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Abstract – While the top-down approach of artificial intelligence encounters the frame problem, the 

bottom-up approach based on a creature’s evolution and behavior is effective for robotic design of 

intellectual behavior in a specific field. We propose the Evolutionary Behavior Table System (EBTS) 

using a simple genetic algorithm (SGA) to acquire the autonomous cooperative behavior of multi-

agents as the bottom-up approach. In EBTS, a set of rules is expressed as a table composed of sensor 

input columns and actuator output columns; a row of the table corresponds to a rule. Since each rule is 

transformed to a string of Boolean values, we treat a long string composed of actuator output strings in 

the rules as a gene to obtain an optimum gene that adapts to the environment using SGA. In 

computational experiments, the collective robots could convey an object to a goal through cooperative 

work; the multi-fingered hands grasped the object and transferred it to the goal. Final truth tables 

obtained by the gene data do not always assure an optimum solution, but the calculation cost is reduced 

from astronomical figures to around one ten to twenty thousandth. If we use the top-down methodology, 

astronomical trials are needed to specify the optimum pattern. Therefore, EBTS is an attractive method 
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because it is very useful for obtaining general robotic behaviors in both collective and multi-fingered 

hand tasks. 

 
Index terms: Multi-agent, Bottom-up approach, Collective task, Multi-fingered hand, Evolution, Behavior 

table, Genetic algorithm. 

 

I. INTRODUCTION 

 

Robots are progressing rapidly with recent developments in several technologies related to 

components and materials, such as sensors, actuators, computers and batteries. These 

technologies are used for industrial robots, home robots, rescue robots and guard robots. 

Examples of these include the cleaning robot Roomba [1], which possesses several sensors to 

detect obstacles and avoid collision; a robot for protection against disasters called PackBot [2], 

which is equipped with several sensors and long-life batteries and is committed to nuclear and 

radiation accidents in Japan; and a guard robot called D1 [3], which was developed by ALSOK 

for patrols and is equipped with several sensors and batteries as well. In addition to these robots, 

there is a healing robot called PARO [4] equipped with tactile sensors, auditory sensors, light 

sensors, temperature sensors and posture sensors to respond to persons’ speaking and touching. It 

is reported that PARO is effective in protecting against the advancement of Alzheimer’s disease, 

and in treating depressive psychosis and autism [5]. As mentioned, not only the number and kind 

of sensors and actuators but also operation time are increased with the progress of components 

and material technologies. 

However, there are innumerable problems to solve in intellectual behavior that is automatically 

generated based on information acquired by several kinds of sensors mounted on the robot. While 

robotic hardware for realization of intellectual behavior has progressed, the level of intelligence 

design is not yet satisfactory. In particular, manual control for each robot is not acceptable for a 

cooperative task of multiple robots. It is inevitable that design of intellectual behavior should be 

established to utilize the advantage of multiple robots. 

In this paper, we recognize the present problems with the top-down architecture of robotic 

intellectual behavior to establish intelligence design for multiple robots and a multi-fingered hand. 

We will discuss why bottom-up architecture is effective for solving the problems based on 

investigation of intelligence design. Then, we will introduce the Evolutional Behavior Table 
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System (EBTS) [6][7] proposed by us as one of the effective design methods for intellectual 

behavior. In this method, after patterns of actuator output for specific sensor inputs are defined as 

gene information, the actuator output is optimized using a genetic algorithm (GA) to make the 

robot generate appropriate behavior adapted to its environment. 

In our first report, in which EBTS is introduced to achieve artificial tactile affordance (ATAS), 

we concluded that EBTS is effective for the object transfer problem of multiple robots, but it is 

not always adequate for manipulation of multi-finger hands [6]. However, in the subsequent 

report, computer experimental results showed that EBTS was applied to the manipulation 

problem in a specific workspace [7]. In this paper, we investigate the effectiveness of EBTS for a 

collective task and multi-fingered hand task according to reexamination of the results of previous 

papers. 

 

II. TOP-DOWN AND BOTTOM-UP ARCHITECTURES 

 

a. Problems with Classic Artificial Intelligence 

Artificial intelligence (AI) was named by J. McCarthy in 1956 and is defined as a technology 

intending to achieve human intelligence with data processing in computers [8]. Since processing 

of symbols was a major technique for modeling human intelligence in the early stages of classical 

AI, there are problems related to the relationship between the symbol and the real world, and 

discrimination between issues required for intellectual behavior and other issues. 
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Figure 1. Information processing based on symbolism 
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In the early stages of AI research, the data processing performed by a von Neumann-type 

computer that executes in turn a program stored in data storage is applied to the intelligence 

design. Namely, the intelligence is achieved with symbolizing of the real world and calculating 

the symbolized world. This idea in AI is called symbolism (Fig. 1) [9]. 

Although people generally assume that if processing speed and memory are increased in the 

computer, advanced AI is achieved, difficult problems that are not solved by the von Neumann-

type computer remain. There are two problems in the symbolizing of the real world. One of them 

is limitless enlargement and complexity of relationships between concept and symbolization: if 

the lower level concept is required to explain details of a specific concept, the explanation of the 

lower level concept recalls a still lower level concept in turn. The other problem is how to 

connect symbolized information in a system to the real world: this is called the symbol grounding 

problem because a specific symbol needs to be grounded in the real world [10]. 

The limitless enlargement and complexity of the relationship between concept and symbolization 

is inevitable to transform any information required for intellectual behavior to frame the form of 

proposition. Although issues directly related to the intellectual behavior should be distinguished 

from other issues, all sorts of possibilities should be taken into account. Since this problem was 

first pointed out by J. McCarthy et al. in 1969, it has been one of the most difficult problems in 

AI and is called the frame problem [11][12]. 

In present AI, the frame problem is avoided by assuming precise conditions in finite space to 

restrict the considering environment. Since there are several programs for computer chess [13] 

and Shogi as representative examples and some of them reach the professional level, we can say 

that AI superior to human beings has already been achieved in a restricted environment. 

Indeed, human beings cannot completely solve this problem either. However, creatures such as 

human beings can select their behavior to match the restricted environment through naturally 

removing information unrelated to the behavior. On the other hand, a lot of axioms for solving 

the frame problem are required in classic AI even if AI judges an obvious truth.  

 

b. Relationship Between Environmental Information and Intelligence 

The top-down approach pursues the strict solution as a result of assumption of frames. However, 

we do not intend to obtain the strict solution through spending a long time, but we intend to 
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respond to a specific issue with appropriate behavior without missing the timing through finding 

a reasonable solution within the actual time. The bottom-up approach is introduced to accomplish 

the above appropriate behavior. In this approach, interaction between the real world and an 

individual is simulated to obtain intelligence through considering a field for the individual and 

abilities of its sensation and behavior. 

 

The vehicle hates light.

Source of light

The vehicle likes light.  
Figure 2. Photophilic and photophobic vehicle 

 

First, a thought experiment performed by Braitenberg (1984) is introduced as an example [14] 

that explains acquisition of intellectual behavior through interaction between the real world and 

the individual. Braitenberg’s vehicles (Fig. 2) possess two optical sensors with outputting signal 

being proportional to brightness and two wheels rotating individually with torque being 

proportional to input signal. These sensors are connected to wheels with simple wiring to drive 

the vehicle. As shown in Fig. 2, if connection between the sensor and the wheel is parallel, the 

vehicle goes away from the light source because the wheel on the light side rotates faster. If the 

connection is crossed, the vehicle approaches the light source because the wheels rotate 

oppositely.  

The behavior of approaching/avoiding light is not accomplished by symbolization such as “if the 

vehicle accepts a specific directional light in the assumed field and lighting environment, it turns 

to the opposite direction of the light source”. It sends only the information accepted by the sensor 

to the specific circuit to output the behavior on the effector. However, an observer seems to 
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believe that it is like a photophilic/photophobic creature. Braitenberg insists that creatures’ 

various behaviors are produced not through the analysis of complex principles but by simple 

rules, and that these behaviors seem to be achieved by simple principles because they look 

complex. 

R. Brooks emphasizes that the way of symbolizing the real world as representation causes several 

problems, and introduces subsumption architecture (SSA) on the basis of behavior of social 

insects such as bees and ants [15][16]. Creatures have acquired their present biological functions 

through evolution. They do not acquire intrinsically sensory organs such as vision and tactile 

organs and effectors such as uppers and lower limbs but their primitive sensory organs have 

progressed to obtain the present high-level functions through the long period of evolution. Brooks 

takes into account this situation to accomplish SSA, in which basic functions are accumulated to 

form high-level organs, and the old structure is wrapped (subsumed) with a new function in turn 

to acquire the intellectual behavior through the bottom-up approach. 

Since the real world is recognized as representation in SSA, i.e. SSA does not have any 

recognition system, which is a common term in cognitive science, software designers do not 

worry about the frame problem because there is no process for symbolization and modeling. 

Brooks describes how the complexity of system behavior does not depend on the complexity of 

the creature (robot), and that human beings do not consider the real world as representation. 

According to SSA, he produced an insect-type robot called Genghis [17], which can show 

various behaviors similar to an insect or small animal because Genghis rapidly responds to 

complex environment geometry through switching reflex movements for variation in the 

environment. 

Although SSA is derived from the behavior of social insects, a similar idea is derived from the 

behavior of animals. Psychologist J. J. Gibson introduced a concept called affordance [18] for 

study of an animal’s complex behavior depending on the environment. Affordance is defined as a 

quality of an object, or an environment, that allows animals the possibility to perform an action. 

In SSA introduced by Brooks, since creatures do not need intelligence to perform intellectual 

behavior, which depends on complexity of the environment, SSA is closely related to affordance. 

In recent research, application of ethology, which treats animal behavior, has progressed in 

robotics. Study of interaction between animals and human beings is applied to enhancement of 

robotic intellectual behavior [19]. 
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As mentioned, SSA, affordance and ethology treat similar concepts, in which intellectual 

behavior is obtained through interaction between creature and environment based on bottom-up 

architecture. EBTS explained in the subsequent chapter is produced based on this bottom-up 

architecture as one of the achieved artificial affordance systems [6]. 

 

c. Methodology of Intellectual Behavior Design Based on Bottom-up Approach 

According to the discussion in the preceding section, the bottom-up approach that is established 

through discussion of a creature’s evolution and behavior is effective for robotic design of 

intellectual behavior. Although there are several methods in the bottom-up approach, 

methodology based on evolution is effective because of obtaining a useful solution. In 

methodology based on evolution, data structures and equations are modeled through mimicking 

the mechanism of creature evolution. For methodology based on evolution, there are genetic 

algorithm (GA), evolution strategy (ES), evolutionary programming (EP) and genetic 

programming (GP). 

Since we adopt simple GA (SGA) [20] produced by D. Goldberg as the methodology of 

evolution in EBTS in this paper, the procedure of GA is summarized in this section. In GA, gene 

structure possessed by an individual is assumed as the optimum solution, and calculation of 

optimization is performed through mimicking the method of evolution in biology. To use GA as 

the optimum solution, three modeling designs are required as follows. 

(1) Genetic representation of solution 

Since one individual possessing a specific genetic feature corresponds to a solution in GA, it is 

important how to represent the solution as an individual. Information of biological genes is 

represented through combinations of four bases, adenine, cytosine, guanine and thymine. This 

combination and the individual expressed by the combination are called genotype and phenotype, 

respectively. In GA, the determination variable in the optimum solution is represented as a vector 

x including N elements ix ( Ni ,,2,1 = ). The solution is represented as the phenotype 

composed of genotypes. The value of ix  corresponds to the base of the biological gene and the 

place storing the value is called the locus. 

(2) Evaluation of solution 

In biological natural selection, the concept of fitness is defined as the superiority or inferiority of 

the individual in the living environment. If the specific individual adapts itself well to 
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environment, the value of fitness takes a high value to obtain high survival probability. In GA, 

the individual possessing higher quality is provided a higher value of fitness. If GA is applied to 

the optimization problem, the candidate of solution x and object function )(xf correspond to 

individual and fitness g , respectively. The relationship between object function )(xf and fitness 

g  is determined to satisfy the following condition: if the object function of x takes a higher value, 

the individual corresponding to x takes higher fitness g . 

(3) Search of solution 

In GA, a group of individuals is defined, and search of solution is performed within the group. 

Operation for the group of individuals is called the genetic operator, and three kinds of genetic 

operators are used as follows. 

Selection 

Superior individuals are reserved to make genes of individuals possessing higher fitness spread in 

the group of individuals, while inferior individuals are reduced. More than one strategy is usually 

used to perform this selection. One of the strategies is roulette wheel selection. If ig is assumed 

as fitness of individual i  in generation t , the individual’s probability of being selected ip  is 

calculated as follows: 

∑
=

=

pN

k
k

i
i

g

gp

1

          (1) 

where pN is total number of individuals in the population. 

The other selection is elitist preserve strategy, which preserves excellent individuals recoding 

high fitness toward the next generation. This strategy is used with another strategy. 

Crossover 

Although there are several crossover techniques, three major techniques, one point crossover, 

multiple point crossover, and uniform crossover are described as follows.  

The one point crossover is applied under crossover rate cP  after pairs composed of individuals are 

selected from the population. After that, a single crossover point is selected on both parents' gene 

strings. All data beyond that point in either gene string are swapped between the two parent genes.  
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In the multiple point crossover, multiple points are randomly selected on the parent gene strings 

under crossover rate cP  after pairs of individuals are selected from the population. Everything 

between two points of every pair is swapped between the parent genes to render two child genes.  

In the uniform crossover, each bit in the parent strings randomly selected from the population is 

exchanged with a probability of 0.5. 

Mutation  

Mutation is used to maintain genetic diversity from one generation of a population to the next 

generation. For each individual, the value of a gene on the specific locus selected randomly is 

reversed with mutation probability mP . The mutation probability should be set low because 

mutation sometimes destroys a good gene to introduce low average fitness. 

Figure 3 shows the state transition diagram of the present system. In EBTS described in the next 

chapter, elitism, roulette wheel selection, uniform crossover and mutation are used. 

 

Population of
the zero generation
Decide the genotype

with a random number.

Elitism is applied
to the generation.

Roulette wheel selection
Create the roulette table that is in proportion to fitness.

Select parent for next generation from those genes
by using the roulette wheel.

Uniform crossing-over
Create new genes.

Mutation
Reverse gene value in proportion

to mutation rate.

Decision of next population
Add elite genes to next generation.

Final fitness

Population of n generation

Population of final generation The calculation of fitness
Calculate the fitness of each gene

based on functions.

 
Figure 3. State transition diagram 
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Table 1 Evolutional behavior table 
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III. EVOLUTIONAL BEHAVIOR TABLE SYSTEM 

 

a. Behavior Table 

We must define the relationship between environmental information and the behavior rules in a 

single-layered reflection behavior system to control the behavior of a robot. For this purpose, we 

introduce a behavior table composed of sensor and actuator status as shown in Table 1. S1, S2, …, 

Sn show the status of sensors mounted on the robot; A1, A2, …, Am

n2

 show the status of the 

actuators. Since the sensor and actuator statuses are described by Boolean values (1 or 0), the 

number of total patterns of sensor status is , where n is the number of sensor columns. 
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Figure 4. Genotype model 
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b. Behavior Acquisition Method  

Lines of actuator in the behavior table can be expressed with a one-dimensional array like genes 

because all of the truth-values are Boolean data. Therefore, the behavior table can be designed as 

a model of SGA comprised of Boolean data. Since the behavior table is evolvable, we call it the 

Evolutionary Behavior Table System (EBTS). The design procedure of the behavior table using 

SGA is shown in the following.  

First, we design a genotype array that has information about the behavior table. Since the 

genotype array is formed as shown in Fig. 4, the length of the genotype array is shown with the 

next formula: 

mG S ×= 2          (2), 

where the output gradation is m . 

The agent’s fitness value is calculated in a simulator that is equipped with internal functions that 

evaluate the efficiency and the task accuracy degrees of the robot. Then, the simulator generates a 

behavior table from the genotype array of a one-dimensional vector composed of G elements (Fig. 

4). The robot behavior is evaluated on the basis of the task achievement degree in the simulator 

field during a specified period. The evaluation value obtained by this simulation is sent to the 

calculating system for genetic algorithms as fitness. 

 

Sensor 4 
(Photo)

Sensor 5 
(Photo)

Sensor 1 (IR)

Sensor 2 (IR) Sensor 3 (IR)

Actuator 2
(Right Motor)

Actuator 1
(Left Motor)

π / 4

 

Figure 5. Model of circular mobile robot 

 

IV. MODELING FOR COLLECTION ROBOT AND MULTI-FINGERED HAND 
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a. Actual Behavior Tables 

To examine EBTS’s effectiveness for manipulation of multi-fingers hands, we compare the 

fitness obtained from the multi-fingered hand task with that obtained from the collective task.  

(1) Collective task 

In the task, a circular mobile robot [21]-[25] equipped with infrared (IR) and photo sensors 

transports an object-emitting radiation light to a goal-emitting radiation light, as shown in Fig. 5. 

Photo sensors are used for searching for the goal; both IR and photo sensors are used for 

searching for the object. Each speed of the robot’s two wheels is expressed by 2-bit data. “00”, 

“01”, “10” and “11” correspond to “stop”, “slow”, “medium” and “fast”, respectively. Since it 

has 5 sensors and 4-bit output gradation, 

4,5 == mn           (3) 

If these values are substituted into Eq. (2), the number of elements of the genotype array G is 

calculated as follows: 

128425 =×=G          (4) 

 
Figure 6. Model of robotic finger equipped with tactile sensors 
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oror

 
Figure 7. Evolutionary Behavior Table System (EBTS) 

 

(2) Multi-fingered hand 

We assume that EBTS is applied to the two-hand-arm system described in previous paper [26]-

[28]. Each finger is equipped with a tactile sensor with several sensing elements. In this paper, 

the hand-arm robot is modeled as shown in Fig. 6. Each finger of this model possesses three 

sensors, of which graduation is expressed by 2-bit to measure four grades of contact force. A1, A2, 

A3 and A4 show the status of the actuators. While A1 shows that the agent movement is stopping 

(0) or active (1), A2, A3, and A4 show the fingertip’s movement direction (Table 2). For a multi-

fingered hand, S , M and G are  

4,6 == mn           (5) 

256426 =×=G          (6) 

 

Table 2  Relationship between actuator status and movement direction 
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Transportation object

Agent No.3

Goal

Agent No.1

Agent No.2 Agent No.4

The object is 
transported to a Goal.

                  

There are some goals 
on the field.

The transportation 
object is in the center.

 
(a) object transfer task                                    (b) relationship between object and goals 

Figure 8. Map field and objects of collective task 

 
(a) two-agent case (one hand)                               (b) four-agent case (two hand) 

Figure 9. Map field and objects of object handling task 

 

In this agent model, planar movement of fingers is assumed because grasping and manipulation 

movement of fingers is designed. Although this agent model is similar to that of the collective 

task, this object transfer task is accomplished only by contact force, the goal is not emitting light, 

and the movement range of each hand is restricted based on the finger’s kinematics. 

 

b. Simulator Fields 

An overview of the EBTS mechanism is shown in Fig. 7. Optimization of genes is performed by 

SGA and fitness calculation. Since we prepared a different fitness simulator for the collective 

task and multi-fingered hand, we explain these simulators as follows. 

 (1) Collective task 
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The simulator is composed of a map field and objects on it (Fig. 8). The objects are categorized 

into two types: an autonomous mobility agent defined as a robot and a non-autonomous object 

defined as the transportation object. The agent can be equipped with multiple sensor inputs and 

behavior outputs as its module, which is formed to function as a suitable module based on the 

assumptions of numerical experiments.  

In this object transportation problem, the agent is equipped with three IR sensors and two photo 

sensors that have a fixed sensing range. The IR sensors detect walls and other objects by Boolean 

values in the map field. The photo sensors detect the light intensity of the fixed range that is 

irradiated by the transportation object and the goal.  

(2) Multi-fingered hand task 

The motion of the modeled robotic hand is restricted within two dimensions. Since the wrist is 

assumed to be fixed, it only manipulates an object with its fingers. We presume that the robotic 

fingertip transports the object to the goal (Fig. 9). 

A simulator is composed of a map field (work area) and the objects on it. They are categorized 

into two types: an autonomous mobile agent defined as a fingertip and a non-autonomous object 

defined as the transportation object. The autonomous mobile agent can be equipped with multiple 

sensor inputs and behavior outputs as its module, which is formed to function as a suitable 

module based on the assumptions of numerical experiments. 

 

c. Optimization Procedure and Fitness Calculation 

The optimization procedure of the genetic algorithms (Fig. 7) is summarized as follows: 

 1) The population of the random gene data is produced as an initial value. 

2) The evolutionary computation engine sends gene data to the simulator to evaluate the 

gene fitness. 

 3) Elite genes are selected based on their fitness. 

 4) A set of individuals is chosen based on the roulette wheel selection. 

 5) A pair of individuals is selected and used for uniform crossover. 

 6) The newborn children from the pair mutate under a certain probability. 

 7) The children’s gene data are sent to the simulator to evaluate their fitness. 

8) The fitness of the elite group is compared with that of its children group. The group of 

the next generation population is selected from the high score group in descending order. 
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 9) If it is not a final generation, it returns to the above procedure 3). 

 10) Evolutionary computation is finished. 

After the agents in the collective task or multi-fingered task performed object transportation, the 

achievement degree of the task was evaluated as a fitness value of the gene. Evaluation functions 

for task achievement are composed of transportation accuracy value as 1E , evaluated from the 

geometrical relationship between agents and the transportation object, and transportation 

efficiency value as 2E , decided by reaching the goal. Evaluation function 1E  is defined as 

follows: 

BA

KE
cc −

= 1
1           (7) 

where Ac and Bc  are position vectors of the object and the goal, respectively. Coefficient 1K is 

assumed to be 1,000 for both tasks. 

On the other hand, evaluation function 2E  is defined by 

t
KE 2

2 =            (8) 

using time spent to transfer the object to the goal area. In this study, we assumed as 6002 =K  and 

160 for the collective task and the multi-fingered hand task, respectively. This is because the time 

consumption for each object conveyed in the multi-fingered hand task is shorter than that in the 

collective task. 

The fitness value of the genetic algorithm is calculated as the summation of 1E  and 2E . In the 

fitness calculation, the agent often accidentally brought the transportation object into the goal. To 

avoid such accidents, we divided the simulation time into task execution and task evaluation, and 

compared the positioning between the agent and the transportation object at the termination of the 

execution time with the termination of the evaluation time. 

 

V. EXPERIMENTAL RESULTS AND DISCUSSION 

 

a. Collective Task 

(1) Experimental condition 

Naoto Hoshikawa, Masahiro Ohka, and Hanafiah Bin Yussof, Bottom-Up Approach for 
Behavior Acquisition of Agents Equipped with Multi-Sensors

598



The map field of the collective task is assumed to be a Gaussian plane of 800×800 [pixel2] with 

an origin at coordinates (0, 0) in a series of numerical experiments (Fig. 8). In the following, each 

mobile robot is called an agent because of the computer experiment. The transportation object 

and the agents are set at the origin and specified positions, respectively. In Fig. 8(a), four agents 

are placed near each corner of the rectangular field, and the agents are numbered 1-4. To relax 

over-adaptation in the task procedure, eight goal positions are assumed, as shown in Fig. 8 (b). 

An individual attempts the object transportation eight times for each simulation. Evolution 

calculation, which continues for 2,000 generations, is repeated 10 times for each numerical 

experimental condition. The number of individuals, keeping the elite number, and mutation 

probability per 1-bit of gene mP are 10, 2, and 1%. The execution time of the simulation is 

divided into 180 frames of the task execution time and 90 frames of task evaluation time per goal. 

Since the simulation is performed for eight goals, 2,160 frames are calculated. One hundred 

points for one goal are provided to evaluate the largest score. 

1000 2000
0

100

200

300

 
 

 

Figure 10.  Relationship between maximum fitness and generation for two- and four-agent cases 

in collective task 

 

(2) Experimental results and discussion 
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Figure 10 shows the relationship of two and four agents between maximum fitness and 

generation. Since two and four-agent tasks are performed in the multi-fingered task, we examine 

these two cases in the collective task as well. These two cases show that fitness increases with 

increase of generation, and the rate of fitness increase decreases with increase of generation. 

Although fitness value does not seem to become saturated even at the 2,000th generation, a 

fitness value over 250 is high enough to complete this task because around 5% alignment error 

and a few frames for task termination after task execution time are accomplished. Both two and 

four agents can obtain sufficient behavior performance at the 2,000th generation. 

On the other hand, the fitness value of the two agents is larger than that of four agents. In the case 

of four agents, the agents sometimes obstruct each other. In the designed field and in the 

condition of this numerical experiment, the case of two agents is more efficient than that of four 

agents. 

 

b. Multi-fingered Hand Task 

(1) Experimental condition 

In numerical experiments, we assume one- and two-hand cases (Fig. 9). The map field of each 

case is assumed to be a Gaussian plane of 800×800 [pixel2] with an origin at coordinates (0, 0) in 

a series of numerical experiments, which are the same as the collective task. In the following, 

each fingertip is called an agent because the result of a computer experiment for the multi-

fingered hand task is compared with that for the collective task. The transportation object and the 

agents are specified positions. In Fig. 9(b), four agents are placed near each corner of the 

rectangular field. The eight initial positions of the objects are assumed to relax during adaptation 

in the task procedure. 

An individual mobile agent attempts the object transportation eight times in each simulation. 

Evolution calculation, which continues for 1,000 generations, is repeated ten times for each 

numerical experimental condition. The number of individuals, maintaining the elite number, and 

the mutation probability per 1-bit of gene mP are 10, 2, and 10%. The reason for larger mutation 

probability than that of the collective task is that fitness value does not increase under low 

mutation probability. 
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Figure 11. Four fingertips acquired cooperative behavior to convey object 
 

(2) Experimental results and discussion 

Figure 11 shows the task process using two hands with the four fingers shown in Fig. 9(b). 

Although initial position of the object is different among three cases, the two hands successfully 

transported the object to the center circle, which is its goal. After examining other computational 

experiments with several initial conditions, we verified that this task does not depend on the 

initial position of the object. 

Figure 12 shows the maximum fitness value of the one-hand and two-hand grasping tests. The 

variation in the fitness value of the one-hand grasping test does not become saturated by the 

1,000th generation. The efficiency of object transportation with one-hand grasping seems to be 

enhanced with more generations. 

The four-agent (two-hands) result is shown in Fig. 12 as well. Although the fitness value of the 

four-agent case is increased with an increase of generation, similar to the two-agent case (one-

hand), it almost becomes saturated at 1,000 generations. The fitness value of the two-hand case at 

1,000 generations is around 560 and is smaller than that of the one-hand case. Therefore, the 

efficiency of object transportation with two-hand grasping became saturated very rapidly. 

Since object grasping and transportation can be performed by one hand, the two-hand case is 

obviously redundant. Although redundant grasping induces stability, it decreases the efficiency of 

grasping and transferring. 
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Figure 12.  Relationship between maximum fitness and generation for two- and four-agent cases 

in multi-fingered hand task 

 

 

c. Comparison Between Collection Robot and Multi-fingered Hand 

We will discuss the efficiency of acquiring autonomous cooperation behavior of multi-agents in 

this EBTS using GA for the collection task and multi-fingered hand task. In computer 

experiments on both tasks, population in GA was ten and elitism selections were two in the 

numerical experiment for both tasks. In these experiments, the number of simulation trials was 

20,000 for the collective task and 10,000 for the multi-fingered hand task as a result of 

optimizing the gene data until 2,000 and 1,000 generations, respectively. The final truth table 

obtained by the gene data doesn't always assure an optimum solution, but the calculation cost is 

reduced from 38104.3 × to 4100.2 ×  for the collective task and 77102.1 ×  to 5100.1 ×  for the multi-

fingered hand task because the combination numbers of input and output patterns are calculated 

as 38128 104.32 ×≅ and 77256 102.12 ×≅ , respectively. If we used the top-down methodology, 
38104.3 × and 77102.1 × trials were needed to specify the optimum pattern because all 

combinations of actuator patterns should be evaluated in the top-down methodology. Therefore, 
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we accomplish the automatic design of cooperative behavior of multi-agents for the collective 

task and multi-fingered hand task. 

In the previous study, we concluded that EBTS is not always effective for such fine control as 

handling multi-fingered hand tasks. For such fine-control tasks, the relationship between sensor 

input and actuator output should be connected with program modules via procedural 

programming. However, this paper shows that EBTS can be applied to the object transfer task of 

the multi-fingered hand. 

In both the collective task and the multi-fingered hand task, the redundancy of agents is 

decreased because the fitness value of four agents is smaller than that of two agents. The 

decreased fraction of the largest fitness in the collective task is about 10% and that in the multi-

fingered task is about 3%. Even in the case of redundancy, the decreased fraction is not always 

large. Although the fitness value is decreased in redundant agents, EBTS is effective for the 

multi-fingered hand task because of automatically solving the complicated kinematics of the hand 

and obtaining a large enough fitness value. 

 

VI. CONCLUSION 

 

The bottom-up approach that is established through discussion about a creature’s evolution and 

behavior is effective for robotic design of intelligent behavior. We proposed the Evolutionary 

Behavior Table System (EBTS) using an SGA to acquire the autonomous cooperation behavior 

of multiple agents. In EBTS, a set of rules is expressed as a table composed of sensor input 

columns and behavior output columns, and a row of the table corresponds to a rule. Since each 

rule is transformed to a string of Boolean values, we treat a long string composed of rule strings 

as a gene to obtain an optimum gene that adapts to the environment using SGA.  

In validation experiments, EBTS was applied to two robotic tasks. One of them was a collective 

task, which required macro motion control of each mobile robot: in this task we assumed multi-

agents equipped with the behavior table conveying an object to a specified goal with higher 

scores than the four-agent condition. The other was a multi-fingered hand task, which required 

fine motion control of each finger: we assumed that a robot grasped and transferred an object 

with one or two hands; each hand was equipped with two articulated fingers. The former 

experiment was performed for evaluating whether EBTS is applicable to the macro motion such 
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as the collective task of social robots; the latter was performed for evaluating whether EBTS is 

applicable to fine motion such as handling tasks of multi-fingered hands. 

In computational experiments, the collective robots could convey the object to the goal through 

cooperative work; the multi-fingered hands grasped the object and transferred it to the goal. Final 

truth tables obtained by the gene data did not always assure an optimum solution, but the 

calculation cost was reduced from astronomical figures to around one ten to twenty thousandth. If 

we used the top-down methodology, astronomical trials are needed to specify the optimum 

pattern. Therefore, we accomplished the automatic design of cooperative behavior of multi-

agents for collective tasks using the bottom-up methodology. 

These tasks were performed more efficiently in the two-agent case than in the four-agent case. 

Although the redundant agents caused lower fitness in both the collective task and multi-fingered 

hand task, the decrease of fitness was not always large. Therefore, EBTS is an attractive method 

because it is very useful for obtaining general robotic behaviors in both macro and fine tasks. 

In future work, the effectiveness of EBTS for other tasks should be evaluated because only the 

object transfer task is examined in this paper. Furthermore, since EBTS seems to have some 

difficulty with finer tasks such as cap twisting and assembling, conventional procedural 

programming for a specific task is used for these tasks. Smooth connection between EBTS and 

the procedural programming becomes one of the important issues. 
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