) (k) (l) (m) 

 
Figure 11. (a) Initial image, (b) mask of buildings in reference image and results obtained using 

the top 25% salient regions detected by: (c) (Achanta and Susstrunk 2010), (d) (Achanta 2009), 

(e) (Goferman et al. 2010), (f) (Hou 2008), (g) HC (Cheng et al. 2011), (h) (Zhai and Shah 2006), 

(i) proposed approach with NVSR, (j) RC (Cheng et al. 2011), (k) (Hou and Zhang 2007),  

(l) proposed approach with VSR,  (m) (Zhang et al. 2008). 
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The buildings that are detected, and therefore have the potential to be further recognized within 

the top 25% salient points, are marked in yellow in Fig. 12 for another image extracted from the 

dataset. It is worth mentioning that the figure does not illustrate the results of detection, but only 

those parts of the maps that contain buildings, all other parts being removed due to the AND 

operation performed with the mask.   

 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 
 

Figure 12. Buildings that can be identified in the image (a) using the top 25% salient regions 

detected by: (b) (Achanta and Susstrunk 2010), (c) (Achanta 2009), (d) (Goferman et al. 2010), 

(e) (Hou 2008), (f) HC (Cheng et al. 2011), (g) (Zhai and Shah 2006), (h) proposed approach 

with NVSR, (i) RC (Cheng et al. 2011), (j) (Hou 2007), (k) proposed approach with VSR, and (l) 

(Hou and Zhang 2007) 

 
Fig. 11 and Fig. 12 show that proposed methods, particularly the ones using vegetation and 

shadow removal (VSR) illustrated in Fig. 11l and Fig. 12k, perform the best. To further 
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demonstrate this, the percentage of buildings that can be successfully detected by each of the 

methods, based on a count of buildings in the reference mask image and in the experimental 

saliency map, is reported in Fig. 13. 
 

 
 

Figure 13. Percentage of buildings that are successfully detected over all images in the dataset 

using different saliency detectors. 

 

In the previous results, the identification process considers that the mask of buildings is 

available. To monitor the applicability of the proposed solution to other images for which the 

related mask is unknown, the neural network strategy described in section III.e is applied to map 

the context of an image with an appropriate set of weights that ensures the detection of buildings. 

Fig. 14 considers images (shown in column 1) from the testing set. The top 25% saliency points 

are extracted from the initial images using the proposed adaptive selection of the best weighting 

scheme (with VSR) detailed in section III.d. The second column shows the results obtained when 

the identification of the best weighting scheme relies on the available mask of buildings. These 

results are compared with the regions extracted when using the neural network described in 

section III.e to predict the best weights for the given context, shown in the third column.  
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(a) (b) (c) 

 

Figure 14. Examples of results obtained for top 25% salient points with best scheme selection 

(column 2) and when using the weights provided by the neural network (column 3). 

 

Similar results were obtained for all tested images in the dataset. Two representative examples 

are provided here for compactness. One can notice that, while slightly noisier, the results 

provided by the neural network architecture are similar to the ones obtained using the adaptive 

identification of weights. The use of the neural network inference approach to dynamically adjust 

the respective weights applied on each feature conspicuity map allows for a reliable detection of 

buildings in previously unseen satellite images, therefore eliminating the need for a known mask 

of building locations, after a representative set of such images and masks has been provided for 

initial training, which can be performed offline. 

 

V. CONCLUSIONS 

 

The paper proposes an improved computational model of visual attention for the complex task of 

building detection in satellite images. A variety of original weighting schemes that capitalize on 

the contribution of different conspicuity maps to the desired (e.g. buildings) versus non-desired 

areas is initially proposed to compute an adaptively weighted saliency map which ensures that 

areas containing buildings or other regions of interest are highlighted. A novel adaptive algorithm 
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is then implemented to choose the best weighting scheme, and concomitantly the best set of 

weights, based on a similarity error. The proposed weighting schemes are more frequently 

identified to be the best performing schemes when compared to schemes already proposed in the 

literature and also lead overall to better performance demonstrated by higher similarity with 

manually segmented areas of interest for a given context. Additionally, a neural network is 

defined and trained to predict the set of weights provided by the best weighting scheme based on 

the context of the image which is captured via the intrinsic energy contained in its conspicuity 

maps. The proposed solution demonstrates superior experimental performance to several 

approaches from the visual attention literature in identifying a limited set of areas of interest for 

building detection. Building upon the proposed strategy, and similar to the human visual system, 

an additional module can be introduced to further refine the recognition of buildings by 

eliminating remaining distractors such as trees or roads that often share similar color with the 

roofs. While the latter remains beyond the scope of this paper, the proposed attention model 

demonstrated its ability to restrict the recognition effort to only a limited number of areas of 

interest, which greatly speeds up the analysis of large satellite images. 
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