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Abstract- The continuous rise in the number of vehicles in circulation brings an increasing need for 

automatically and efficiently recognizing vehicle categories for multiple applications such as optimizing 

available parking spaces, balancing ferry loads, planning infrastructure and managing traffic, or 

servicing vehicles. This paper explores the use of human visual attention mechanisms to identify a set 

of features that allows for fast automated classification of vehicles based on images taken from 6 

viewpoints. Salient visual features classified with a series of binary support vector machines and 

complemented by a dissimilarity score achieve average classification rates between 94% and 97.3% for 

five-category vehicle classification depending on the combination of viewpoints used. The viewpoints 

that make the most important contribution to the classification are identified in order to decrease the 

implementation cost. The evaluation of performance against other feature descriptors and various 
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approaches for vehicle classification shows that the proposed solution obtains results comparable to the 

best ones reported in the literature. 

 
Index terms: Visual attention, saliency, machine learning, support vector machines, vehicle classification, 

dissimilarity, feature extraction. 

 

I. INTRODUCTION 

 

The growth of population and economic prosperity has led to a huge increase in the number of 

vehicles. This reality brings a growing need for automated and efficient classification techniques 

for different vehicle categories for a multitude of applications such as optimizing available 

parking lots and spaces, balancing ferry loads, managing traffic and planning infrastructure or 

servicing vehicles. Vision systems are relatively cheap, easy to install and configure and offer 

direct visual feedback and flexibility in mounting. They are therefore an appropriate sensing 

solution for vehicle classification. However, the issue of vehicle classification from images is not 

trivial. Due to the ever increasing number of vehicle models and sizes and the aesthetic 

similarities between them, the main problem is the identification of a set of representative and 

discriminative features that allow for the best possible classification of the vehicle type.  

Humans show a significantly superior performance in extracting and interpreting visual 

information to any state-of-the-art artificial vision model. Therefore the exploitation of biological 

and psychological knowledge derived from human visual mechanisms can contribute to the 

improvement of computational vision systems [1]. Early vision-inspired algorithms for object 

recognition, in spite of their relative novelty, have already reached performance comparable to 

the best computer vision systems [2] and biologically-inspired visual features have been 

successfully applied for different tasks in image processing [3]. Computational models of visual 

attention have been shown to significantly improve the speed of scene understanding and object 

recognition [4] by attending only the regions of interest and distributing the resources where they 

are required. Moreover, recent research showed that attention systems are well suited to detect 

more repeatable discriminative features than other classical feature descriptors such as corners or 

SIFT key points [5].  

This paper uses salient features derived from the low-level, bottom-up visual attention and 

originally combines them with a series of support vector machines and a dissimilarity score to 
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achieve fast automated classification of vehicles from 5 categories based on images taken from 

different viewpoints. The organization of the paper is as follows: Section II discusses related 

work on computational vision and visual attention on one side and on vehicle classification on 

the other side. Section III summarizes the proposed solution for multi-view vehicle classification. 

Further details on the extraction of salient features based on visual attention are given in Section 

IV. Section V presents the training and evaluation of the classification performance. 

Experimental results are presented for each viewpoint, combination of viewpoints and category 

of vehicle.  

 

II. RELATED WORK 

 

Most computational implementations of human visual attention are based on bottom-up features, 

derived directly from the visual scene, and that can capture attention during free viewing 

conditions. A full survey on attention-based computational systems is presented in [6]. In order to 

guide the deployment of attention, the responsible features need to be salient or in other words 

sufficiently discriminative with respect to their surroundings. The intensity, color, orientation and 

motion are undoubted attributes that guide human visual attention and are used in almost all 

current computational visual attention models. Most of the proposed computational attention 

models have been tested for a limited number of images in simplistic scenarios. There are only a 

few attention-based computational systems that have been used in practical applications dealing 

with real data. In [5], a sparse set of landmarks based on a biologically inspired attention-based 

feature selection strategy and active gaze control are used to achieve simultaneous localization 

and mapping of a robot. In a similar manner, Siagian and Itti [7, 8] employ salient features 

derived from attention and context information to build a system for mobile robotic applications 

that can differentiate outdoor scenes [7] and that can help in the localization of a robot [8]. 

Rasolzadeh et al. [9] propose a stereoscopic vision framework that uses attention-based features 

for robotic object grasping. Mechanisms of visual attention are integrated in [10] in a smart 

wheelchair application to help visual search tasks. 

Regarding the topic of vehicle classification, there are several solutions proposed in the literature. 

In [11], a neural network takes as input a reduced wavelet transform of the image of a vehicle and 

outputs a single element of the feature set that is considered relevant for classification purposes. 
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An overall 83% classification rate is obtained for 5 vehicle types: motorcycle, car, bus, trailer 

type 1 and trailer type 2. The cascade of classifiers based on Adaboost proposed in [12] to 

categorize from front and rear views of vehicles belonging to car, van or truck categories 

achieves an overall 93.51% classification rate. Ji et al. [13] report classification performances 

between 93% and 95% when using a partial Gabor filter bank to represent sedan, van, hatchback, 

bus and truck vehicle categories. A maximum 92% classification rate is obtained by Kazemi et 

al. [14] for the classification of five vehicle types, namely Peugeot 206, Peugeout 405, Pride, 

Renault 5 and Peykan, using fast curvelet transform features and a k-nearest-neighbor classifier. 

In [15], edge points and modified SIFT descriptors are combined to obtain a rich representation 

for vehicle object classes. Classification rates of 98% are obtained for car vs. minivan and 96% 

for car vs. taxi. Lee [16] employs a neural network trained with texture descriptors (contrast, 

homogeneity, entropy and momentum of the gray level co-occurrence matrix) derived from the 

front view images to classify 24 types of Korean vehicles and obtains 94% recognition rate. 

Yoshida et al. [17] obtain a limited 54% classification rate for the recognition of 4 vehicle types: 

sedan, wagon, minivan, and hatchback, when using computer generated images of vehicles 

viewed from the top and their local features obtained by a corner detector. In [18], a hierarchical 

classification technique is proposed to distinguish between seven vehicle types: sedan, van, 

pickup, truck, van truck, bus, and trailer, starting with an initial coarse classification (large or 

small vehicle) and followed by a fine classification (based on length, aspect ratio, and 

compactness ratio). An overall recognition rate of 91.35% is achieved. Petrovic and Cootes [19] 

classify vehicles based on make and model into 77 distinct classes by locating, extracting and 

recognizing normalized structure samples taken from a reference image patch on the front of the 

vehicle and obtain about 93% recognition rates using only frontal views of vehicles. Dalka and 

Czyzewski [20] evaluate a combination of several descriptors such as statistical moments, 

speeded-up robust features from luminance images and image descriptors based on filtering with 

a bank of Gabor filters and several classifiers, such as neural networks, decision trees, nearest 

neighbors and random forests for three-category vehicle classification (e.g. sedans, vans and 

trucks) and obtain a maximum of 95% correct classification rate. In [21] a multiclass vehicle type 

(make and model) identification is proposed based on oriented contour points obtained from 

several grayscale frontal vehicle images, and a nearest-neighbor process is used to determine the 

vehicle type. A classification rate of 90% is reported.  
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In the current work, visual attention features derived from a bottom-up computational attention 

model [22] are used as a basis to perform fast automated 5-category vehicle classification from 6 

viewpoints. Different viewpoint combinations are evaluated to identify those that provide the best 

results while allowing the use of fewer cameras than the whole set of 6. 

 

III. VEHICLE CLASSIFICATION BASED ON VISUAL-ATTENTION FEATURES 

 

It is initially considered that images from 6 views of each vehicle are available as illustrated in 

Fig. 1a, namely straight front and rear views (camera 1 and 2), driver and passenger side profiles 

(camera 3 and 4) and front and rear three quarter views (camera 5 and 6). Fig. 1b to Fig. 1f show 

examples of images from the dataset used for experimentation that contains images of 155 

vehicles from the following 5 categories [23]: sedan (Fig. 1b), sports car (Fig. 1c), SUV (Fig. 1d), 

pickup truck (Fig. 1e) and wagon (Fig. 1f).  The size of each image is 99×150 pixels. 
 

 
a) 

     
b) c) d) e) f) 

 

Figure 1.  Multi-view vehicle classification: a) camera positioning, and examples of vehicle 

categories in the dataset: b) sedan, c) sports car,  d) SUV, e) pickup truck and f) wagon 
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The computational model of visual attention of Itti et al. [22] is employed to identify a feature 

set, containing a predetermined number of features for each view and therefore for each camera, 

as will be detailed in section IV. The feature set is built based on the saliency map, SM, obtained 

by the attention model, as shown in Fig. 2. 

 

 
 

Figure 2.  Multi-view vehicle classification: feature sets 

 

The limited-feature saliency map is then downsampled and transformed into a feature set vector 

for each image by concatening its lines. Each image presented to the system needs to follow these 

preprocessing steps prior to its classification. A set of 6 support vector machine (SVM) 

classifiers, one per each view of a given category (e.g. sedan in Fig. 2), is trained to perform a 

binary classification of the feature vectors derived from images of vehicles coming from a given 

camera. The overall number of SVM classifiers equals 6 times the number of categories to be 

classified by the system (e.g. 30 for 5-class classification and 6 views). Binary classifiers are 

chosen instead of multi-class classification because our experimentation with both approaches 

revealed that binary classifiers obtain better performance on the dataset and for the task 

considered, as it will be discussed in section V.b. Each classifier outputs a 1 if it recognizes the 

vehicle in the image from a given viewpoint, represented as a feature vector built from the 

downsampled limited-feature saliency map, to be belonging to the category that the classifier has 

A.-M. Cretu, and P. Payeur, Biologically-Inspired Visual Attention Features for a Vehicle Classification Task 

407



learnt and 0 otherwise. An example is illustrated in Fig. 3, which continues the information flow 

from Fig. 2.  

 
 

Figure 3.  Multi-view vehicle classification: binary SVM classification 

 

A SVM trained for the sedan class (e.g. SVM sedan 1 in Fig. 3) that recognizes a vehicle in a test 

image coming from a given camera (e.g. camera 1) as being a sedan, will output a 1. The results 

of the classifiers representing each viewpoint are composed into what is called a confidence 

measure by adding the decision of all classifiers for a certain category from the different views. 

When none of the classifiers identifies the vehicle in the image as belonging to the category that 

the respective classifier has been trained for, the confidence is 0. When all the classifiers (if all 
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views are used) recognize the vehicle in the test image as belonging to a certain category, the 

confidence is 6. Such confidence measures are computed for every category of vehicles when a 

certain test image is presented at the input. For example in Fig. 3, most of the SUV classifiers do 

not recognize the vehicle to be an SUV and therefore the SUV confidence measure is 1, while 

most of the sedan classifiers recognize the vehicle as being a sedan and output a 1, leading to a 

confidence of 5. To compute the final decision, a MAX voting is performed on the resulting 

confidence measures. Therefore a vehicle in an image is recognized as belonging to the category 

that provided the highest confidence measure. In Fig. 3, the highest confidence comes from the 

sedan and therefore the vehicle is classified (correctly) as a sedan. When no decision can be 

produced by the system because two or more categories result in the same confidence measure, 

an additional procedure based on dissimilarity, illustrated in Fig. 4, is employed to help make the 

decision. 
 

 
 

Figure 4.  Multi-view vehicle classification: computation of dissimilarity 
 

A score of image dissimilarity is computed between the features of a vehicle on which the 

decision cannot be produced (viewed from each viewpoint) and an average feature model for 

each vehicle category (also as viewed from each viewpoint) as further detailed in section V.c. 

These average models are denoted dsim 1_1 to dsim 6_5 in Fig. 4. From each viewpoint, the 
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category that is associated with the lowest dissimilarity is considered the winner and is denoted 

cat_view_1 to cat_view_6. The elements in the cat_view vector can have a value of 1 (sedan), 2 

(sports), 3 (SUV), 4 (pickup truck) or 5 (wagon). To compute the final decision, the category that 

occurs most often in the cat_view vector is considered the winner. For each cat_view element, 

the value of the lowest dissimilarity score that led to its selection as a winner (one of the dsim 

1_x to dsim 6_x) is also saved. This value can be used to discriminate between categories when 

two or more categories occur in equal number in the cat_view vector. When no decision can be 

made based only on the category that occurs most often, the category that has the lowest 

dissimilarity score is considered the winner. Therefore it is guaranteed that a decision will always 

be produced, unlike when only binary SVMs are used. However, this dissimilarity score is only 

used when needed and as a complementary measure to the proposed series of SVMs because, on 

its own, it produces lower classification rates. 

 

IV. SALIENT FEATURES EXTRACTION 

 

a. Extraction of visual-attention inspired salient features 
The computational model of attention of Itti et al. [22] computes several features derived from an 

image provided as input and fuses their saliencies into a representation called saliency map. One 

or several image pyramids (3 in the context of this work) are created from the input image in 

order to enable the computation at different scales. Several features are then computed in parallel, 

namely intensity (I = (R+G+B)/3 where R, G and B are the red, green and blue color channels 

respectively), color (color maps are represented by the RG-BY color opponency), and orientation 

(local orientation information is obtained from the intensity image I using oriented Gabor 

pyramids of different scales and different preferred orientations: 0, 45, 90, and 135 degrees in the 

context of this work). Center-surround operations, modeled as a difference between fine and 

coarse scales, are applied on all features. Each set of features is stored in feature-dependent 

saliency maps, called conspicuity maps in form of grayscale images where the intensity of each 

pixel is proportional to its saliency. After normalization, these maps are summed up linearly in 

the final saliency map. The full implementation details are available in [22]. This model is 

employed in the context of this work to detect the salient features in each of the images in the 

dataset. The saliency map, SM, obtained is shown for a sedan in Fig. 2 and for an SUV in Fig. 5a. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 4, NO. 3, SEPTEMBER 2011 

410



The images are presented as negatives (e.g. 1-SM) to better visualize the results by showing the 

areas of highest saliency with darker shades. 

      
a) 

      

b) 
 

Figure 5. Saliency maps for the SUV in Fig. 1a obtained using Itti et al.’s visual attention 

computational model and b) selected saliency feature points used for classification 

 

b. Selection of the number of features for classification  

The number of salient feature points to be used as a basis for classification is identified separately 

for all 5 categories of vehicles being viewed from a given direction (e.g. front view, rear view, 

etc) since some views might contain a higher number of discriminative features than others. This 

fine tuning is possible in the context of this work because it is assumed that all the images from a 

given viewpoint are provided by a given static camera and therefore the number of features 

identified can be used for all images coming from that same camera. It allows for the proper 

selection of the number of salient feature points that ensures the best performance for a given 

view.  

To select the number of feature points from the saliency map to be used as a basis for 

classification, a set of test runs of the computational attention model described in Section IV.a are 

performed on each view for an increasing number of saliency points between 1000 and 5500 with 

a step of 100. These salient points, s, are selected in order from S, a list in decreasing order of 

saliency of all the pixels in SM from the most salient to the least salient.  
 

{ }nkssyxSMssSSs kkkkkk ..1,),,(, 1 =>==∈ +                                        (1) 

 

The upper bound of 5500 points represents the totality of salient points in the saliency map, SM, 

computed as an average over all images in the dataset. The average recognition rate is computed 
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over the 5 categories of vehicles for every number of salient points between 1000 and 5500. The 

number of salient points selected, m, corresponds to that number which supported the highest 

average recognition rate and all these points are stored in a list Sm (Sm contains the m most salient 

points in S). All the feature points in Sm are replaced with 1s in the saliency map, SM, and all the 

other points are replaced with 0 to build a limited m-feature saliency map, SMl: 
 



 ∈

=
otherwise

SyxSMif
yxSM m

l ,0
),(,1

),(                                                          (2) 

 

The limited m-feature saliency map, SMl, is downsampled to one third of its size (e.g. 30×50 

pixels) to reduce the computational burden and transformed into a feature set vector that is used 

as input to the classifier. 

 

V. TRAINING AND EVALUATION OF SVM CLASSIFICATION 

 

a. SVM classification based on salient features  

As explained in Section III, a binary SVM classifier is trained to recognize the category of a 

vehicle from a given viewpoint against all the other categories of vehicles viewed from the same 

direction. The target dataset is built by assigning 1 to all the vehicles representing that category 

(positive examples) and 0 to all vehicles belonging to other categories (negative examples). The 

input dataset, composed of feature set vectors obtained in Section IV.b, and the target dataset are 

split into training and testing data for the classifier using 5-fold cross validation. In the first fold, 

80% of randomly selected input vectors built from all the images representing vehicles from a 

certain viewpoint and their corresponding targets are used for training and the rest of 20% for 

testing. In the next fold, another 20% is selected for testing and the old testing set is returned to 

training data. This process is repeated 5 times, that is until all input vectors have been considered 

in the testing set. The set of input vectors is classified using least-squares SVMs (LSSVM) [24] 

for each given viewpoint and the results are added to compute the confidence for a given 

category, as illustrated in Fig. 3. A LSSVM classifier with a Gaussian RBF kernel, the 

regularization parameter γ=10 and the squared bandwidth σ2=0.4 is used. The training for the 155 

vehicles from a given viewpoint takes about 0.09s per image. The testing per test image takes on 

average 0.03s on a Matlab platform.  
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The training–testing sequence is repeated for an increasing number of saliency feature points, to 

determine the appropriate number to be used for classification purposes, as described in Section 

IV.b. The identified number for each of the 6 views available over all 5 vehicle categories is 

reported along with their maximum and average classification rates in Table 1. These rates are 

computed as the number of test images correctly classified over the number of test images and 

averaged over the 5-folds. All cases where no decision is produced with the SVMs alone are 

considered at this stage classification errors. It can be observed that the totality of salient points in 

the saliency map (5500 for the dataset used during experimentation) is used for views 1 and 2, 

while a smaller number is sufficient to obtain the maximum classification rate for other 

viewpoints.  

 

Table 1: Number of salient points, the maximum and the average classification rate per view over 

all categories 
 

View 1 2 3 4 5 6 

Number of salient points 5500 5500 4650 4650 4750 3750 

Maximum classification rate 94.2% 94.5% 95.9% 95.1% 95.4% 94.9% 

Average classification rate 93.0% 93.0% 94.4% 94.0% 95.2% 94.2% 
 

 

The limited saliency maps, SMl, obtained with the predetermined number of salient features in 

Table 1 and with black pixels representing 1s, are shown for a sedan in Fig. 2 and for an SUV in 

Fig. 5b. They produce some sort of a sketched shape of the vehicle which provides rich inputs to 

the SVMs for classification. The average classification rate for each viewpoint and the average 

over all viewpoints are reported in Table 2. 

 

Table 2: Average classification rates per view and vehicle category (SVMs only) 

 

View Sedan Sports SUV Pickup Wagon 

1 89.2% 97.8% 91.9% 97.8% 94.1% 

2 86.5% 95.7% 96.2% 100% 94.1% 

3 93.0% 96.8% 94.6% 98.9% 96.2% 
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4 93.0% 94.6% 93.5% 98.9% 96.2% 

5 91.3% 96.2% 96.2% 97.8% 94.6% 

6 94.1% 94.1% 94.1% 98.9% 93.5% 

All views 91.2% 95.8% 94.4% 98.7% 94.8% 

 

It can be observed that the average classification rate for each classifier for all views is over 91%. 

The proposed solution is compared with a classification based on several classical features such 

as SIFT key points [25], Harris corners [26], Difference-of-Gaussian (DoG) features (with σ1=1 

and σ1=0.01) and Gabor features (with orientations 0, 45, 90, and 135 degrees). Results are 

reported in Table 3. The same dataset and the same set of binary SVMs are used for the 

classification of all the features and the computation of average classification rate for all views 

over the same 5-folds. The average classification rate achieved with the proposed solution using 

biologically-inspired visual attention saliency maps is reproduced from the last row of Table 2 as 

a basis for comparison. 

 

Table 3: Comparison of the proposed solution with other feature detectors (average classification 

rate for all views) 

 

 Sedan Sports SUV Pickup Wagon 

SIFT key points 73.2% 79.1% 67.9% 80.0% 81.2% 

Harris corners 76.5% 80.3% 67.9% 67.9% 81.0% 

DoG features 88.2% 90.9% 89.6% 98.2% 93.5% 

Gabor features 87.1% 91.5% 92.4% 98.5% 93.5% 

Proposed solution 91.2% 95.8% 94.4% 98.7% 94.8% 
 

 

It can be seen that SIFT key points and Harris corner features provide similar and relatively low 

average classification rates, and are therefore not discriminative enough for the task. The 

performance of DoG and Gabor features as a basis for classification is also similar, but overall 

the rates are lower than those obtained with the proposed solution. 

 

b. Classification Based on Multiple Views and Comparison with Multi-Class Classification 
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The final decision of the SVM classification system is based on a MAX voting on the results 

provided by the confidence scores of the multiple view classifiers. The category that corresponds 

to the highest confidence classifier is the winner. When all 6 viewpoints are used, the system 

classifies correctly 95.7% of the vehicles on average over all categories.  

To ensure that the choice of a set of binary classifiers is the appropriate alternative, additional 

experiments are performed to compare the performance against multi-class classifiers. A set of 6 

multi-class classifiers, one per view, are trained to recognize the 5 categories of vehicles from a 

given viewpoint. In a similar manner to the set of binary classifiers, the dataset is split into 

training and testing data for each classifier using 5-fold cross validation. A trained SVM that 

recognizes a vehicle in a test image coming from a given camera as being a sedan, will output a 

1. If it recognizes the vehicle as being a sports car, it will output a 2. The output will be 3 for a 

vehicle recognized as an SUV, 4 for a pickup and 5 for a wagon. LSSVM classifiers with a 

Gaussian RBF kernel, the regularization parameter γ=10 and the squared bandwidth σ2=0.4 are 

used for the 5 category classification. To compute the final decision, a MAX voting is performed 

on the results obtained per viewpoint. The results are reported in Table 4. The average 

classification rate is computed for all 6 viewpoints available and averaged over the 5-folds. It can 

be observed that the performance of multi-class classifiers is lower than the one of the set of 

binary-classifiers, justifying the selection of the latter in this application. 

 

Table 4: Comparison between binary classifiers and multi-class classifiers 

 

 Average classification rate 

Multi-class classifiers 88.1% 

Binary classifiers 95.7% 

 

c. Classification Based on Multiple Views and Improvement with a Dissimilarity Score 

In the previous section, all non-decision cases are considered classification errors. The average 

number of non-decision cases computed as average over the 5 folds is 0.4 when all the 6 views 

are used, but can become larger when only a limited number of viewpoints is considered. To 

eliminate these non-decision cases, a dissimilarity score is added, as explained in Section III. 

Initially, an average saliency map model, SMavg, is built for each category of vehicles by 
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computing the pixel mean values of the saliency in all resized SMl maps that belong to that 

category, from each view. Examples of such average models are presented in Fig. 4 for the front 

(dsim 1_x) and three-quarter back (dsim 6_x) views. Each such salient average model is 

compared with the resized limited m-feature saliency map , SMtest, computed from the input 

image corresponding to each viewpoint for every vehicle on which no decision is available when 

using only the binary SVMs. A sum-of-squared-differences cost (DSSD) measures the intensity 

difference as a function of dissimilarity between the images corresponding to the salient average 

model for every category respectively and the saliency map of the uncategorized vehicle within a 

shifting window W: 

 

( )2
,

),(),(∑
∈

++−=
Wji

testavgSSD jyixSMjiSMD                                        (3)  

 

For the experimentation, the size of the window W chosen is 9×9. The category that is associated 

with the lowest dissimilarity DSSD from each viewpoint is considered the winner. To compute the 

final decision, the category that occurs as a winner the most often among the 6 viewpoints is 

selected, as detailed in Section III. When all the viewpoints are considered and the dissimilarity 

score DSSD is applied to disambiguate the few cases where SVM classifiers alone are not 

sufficient, the system classifies correctly 96.8% of the vehicles, 1.1% more than in the situation 

where only SVMs are used. However this increase comes at an additional computation cost, as 

the testing per image takes on average 0.14s, an increase of 0.11s with respect to the case where 

only SVMs are used. 

Table 5 details the evaluation of the classification performance based on true positives (TP), false 

positives (FP), true negatives (TN), and false negatives (FN). It also compares the results of 

categorization when using the joint confidence (MAX voting) of SVMs only, with the results 

obtained when the joint confidence produced by the SVMs is complemented by dissimilarity 

scores. The TP, FP, TN and FN values represent numbers of vehicles. They are computed for 

each vehicle category as an average over the 5-folds and using the confidence scores of all 6 

views available. The precision (PRE), or the percentage of positive predictions that are correct, 

that is the number of correct results divided by the number of all returned results, and the recall 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 4, NO. 3, SEPTEMBER 2011 

416



(REC), or the percentage of positive cases found, that is the number of correct results divided by 

the number of results that should have been returned, are computed as: 

100×
+

=
FPTP

TPPRE                                                           (4) 

100×
+

=
FNTP

TPREC                                                          (5) 

 

the accuracy (ACC), or the percentage of the predictions that are correct, as:  

 

100×
+++

+
=

FNTNFPTP
TNTPACC                                                    (6) 

 

and the F1-score, another measure of accuracy that is a weighted average of precision and recall 

and that identifies a perfect categorization task with the value 1,  as: 

 

                                                       
100

121 ×
+
×

×=
RECPRE
RECPREF                                                       (7) 

 

Table 5: Average values for TP, FP, TN, FN, precision, recall, accuracy and F1-score over 5 folds 

for all views 
 

 SVM joint confidence 

 TP FP TN FN PRE REC ACC F1-score 

Sedan 8 0.4 28.4 0.2 95.2% 97.6% 98.4% 0.96 

Sports 6.2 0 30.6 0.2 100% 96.8% 99.4% 0.98 

SUV 10 1 26.2 0 90.9% 100% 97.3% 0.95 

Pickup 6.2 0 30.8 0 100% 100% 100% 1.00 

Wagon 4.6 0 30.8 1.4 100% 76.6% 96.2% 0.86 

 SVM joint confidence + dissimilarity score 

 TP FP TN FN PRE REC ACC F1-score 

Sedan 8.2 0.2 28.6 0 97.6% 100% 99.5% 0.98 

Sports 6.2 0 30.6 0.2 100% 96.8% 99.5% 0.98 

SUV 10 1 26.2 0 90.9% 100% 97.3% 0.95 
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Pickup 6.2 0 30.8 0 100% 100% 100% 1.00 

Wagon 5 0 31 1 100% 83.3% 97.3% 0.90 

 

First of all, one can notice the high values for the precision, recall, accuracy and F1-scores in 

general. Also, an improvement of these measures can be observed when using the dissimilarity 

score as a complement to SVMs, as denoted by the slightly higher percentages for ACC and F1-

scores for some of the categories, particularly the sedan and wagon. From Table 5 and also from 

Table 2, one can notice that the pickup truck classifier performs the best. This is likely due to the 

pickup truck characteristic shape that significantly differs from other categories. The most 

common error is the erroneous categorization of wagons and SUVs, as shown by the 1s in the FP 

for SUV and in the FN for wagon in Table 5. These 1s say that on average 1 wagon is not 

detected as a wagon (FN wagon = 1), but as an SUV (FP SUV = 1). This is not surprising 

because many exemplars of SUV and wagon look very similar from the front and back views and 

both the SUVs and wagons have rounded backs in the side and three-quarter views.  

 

d. Viewpoint Evaluation 

Experiments are further performed to reduce the number of cameras used by identifying the 

viewpoints that make the most important contribution to the classification, in order to decrease 

the implementation cost while maintaining the high performance.  
 

 
 

Figure 6. Average classification rates for combinations of views 
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Most combinations include views 3 to 6 that provided the highest maximum and average 

classification rate per view as illustrated in Table 1. A series of combinations of views are 

presented in Fig. 6 together with their average classification rate when using the series of SVMs 

and when complementing the binary SVMs results with the dissimilarity score. 

It can be observed that the classification rates using dissimilarity scores are higher for all 

combinations of views when compared with the case where only SVMs are used. When only 

SVMs are used, the views seem to contribute more to the decision. This fact is reflected by a 

higher number of views required to provide better performance, with (1+2+3+5+6) representing 

the optimal configuration that achieves 95.7%. Other 3 combinations, namely (2+3+5+6), 

(1+2+3+4+5) and all 6 views (1+2+3+4+5+6) all obtain 95.1%.  

In terms of combinations of views when dissimilarity scores are involved, one can notice that 

combinations of 4 views, namely lateral and three quarter views (3+4+5+6), front, lateral and 

front three-quarter views (1+3+4+5), and rear, lateral and front three-quarter views (2+3+4+5) all 

lead to the best performance of 97.3%, which is higher than the classification rate obtained when 

using all 6 viewpoints available (1+2+3+4+5+6). A maximum of 96.2% can be obtained for three 

views when dissimilarity scores are considered. The two lateral views and the front three quarter-

view (3+4+5) provide better performance than any case where only SVMs are considered 

(independently from the number of views). Such a combination provides a less costly solution in 

terms of use of cameras and still provides better performance for 5-category vehicle 

classification, but is more costly in computation time. Therefore in choosing the SVM only 

solution or the improved SVM solution with dissimilarity score, one must consider the 

compromise between a fast solution (on average 0.03s per testing image) where some non-

decision cases remain (between 0.4 cases per fold when all 6 views are used and 3.4 cases per 

fold when only 2 views are used) and a slower solution (on average 0.14s per testing image) that 

eliminates all the non-decision cases. The latter approach is also cheaper in terms of equipment 

and leads to higher classification performance when a minimum of 3 views are used. 

 

e. Comparison with Existing Vehicle Classification Solutions 

Even without the addition of the dissimilarity score, the proposed classification technique obtains 

better results than the case in which SIFT key points, Harris corners, DoG and Gabor features are 

used as features to support the classification, as shown in section V.a.  
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Table 6: Comparison with existing solutions from the literature for vehicle classification 
 

Solution Categories considered Best classification rate 
reported 

Ref. [11] Motorcycle, car, bus, trailer 1, trailer 2 83% 

Ref. [12] Car, van, truck 93.51% 

Ref. [13] Sedan, van, hatchback, bus, truck 93% - 95% 

Ref. [15] Car- minivan, and car - taxi 96%, and 98% 

Ref. [17] Sedan, wagon, van, hatchback 54% 

Ref. [18] Sedan, van, pickup, van, bus, trailer 91.35% 

Ref. [20] Sedan, van, truck 95% 

Proposed solution Sedan, sports car, SUV, pickup truck, wagon 97.3% 

 

Moreover, the proposed approach compares and even surpasses in performance the best solutions 

found in the literature for multi-category vehicle classification, as detailed in Table 6, while 

remaining computationally efficient for real-time applications. 

 

VI. CONCLUSIONS 

 

The paper discusses the use of human visual attention mechanisms to identify a set of features 

that allows for fast automated classification of vehicles based on images taken from 6 viewpoints, 

with possible application in many areas, such as optimizing available parking spaces, balancing 

ferry loads, planning infrastructure and managing traffic, or servicing vehicles.  The experimental 

results demonstrate that biologically-inspired features derived from visual attention combined 

with series of binary support vector machines obtain better classification rates than the cases in 

which SIFT key points, Harris corner, DoG or Gabor features are used to support the 

classification. Two original approaches are presented and validated, that is the SVM only 

solution and the improved SVM solution with dissimilarity score. These alternatives provide the 

user with the possibility to make a compromise between a fast solution that will leave a low rate 

of non-decision cases, when these can be tolerated; and a slower solution that eliminates all non-
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decision cases, while having also  reducing the cost of the required equipment and complexity of 

physical implementation and leading to higher classification performance when a minimum of 3 

views are used. The classification rates obtained by the proposed solution compare and even 

surpass the best solutions reported in the literature for multiple category vehicle classification. 

As future work, the proposed solution will be tested on other vehicle datasets and for additional 

vehicle categories for a more thorough evaluation of performance. 
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