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Abstract- The interactions between input/output in multivariable processes represent a major 

challenge in the design of decentralized controllers. In this paper, a simple method for the design of 

decentralized PID controller is proposed. It consists to combine the conventional PID controller 

with the static decoupler approach. For each single loop, the individual controller is independently 

designed by applying the internal model control (IMC) tuning rules. To demonstrate the 

effectiveness of the proposed method, the PID controller with and without decoupling is 

implemented on an aerothermic process. It is a pilot scale heating and ventilation system equipped 

with a heater grid and a centrifugal blower, fully connected through the Humusoft MF624 data 

acquisition system for real time control. The outcome of the experimental results is that the main 
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control objectives, such as set-point tracking and interactions rejection are well achieved. The 

experimental results have shown that the proposed method provides a significant improvement 

compared to conventional PID controller. 

 
Index terms: Continuous-time identification, aerothermic process, decentralized PID controller, static 

decoupling, TITO control systems. 

 

 

I. INTRODUCTION 

 

The heating and ventilation system plays an important role in many industrial sectors 

including chemical, mineral, drying and distillation processes, as well as pharmaceutical and 

agro alimentary production units. It is argued that the temperature control is no more a 

challenging control problem in most of these applications. Nevertheless, some practical issues 

in many temperature control applications stimulate new developments and further 

investigations [1-5]. 

For education and training purposes, many aerothermic processes are available. They 

highlight most heating and ventilation problems, and they are widely referenced in the process 

control literature. Different prototypes of these processes have been used to check new control 

strategies and many results were reported in the single variable control cases [6-10]. 

As most industrials multivariable processes, the aerothermic processes are generally subject to 

significant interactions between its main variables. However, they were not explicitly 

considered in most reported control. Worth to mention herein that the basic factory control 

system delivered with most of aerothermic processes is restricted to the classical analog PID 

controller without taking into account of interactions between its main parameters [11]. 

In this paper, we highlight further aspects of multi-loops PID controller which consist to 

associate this conventional controller with the partial static decoupler approach in order to 

eliminate the interactions between the main aerothermic process parameters. In this synthesis, 

a multivariable transfer function is identified using the numeric Direct Continuous-Time 

Identification (DCTI) approach [12]. This technique has attracted an increasing attention of 

several researchers in the last few years [13-18]. It provides a robust and accurate method for 

the identification of dynamical systems under the influence of perturbations. Among the 

advantages of the DCTI methods, we mention its ability to deal with multi-input multi-output 

identification in a straightforward manner from process experimental data and the ease of use 

due to the small number of parameters which have to be chosen by the user. 
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The paper content is organized as follows: Section II introduces the description of the 

aerothermic process and underlines the interaction between its main variables. Section III 

discusses the multivariable continuous-time identification, which represents the first step in 

the design of the controllers. The decentralized PID controller is introduced in section IV. Its 

parameters are calculated by using the IMC tuning rules. In this section, we recall the main 

steps of static decoupler. Section V reports the experimental control results of the aerothermic 

process under set-point change of the ventilator speed in order to show its impact on the air 

temperature when the PID controller, with and without static decoupler, is applied. 

Robustness of the decentralized PID controller is also discussed and a final conclusion is 

given. 

 

II.  AEROTHERMIC PROCESS DESCRIPTION 

 

The considered pilot scale aerothermic process [11], is shown as a schematic diagram in 

figure 1 and depicted in a three dimensional view in figure 2. It has the basic characteristics of 

a large process, with a tube through which atmospheric air is drawn by a centrifugal blower, 

and is heated as it passes over a heater grid before being released into the atmosphere. 

 

 

Figure 1.  Schematic illustration of aerothermic process 
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Figure 2.  Three-dimensional view of aerothermic process 

 

The command objective for the aerothermic process is to regulate the flow and the air 

temperature respectively by the PI and PID controllers with and without decoupling the 

interaction parameters. The temperature control is achieved by varying the electrical power 

supplied to the heater grid. There is an energized electric resistance inside the tube, and due to 

the Joule effect, heat is released by the resistance and transmitted, by convection, to the 

circulating air, resulting in heated air [6]. The air flow is adjusted by varying the speed of the 

ventilator. 

This process can be characterized as a non-linear system. The physical principle which 

governs the behavior of the aerothermic process is the balance of heat energy. Hence, when 

the air temperature and the flow inside the process are assumed to be uniform, a linear system 

model can be obtained. This kind of aerothermic process is being used by many researchers to 

check their new control strategies [6-10]. 

As shown in the schematic of the aerothermic process, the system inputs, (u1, u2), are 

respectively the power electronic circuit feeding the heating resistance and the ventilator 

speed. The outputs, (y1, y2), are respectively the flow and air temperature. The input-output 

signals are expressed by a voltage, between 0 and 10 V, issued from the transducers and 

conditioning electronics. Figure 3 shows a Two-Input Two-Output (TITO) block diagram of 

the aerothermic process. 
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Figure 3: TITO Block diagram 

 

The fundamental relationship between inputs and outputs signal are expressed as: 
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where the P11, P12, P21 and P22 are the continuous process transfer functions which will be 

identified in the section III. P12 and P21 are called the process interaction. 

To examine the possibility of interaction between the temperature and air flow, two 

experiments were carried out. In each case, the two process inputs were held constant and 

allowed to settle. If one of them undergoes a step change, the behavior of the other output will 

be observed to see if this change had any effect on it. Figure 4 shows the results from both 

experiments. 

 

Figure 4.  Interactions between the main variables of the aerothermic process 
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In the first half plot of this figure, the electric voltage supplied to the heater grid is held 

constant (at 4V) and the ventilator speed undergoes a step change from 30% to 70% of its full 

range. The air temperature varied considerably from 4V (45°C) to 2V (35°C). The second half 

plot shows the results when the ventilator speed is held constant and the electric voltage of the 

heater grid undergoes a step change, from 40% to 80% of full range. As can be seen, the air 

temperature is varied accordingly but the air flow is remained unaffected. 

These results show that the air temperature behavior depends also of the operating conditions 

of the air flow. Hence, the change in air temperature behavior is provided by two effects: a 

direct effect, by the heater grid and indirect effect via the ventilator speed. Our main aim is 

then to eliminate the indirect effect. 

Equation 2 summarizes this relationship in continuous-time transfer function form. 
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Therefore, the figure 3 takes the following new representation: 

 
Figure 5: Partial interaction TITO Block diagram 

 

III.  CONTINUOUS-TIME IDENTIFICATION 

 

System identification is an experimental approach to determine the transfer function or 

equivalent mathematical description for the dynamic of an industrial process component by 

using a suitable input signal. This approach represents the first step in the design of a 

controller. 

From a conceptual standpoint, the modeling of most mathematical models of industrial 

processes is formulated in terms of continuous-time (CT) differential equations using the 
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physicochemical laws. Nonetheless, in the past, the majority of system identification schemes 

have been based on discrete-time (DT) models. Their corresponding CT models are obtained 

indirectly from the existing DT models. 

In fact, the development of CT model identification techniques originated in the last century 

[19]. However, it has attracted an increasing attention of several researchers in the recent 

years [13-16]. This interest is due to the ability of these approaches to provide consistent 

results even for an imperfect noise structure which is the case in most practical applications 

[16]. The early contributions on continuous-time identification can be found in [17-18]. 

For identifying a continuous-time model from discrete sampled data, there exist two main 

approaches. The first, namely the indirect approach, it consists to estimate from the sampled 

data, an initial DT model and then convert it into a CT model using a standard algorithm for 

discrete to continuous-time conversion. The second, namely the direct approach, which 

formulates the identification of the CT model directly based on samples of the measured CT 

signal. The main computational tools of this approach are based on the Refined Instrumental 

Variable method for Continuous-time Systems (RIVC) and its Simplified version (SRIVC) 

that are discussed in detail by [20]. 

In order to generate estimation and validation data for system identification, an experiment is 

performed. Data set used for the parameter identification step is build up with Pseudo 

Random Binary Sequence (PRBS) signals which are applied simultaneously to the two 

manipulated variables of aerothermic process. This data set and their correspondent outputs 

are displayed in figure 6. The sampling interval is Ts=1 second. The signals collected, via the 

Humusoft MF624 data acquisition module, are yield in the interval (0V, 10V). 
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Figure 6: Data set for direct continuous-time identification 

 

Based on the outcome analyses of section II, two loops will be considered in the aerothermic 

process identification. The first loop will be represented by Two-Inputs (u1, u2) and Single-

Output (y1), TISO. The second loop will be represented by a Single-Input (u2) and a Single-

Output (y2), SISO. After the application of the DCTI approach on first half experimental 

sampled data of identification (i.e.: 30 minutes), the identified models of the aerothermic 

process suggests that the dynamic relationship between the measured inputs and the measured 

outputs for the two loops are linear and first-order plus dead time (FOPDT). The dead time is 

equal to 7 seconds for the first loop and is equal to 1 second for the second one. In general, 

the transfer function of FOPDT system is given by: 
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where K is the steady state gain, D is the dead time, and T is the time constant. 
 
The identified transfer functions of the aerothermic process are given by the following system 

equation:  
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The negative gain in the interactive transfer function implies that the air temperature behaves 

in the opposite way. In fact, the interaction effect tends to reduce the air temperature when the 

flow increases. 

To evaluate the quality of the estimated transfer function models, a cross-validation procedure 

has been applied to the remaining experimental data were not used to build the model. Cross-

validation result is plotted in Figures 7. From this figure, it may be observed that there is a 

relatively good agreement between the measured and the simulated model output. 

To confirm this validation, a numeric test is also applied to evaluate the models quality. It 

consists to use the coefficient of determination, given in equation 5, in order to determine the 

strength of the linear association between the simulated and measured output. 

)var(

)ˆvar(
1

y

yy
CD

−−=     (5) 

Table 1 summarizes the results of the coefficient of determination for DCTI approaches. 

 

Table1: Coefficient of Determination 

 Coefficient of Determination 

TISO 0.9914 

SISO 0.9920 

 

 

Figure 7: Cross-validation results (black: measured output; blue: simulated output) 
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As shown in both figure 7 and table 1, it appears a good similarity between the true system 

output and the identified one. Furthermore, the identified process has no modes associated 

with eigenvalues in the unstable region.  

 

IV.  DECENTRALIZED PID CONTROLLER 

 

a. Decoupling control systems 

As shown in section III, changes in second loop might cause an undesirable disturbance in 

first loop and hence cause y1 to vary from its desired value. Therefore, the interaction caused 

by the second loop needs to be completely or partially eliminated. To do it, the aerothermic 

process must be decoupled into separate loops. 

There exist two ways to see if a system can be decoupled. The first One is with mathematical 

models and the other is a more intuitive educated guessing method. The mathematical 

methods include the relative gain array (RGA) method, the Niederlinski Index (NI) and 

singular value decomposition (SVD) [21]. In this paper the SVD method is used to discuss the 

determination of whether the TITO control scheme can be decoupled to SISO ones. It starts 

with the steady state gain matrix of the process as shown in the following equation.  
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Using P, the calculation of the eigenvalues can be calculated by hand from the following 

equations [22]: 
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2(0) and d = P22
2(0). s1 and s2 are the positive 

square roots of the respective eigenvalues. The condition number (CN) is defined as the ratio 

of the larger si to the smaller sj: 
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The greater the CN value, the harder it is for the system in question to be decoupled. A rule of 

thumb is that when CN ≥50 the system is nearly singular and decoupling is not feasible [23]. 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 5, NO. 2, JUNE 2012 
 
 
 

497 
 

In our case,  







=

1.08880

0.4616-0.7891
P  and CN = 1.7957. Then the aerothermic processes can 

be quite decoupled into separate SISO systems.  

Generally, there exist two decoupling approaches: the complete decoupling and the partial 

decoupling. In the complete decoupling, all decouplers are used. While in the partial 

decoupling; only some decouplers are used and the remainder decouplers are set equal to zero. 

Among the advantageous of the partial decoupling, we note its tendency to be less sensitive to 

modeling errors compared to the complete decoupling [22]. The partial decoupling is an 

attractive approach for control problems where one of the controlled variables is more 

important than the other or where one of the process interactions is absent. In the aerothermic 

process case, the partial decoupling is considered in order to eliminate the interactions caused 

by the second loop on the first one. Figure 8 shows this partial decoupling. 

.  

Figure 8: Decoupled system 

 

From figure 8 we have the following equation: 

212121111111 )( UPDPUPY ++=      (10) 

To eliminate the interaction between U2 and Y1, the right half of the equation 10 must satisfy 

the following condition: 

0)( 2121211 =+ UPDP       (11) 

To satisfy equation (11) it follows that 

0121211 =+ PDP        (12) 

Solving for D12 gives an expression for the ideal decoupler, 
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b. multivariable decentralized PID controller  

In principle, decoupling control can provide two important points. In the first one, the control 

loop interactions will be eliminated. Consequently, the stability of the closed-loops system 

will be determined only by the stability characteristics of the individual feedback control 

loops. In the second one, if the set-point of a controlled variable is changed, it will not have an 

effect on the other controlled variables. 

Several control approaches such as neural networks, model predictive control can resolve the 

multivariable control problems with or without severe interactions. However, these controls 

are used primarily on a higher level. In the lower level, improving the performance and 

robustness of a system can be made by the improvements in the separate proportional-

differential-integral (PID) loops [24]. In this paper, the improvement is obtained by using the 

partial static decoupling where the design is based on the steady state process interactions. 

The design equations for the decoupler can be adjusted by setting (s = 0), i.e. the process 

transfer functions are simply replaced by their corresponding steady state gains. Hence, the 

expression for the ideal decoupler given by the equation 12 becomes: 

0.5850
)0(

)0(

11

12
12 =−=

P

P
D       (14) 

Figure 9 shows the partial decoupling control system for the aerothermic process.  

 

 

Figure 9: A partial decoupling control system 

 
The PI controller is used to regulate the air flow since this loop has generally very fast 

dynamics and its measurement is inherently noisy; while, the air temperature is regulated by 

the PID controller. Once a partial decoupler is obtained, the PI and the PID controllers are 

designed separately for the two loops. Hence, as shown in figure 9, three controllers are used: 

two conventional feedback controllers, PID and PI, plus one decoupler, D12. The input-signal 
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to D12 decoupler, which is designed to compensate the undesirable process interactions, is the 

output signal from the feedback PI controller. 

The continuous PID controller transfer function can be written as  

dt

tde
KdtteKteKtu dip

)(
)()()( ++= ∫       (15) 

where u(t) is the manipulated variable, e(t) the error signal, Kp, Ti, and Td represent 

proportional gain, integral gain and derivative gain respectively. 

 
In the Laplace domain, this control equation can be written as: 
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To calculate the PI and PID parameters, the Internal Model Control (IMC) tuning rules is 

adopted [25]. It is used most frequently in industrial processes because of its many 

advantages, including simplicity, robust performance, and its analytical form which is easier 

to implement in real time. 

The PID controller parameters are given as follows: 
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where K represents the steady-state gain, T is the time constant, and D is the time delay of the 

system. β  should satisfy β  > 0.2T and β  > 0.25L [26]. 

 
V. EXPERIMENTAL RESULTS 

 

To illustrate the effectiveness of the proposed method, real-time experiments of the 

Decentralized PID controller with and without partial static decoupler have been performed 

on the aerothermic process. The robustness of Decentralized PID is evaluated by changing the 

set-point of the ventilator speed. Referring to equation 17, the parameters of the Decentralized 

PID and PI controllers for respectively the first and the second loop are given in the following 

table:  
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Table 2: parameters of the PID and PI controllers using IMC tuning rules 
 

 proportional differential integral β  
First loop 1.9812 6.2881 0.0527 17.0350 

Second loop 1.3633 0.7063 0 0.3003 
 
Figure 10 and 11 present the results of multi-loop PI/PID controllers with and without static 

decoupler using IMC tuning rules. It is apparent from these figures that the proposed 

decentralized controllers provide a good performance. Their robustness and their effectiveness 

are confirmed by the elimination of the interaction effect on the air temperature variable 

compared to the controller without decoupler. It is obvious that the proposed controller 

affords a good robust performance consistently. We noted that there is no change in the 

behavior of the second loop parameters controlled by the PI with and without static decoupler.  

This can be justified by the fact that this loop is not infected by the first one represented by 

the air temperature and the heater grid. Which confirms quite the interaction test result 

obtained in section II.  

 

Figure 10: Top figure: closed-loop air temperature response; bottom figure: Closed-loop 

heater grid control response. (Blue: Decentralized PID controller, Green: conventional PID 

controller, Red: set-point signal). 
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Figure 10: Top figure: closed-loop air flow response; bottom figure: Closed-loop ventilator 

speed control response. (Blue: Decentralized PI controller, Green: conventional PI controller, 

Red: set-point signal). 

 

VI. CONCLUSIONS 

 

In this paper, the aerothermic process has been successfully modeled by Direct Continuous-

Time Identification (DCTI) approach. The strong interaction effect caused by the ventilator 

speed on the air temperature was reduced considerably by using a partial static decoupler. A 

Decentralized Proportional-Integrate-Derivative controller is implemented to this process. The 

comparison between the decentralized PID controller, with and without interaction, is 

analyzed. From this study, it can be clearly seen that the proposed control method is better 

than the conventional ones.  

In conclusion, the use of decentralized controller obtained from the partial static decoupler 

demonstrates robust performance for tracking set point change and rejecting the interaction 

effect of the second loop on the first one. It constitutes a worth extension of the multi-loop 

control methods and an alternative to the basic classical control for these kind of processes 

used for both engineering education and research training. 

 

REFERENCES 



M. Ramzi and  H. Youlal, Continuous Time Identification and Decentralized PID Controller of an Aerothermic Process 

502 
 

[1] M. Ramzi, H. Youlal and M. Haloua, "State Space Model Predictive Control of an 

Aerothermic Process with Actuators Constraints," Intelligent Control and Automation, Vol. 3 

No. 1, 2012, pp. 50-58. 

[2] N. Bennis, J. Duplaix, G. Enéa, M. Haloua, H. Youlal, “Greenhouse climate modelling 

and robust control”, Computers and Electronics in Agriculture, 2008, Vol. 61, pp. 96-107. 

[3] M. Nachidi, F. Rodriguez, F. Tadeo, J.L. Guzmanb, “Takagi-Sugeno control of nocturnal 

temperature in greenhouses using air heating”, ISA Transactions, 2011, Vol. 50, pp. 315-320. 

[4] R.F. Escobar, et al., “Sensor fault detection and isolation via high-gain observers: 

Application to a double-pipe heat exchanger”, ISA Transactions, Volume 50, Issue 3, July 

2011, pp. 480-486. 

[5] M.F. Rahmat , N.A. Mohd Subha, Kashif M.Ishaq and N. Abdul Wahab, “Modeling and 

controller design for the VVS-400 pilot scale heating and ventillation system”, International 

journal on smart sensing and intelligent systems, December 2009, Vol. 2, No. 4, pp. 579-601. 

[6] E. Yesil, M.Guzelkaya, I.Eksin, O. A. Tekin, “Online Tuning of Set-point Regulator with 

a Blending Mechanism Using PI Controller”. Turk J Elec Engin, 2008, Vol.16, No. 2, pp. 

143-157 

[7] T. Kealy, A. O’Dwyer, “Closed Loop Identification of a First Order plus Dead Time 

Process Model under PI Control”, Proceedings of the Irish Signals and Systems Conference, 

University College, Cork, 2002, pp. 9-14. 

[8] R. Mooney and A. O’Dwyer, “A case study in modeling and process control: the control 

of a pilot scale heating and ventilation system”, Proceedings of IMC-23; the 23rd 

International Manufacturing Conference, University of Ulster, Jordanstown, August, 2006, 

pp. 123-130. 

[9] H.L. Ho, A.B. Rad, C.C. Chan and Y.K. Wong, “Comparative studies of three adaptive 

controllers”, ISA Transactions 38, 1999, pp 43-53. 

[10] D.M. de la Pena, D.R. Ramirez, E.F. Camacho, T. Alamo, “Application of an explicit 

min-max MPC to a scaled laboratory process”, Control Eng. Practice, Vol. 13, No. 12, 2005, 

pp.  1463-1471. 

[11] Manual for ERD004000 Flow and Temperature process, 78990 ELANCOURT, 

FRANCE, 2008. 

[12] H. Garnier, M. Gilson, T. Bastogne, and M. Mensler, “CONTSID toolbox: a software 

support for continuous-time data-based modelling. In Identification of continuous time 

models from sampled data”, H.Garnier and L. Wang (Eds.), Springer, London, 2008, pp. 249-

290. 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 5, NO. 2, JUNE 2012 
 
 
 

503 
 

[13] G. P. Rao and H. Unbehauen, “Identification of continuous time systems” IEE 

Proceedings Control Theory and Appl, March 2006, 153 No. 2, pp. 185-220 

[14] V. Laurain, M. Gilson, H. Garnier, and P.C. Young. “Refined instrumental variable 

methods for identification of Hammerstein continuous-time Box-Jenkins models”, IEEE 

Conference on Decision and Control (CDC'2008) , Cancun (Mexico) , December 2008, pp. 

1386-1391 

[15] Ljung, L. “Initialisation aspects for subspace and output error identification methods”, 

European Control Conference (ECC2003), Cambridge (U.K.), December 2003. 

[16] H. Garnier, L. Wang, and P.C. Young, “Direct Identification of Continuous-time Models 

from Sampled Data: Issues, Basic Solutions and Relevance in Identification of continuous-

time models from sampled data”, Springer, London, 2008, pp. 1-29. 

[17] Hugues Garnier, “Data-based continuous-time modelling of dynamic systems”, 4th 

International Symposium on Advanced Control of Industrial Processes, Adconip China 2011, 

pp. 146-153 

[18] V. Laurain, M. Gilson, R. Toth, H. Garnier, “Direct identification of continuous-time 

LPV models”, American Control Conference, 2011, pp. 159-164 

[19] Young, P.C. “An instrumental variable method for real time identification of a noisy 

process”. Automatica, 6, 1970, pp. 271-287. 

[20] Young. P.C, “Recursive Estimation and Time-Series Analysis”, Springer-Verlag, Berlin, 

1984. 

[21] Tham, M.T. (1999). “Multivariable Control: An Introduction to Decoupling Control”. 

Department of Chemical and Process Engineering, University of Newcastle upon Tyne. 

[22] Dale E. Seborg, Thomas F. Edgard, Duncan A. Mellichamp, “Process dynamics and 

control”, Second edition, 2004 John Wiley & sons, pp. 473-502 

[23] William Y. Svrcek, Donald P. Mahoney, Brent R. Young, “A Real-Time Approach to 

Process Control”, Second Edition, 2006, John Wiley & Sons Ltd, pp. 215-234 

[24] Branislav T. Jevtovica, Miroslav R. Matausek, “PID controller design of TITO system 

based on ideal decoupler”, Journal of Process Control, 2010, Vol. 20, pp. 869–876 

[25] T. Nguyen L. Vu and M. Lee “Independent design of multi-loop PI/PID controllers for 

interacting multivariable processes”, Journal of Process Control 20, 2010, pp. 922–933 

[26] Guillermo J., Silva Aniruddha Datta and S.R Bhattacharyya, “PID Controllers for Time-

Delay Systems”, 2005 Birkhauser Boston, pp. 1-19 


