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Abstract-Power assist robots are usually used for disabled and elderly people to augment their 

abilities and skills. This paper proposes to use these robots to handle heavy objects in industries, 

and thus brings a novelty in the applications of power assist robots. However, it is difficult to 

optimize perceived heaviness and motion either independently or simultaneously for lifting objects 

with power-assist. Hence, this paper investigates the techniques to optimize perceived heaviness and 

motion following bionic and psychophysical approaches. We developed two systems-one was used to 

lift objects manually, and another was a power assist system to lift objects with it. Several 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/226931362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


S. M. Mizanoor Rahman and Ryojun Ikeura, Optimizing Perceived Heaviness and Motion for Lifting 
Objects with a Power Assist Robot System Considering Change in Time Constant 

459 
 

hypotheses and strategies related to weight perception and time constant were adopted. Humans 

lifted objects manually and with power-assist independently. Analyses showed that load force rate 

for power-assisted lifting were lower than that for manual lifting. We hypothesized that time 

constant of the assist system might be responsible for this. We changed time constant and found 

that increase in time constant reduced perceived heaviness and load force. Then, objects were lifted 

with power-assist in some selected conditions pertaining to time constant. Analyses showed that 

perceived heaviness was related to load force rate while object motion (acceleration) was related to 

load force magnitude. It was then demonstrated how to independently optimize perceived heaviness 

and motion by optimizing load force rate and its magnitude respectively. Techniques for 

simultaneous optimization of motion and perceived heaviness were also presented. Finally, we 

proposed to use the findings to develop power assist robots for manipulating heavy objects in 

industries that may enhance interactions with humans in terms of maneuverability, safety etc. 

 

Index terms- Power assist robot system, lifting objects, weight perception, psychophysics, time constant, 

motion, human-robot interaction, bionics/biomimetics 

I. INTRODUCTION 

Power assist robot system (PARS) is a human-robot interaction/cooperation system that 

extends human’s abilities and skills in performing various tasks. Breakthrough in power assist 

robot was conceived in early 1960s with “Man-amplifier” and “Hardiman” [1], however, its 

applications are still limited to a few areas. As we find in literature, PARSs are currently 

developed mainly for sick, physically disabled and old people as rehabilitation and medical 

aids [2]-[3]. Few PARSs are available for other applications such as support for lifting baby 

carriage[4],physical support for workers in agricultural jobs [5], hydraulic assist systems for 

automobiles[6], skill-assist in manufacturing [7], assist-control  for  bicycle [8], assist for 

sports training [9],  assisted slide doors  for automobiles [10] etc. 

We think that handling heavy objects, which is common and necessary in many industries, 

is another potential application of PARSs [11]. Manual handling of heavy objects is very 

tedious, affects human musculoskeletal system negatively[12], and on the contrary, 

autonomous systems for object handling usually do not provide required flexibility [13]-

[14].Hence, we assume that suitable PARSs may be appropriate for handling heavy objects in 

industries such as agriculture, construction, mining, manufacturing and assembly (e.g., rail 

line and rail car, ship building and breaking, automobile, timber etc.), forestry, transport and 

logistics, military activities, disaster and rescue operations, meat processing etc. However, 

such PARSs are not available in practices because their design and development have not 
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mobility etc., and inappropriate object motion reduces safety, stability, mobility, and may 

transmit jerks, vibrations etc. to human body that may affect human musculoskeletal system 

and/or may cause injuries/losses to human, devices etc.[11]-[12].However, perceived 

heaviness and motion are usually considered as distinct aspects, and the currently available 

research does not take any initiative to optimize these aspects either independently or 

simultaneously following human requirements that results in unsatisfactory interactions with 

human users. 

We are the first to include weight perceptual, load force characteristics and motion 

features in power-assist control [20]-[22].This paper investigates the techniques to optimize 

perceived heaviness and motion independently and simultaneously following bionic and 

psychophysical approaches. Few hypotheses and strategies related to weight perception, time 

constant etc. were adopted to reach the target. We analyzed weight perception, load force, 

motion etc. for lifting objects manually and with power-assist. We also studied the effects of 

time constant on these. We identified the factors and root cause for reduced heaviness of 

objects lifted with power-assist. We identified what influenced perceived heaviness and object 

motion, and demonstrated how to independently optimize the perceived heaviness and the 

motion. We also presented the techniques for simultaneous optimization of motion and 

perceived heaviness. We then proposed to use the findings to develop power assist robots for 

manipulating heavy objects in industries that may enhance interactions with humans in terms 

of maneuverability, safety etc. 

II. CONSTRUCTING THE EXPERIMENTAL DEVICES 

The experimental devices consist of two independent systems. The first system was 

developed to lift objects with the system by human subjects manually, which was called the 

‘manual system’. The second one was a power assist robot system developed for lifting 

objects with the system by  the same human subjects, which was called the ‘PARS’. Detailed 

configurations of the two systems are described below. 

a. Manual System 

We made three manually lifted objects (MLOs) of three different sizes (small, medium, large) 

to lift manually by human subjects. These objects were rectangular boxes made by bending 

aluminum sheets (thickness: 0.0005 m). Dimensions (length x width x height) of the boxes 

were 0.06 x 0.05 x 0.16m, 0.06 x 0.05 x 0.12m and 0.06 x 0.05 x 0.09m for the large, medium 

and small size respectively. Top side of each box was covered with a cap made of aluminum 
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b. Power Assist Robot System 

b.i Configuration 

      We constructed a 1DOF (vertical up-down motion) power assist robot system (PARS) for 

lifting objects using a ball screw actuated by an AC servomotor (manufactured by 

Yaskawa, Japan, type: SGML-01BF12). The ball screw assembly and the servomotor were 

coaxially fixed on a metal plate and the plate was vertically attached to a wall. We made 

three more rectangular objects (boxes) by bending aluminum sheets (thickness: 0.0005 m) in 

order to lift them with the PARS and they were called the ‘power assisted objects’ (PAOs). 

The shape, dimensions, material and outlook of a PAO of a particular size were same as that 

of the MLO of that particular size. A PAO, at a time, could be tied to the ball nut (linear 

slider) of the ball screw through a force sensor (foil strain gauge type, NEC Ltd.) and be 

lifted by the human subject. The PAO tied to the force sensor was kept on the soft surface of a 

table before it was lifted. Detailed configuration of the main power assist device along with a 

PAO is illustrated in Fig.5. The experimental setup of the PARS is depicted in Fig.6.  

 
 

Figure.5 Components of the main power assist device. Back view of a PAO (medium size) is 

also shown as an example. Two rectangular metal pieces with holes in the center of each are 

attached to the interior of the left and right sides of the PAO. The holes help the PAO (box) 

be tied to the force sensor through the object holder. 

 

b.ii Dynamics of the PARS Based on Weight Perception 

According to Fig.7, the PAO is to be controlled by the equation of motion derived as Eq. (1).  

.																																																																					 1  
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Figure.6 Experimental setup of the PARS for lifting objects. 
 

Where, 

Load	force	applied	by	the	human 

Actual	mass	of		object	visually	perceived	by		human 

Desired	displacement	of	the	object 

Acceleration	of	gravity 

As an attempt to introduce weight perception in modeling the dynamics of the PARS, we 

hypothesized Eq. (1) as Eq. (2), where   refers to inertial force and    refers to 

gravitational force.   

.																																																																		 2  

In Eq. (2), both  and  stand for mass, where  forms inertial force and forms 

gravitational force. A difference between  and   is considered because of the difference 

between human’s perception and reality regarding the weight of the object lifted with the 

PARS [1]. Usually,   is considered for all psychological experiments [26], but 

we hypothesized that , ≪ , ≪ ,and | | | |  should be 

considered by the human while lifting an object with the PARS. The human errs when lifting 

an object with the PARS because he/she considers that the actual weight and the perceived 

weight (named power-assisted weight, PAW) are equal. The hypothesis means that the human 

errs because the human considers that the two ‘masses’ used in inertia and gravity forces are 

equal to the actual mass of the object (i.e., . In order to realize a difference  
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condition. 

d.ii  Step 2 

In this step, the system shown in Fig.8 was simulated using Matlab/Simulink (solver: ode4, 

Runge-Kutta; type: fixed-step; fundamental sample time: 0.001s) for three sets of values of m1 

and m2 (i.e., m1=1.5, m2=1.5; m1=1, m2=1; m1=0.5, m2=0.5) separately, m1 and m2 were in kg. 

T was set zero (0). Following a demonstration by the experimenter, the subject lifted a PAO 

of a particular size with the PARS only one time for each set of values of m1 and m2.The 

experimenter randomly chose m1 and m2 set and strictly maintained its confidentiality. For 

each m1 and m2 set, the task required the subject to lift the object approximately 0.1 meter, 

maintain the lift for 1-2 seconds and then release the object. 

 

 

Figure.9 Experimental method of lifting a MLO. 

d.iii  Step 3 

The mechanical time constant of the servomotor of the PARS shown in Fig.8 was measured. 

The mechanical time constant was the time required for the servomotor to reach 63.2% of its 

final velocity when a step voltage was applied. T was set zero (0).This time constant was 

named the ‘hardware time constant’ of the system for better understanding in contrast with 

the software time constant, T. The measured hardware time constant was 0.0053s (when 

T=0). Then, the value of T was gradually increased starting from T=0 and a difference of 

0.005s between two adjacent values of T was maintained. At each value of T, the PARS 

shown in Fig.8 was simulated using Matlab/Simulink, a representative subject lifted a PAO 

with the system and subjectively checked the stability (presence or absence of oscillations) of 

the system. The hardware time constant was also measured using a step voltage at each value 

of T. The system for T>0 was found stable (no oscillations) up to T=0.1. Hence, the limit of 
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MPLF stands for magnitude of peak load force, MILF stands for magnitude of initial load 

force, TPLF stands for time corresponding to peak load force and TILF stands for time 

corresponding to initial load force.  

TILFTPLF

MILFMPLF
LFR




                 (8)                                                      

     Then, we calculated the mean LFRs for small, medium and large objects for each mass 

condition for MLOs and PAOs separately. Fig.12 shows the comparison between the load 

force rates for MLOs (step 1) and PAOs (step 2) in similar mass conditions (e.g.,m=1 kg for 

MLO, and m1=1kg, m2=1kg for PAO) for different sizes of objects. The results show that 

load force rates for lifting objects with the PARS are much lower than that for lifting objects 

manually. The results also show that the load force rate decreases with the decrease in visual 

object size and object mass [26]. 

      We conducted analyses of variances, ANOVAs (object size, subject) on load force rates at 

each mass condition for MLOs and PAOs separately. Results show that variations between 

object visual sizes were highly significant. However, variations between subjects were not 

statistically significant. We also conducted ANOVAs (type of lift, subject) on the load force 

rates at each similar mass condition (e.g., m1=1.5,m2=1.5 and m=1.5 kg) for each size object 

separately. The results show that variations between lift types (power assisted vs. manual) 

were highly significant (p<0.01 at each case). We also conducted ANOVAs (mass, subject) 

on the load force rates for each size object for simulated and actual mass separately. The 

results showed highly significant variations between masses (p<0.01 at each case) [26]. 

Fig.13 shows the typical step voltage responses at two distinct values of T for step 3. We 

determined the relationship between the hardware time constant (mechanical time constant) 

and the software time constant (T) and found a linear (approximately) relationship between 

them as shown in Fig.14. 

   For step 4, we determined mean PAWs for each of the four distinct values of T for the 

small, medium and large objects separately as shown in Fig.15. The figure shows that PAW 

decreases with the increase in software time constant. We see in Fig.14 that hardware time 

constant (mechanical time constant) is linearly proportional to software time constant. Hence, 

PAW decreases with the increase in mechanical time constant. The results also show that 

PAW is not affected by visual object size for equal mass. The reason may be that the human 

subject perceives the PAW using haptic senses where object’s visual size cue has no 

influence. However, variations in haptic cues might affect the PAW [26].  
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We conducted ANOVAs (object size, subject) on PAWs at T=0.005 and T=0.035 only 

separately as the individual differences were the highest for these two cases. The results show 

that variations between object sizes were at all not statistically significant (F2,18<1 at both 

values of T). Variations between subjects were also statistically insignificant (F9,18<1 at 

both values of T) [26]. 

  We may explain the probable reason behind the aforementioned relationship between the 

mechanical time constant and PAWs as the following. As we know, according to basic 

physics, mass (weight) is solely dependent upon the inertia of an object. We assume that 

increase in the mechanical time constant increases the inertia of the servomotor rotor and thus 

reduces the load inertia to rotor inertia ratio. Reduction in this ratio results in a lower relative 

contribution of the load inertia to the total inertia of the PARS and the reduced inertia 

contribution of the load under the dynamic touch may cause the perceptual attenuation i.e., the 

feeling of reduced heaviness [23]-[25]. 

  We derived the magnitude of PLF for each trial and calculated their means separately for 

each of the four values of T for the small, medium and large objects as shown in Fig.16. The 

results show that PLFs decrease with the increase in software time constant. The results also 

show that PLFs are proportional to visual object sizes [26].We also calculated the load force 

rate for each trial following Eq. (8) and determined their means as shown in Fig.17. The 

results show that load force rates decrease with the increase in T. The load force rates were 

also proportional to visual object sizes. 

 

Figure.11 Typical load force time trajectories for MLO and PAO (after properly filtered). Left 

graph shows the load force time trajectory when a subject lifted a MLO (large size, m =1 kg). 

Right graph shows the load force time trajectory when the same subject lifted a large size 

PAO with the PARS at m1=1kg, m2=1kg. 
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Figure.12 Mean load force rates with standard deviations for simulated (PAO, step 2) and 

actual (MLO, step1) objects for various mass conditions for different sizes of objects. 

 

 

Figure.13 Step voltage responses for different values of T. The left and right graphs show the 

step voltage responses at T=0 and T=0.095s respectively. The mechanical time constant 

(hardware time constant) is defined as the time required to reach 63.2% of the final velocity. 

 
Figure.14 Linear relationship between software and hardware time constant. 

0

50

100

150

200

250

300

350

Simulated 
(m1=1.5,m2=1.5)

Actual (m=1.5kg) Simulated 
(m1=1,m2=1)

Actual (m=1kg) Simulated 
(m1=0.5,m2=0.5)

Actual (m=0.5kg)

M
ea

n 
lo

ad
 f

or
ce

 r
at

e 
(N

/s
)

Simulated and Actual Mass

Large Medium Small

0 0.1 0.2 0.3 0.4 0.5

0

0.05

0.1

Time (s)

V
el

oc
it
y 

 (
m

/s
)

 

 

0 0.2 0.4 0.6 0.8

0

0.05

0.1

Time (s)

V
el

oc
it
y 

  (
m

/s
)

 

 

0

0.02

0.04

0.06

0.08

0.1

0.12

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

H
ar

dw
ar

e 
ti

m
e 

co
ns

ta
nt

 (s
)

Software time constant,T(s)



S. M. Mizanoor Rahman and Ryojun Ikeura, Optimizing Perceived Heaviness and Motion for Lifting 
Objects with a Power Assist Robot System Considering Change in Time Constant 

473 
 

 
Figure.15 Mean PAWs along with standard deviations for small, medium and large PAOs 

for different values of T. 

 

  We may summarize the findings derived in this experiment and then may draw the 

conclusions. We find that the load force rates decrease with the decrease in object weights 

(Fig.12). We also find that the PAWs decrease with the increase in T (Fig.15). We also see 

that the load force rates decrease with the increase in T (Fig.17).  If we consider these 

together, we can find that the heaviness of objects lifted with the PARS is related to the load 

force rates. It means that the higher mechanical time constant lowers the load force rates and 

the lower load force rates produce the feeling of reduced heaviness of the objects. Hence, the 

mechanical time constant is a cause that affects the perceived heaviness of objects lifted with 

the PARS.  Again, it was found that the PLFs reduce due to the increase in T (Fig.16). We 

think that the reduced PLF is not the cause of the reduced heaviness of an object lifted with 

the PARS; rather it is the effect of the reduced heaviness due to higher mechanical time 

constant. Hence, we may conclude that the higher mechanical time constant lowers the load 

force rates, the lower load force rates produce the feelings of reduced heaviness and the 

reduced heaviness results in the reduced PLFs when lifting objects with the PARS. 

 

V. EXPERIMENT 2:  OPTIMIZATION OF MOTION AND PERCEIVED HEAVINESS 
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We found in experiment 1 that PAW is related to load force rate. The hypothesis of 
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Figure.16 Mean PLFs along with standard deviations for small, medium and large PAOs for 

different values of T. 

 
Figure.17 Relationship between software time constant and load force rates for different sizes 

of objects. 

b. Experiment Procedures 

Experiment 2 was divided into 4 steps based on 4 distinct conditions. We simulated the 

system shown in Fig.8 for the following conditions.  

Condition 1:  m1=0.5, m2=0.5, T=0 

Condition 2:  m1=0.5, m2=0.5, T=0.095  

Condition 3:  m1=6 * e-6t+0.5, m2=0.5, T=0 

Condition 4:  m1=6 * e-6t+0.5, m2=0.5, T=0.095 

In each condition, all the subjects independently lifted three different sizes of PAOs with the 

PARS. The subjects subjectively estimated the PAWs for each trial in each condition by 

comparing the PAWs to the reference weights. The experimenter recorded the load force and 

position data for each trial in each condition.  
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     m1=6 *e-6t+0.5 was determined in our previous research [27], where we found a linear 

relationship between m1 and PLFs and we introduced a novel control strategy based on this 

relationship. The novel control was such that the value of m1 exponentially declined from a 

large value to 0.5 when the subject lifted the PAO and the magnitude of the command 

velocity ( ) exceeded a threshold. As m1 was proportional to PLF, reduction in m1 also 

reduced the PLF proportionally. However, reduction in m1 did not affect the PAWs [27].  

       The reasons/background for choosing the 4 conditions are as the following. The 4 

conditions were selected to compare the system characteristics and human features among 4 

best possible conditions derived in 4 distinct experimental protocols. The comparisons were 

done in terms of perceived weights, load forces and object’s motions. Condition 1 produced 

very high maneuverability, very low load forces and perceived heaviness in our previous 

experiment [22]. Condition 2 produced the lowest perceived weights, load forces and load 

force rates in experiment 1 of this paper. Condition 3 reduced the peak load forces and thus 

improved the system performances by applying a novel control strategy in our previous 

research [27].However, the effects of time constant were not considered. Experiment in 

condition 4 was conducted to reduce the peak load forces by applying the novel control 

strategy as well as to see the combined effects of the novel control and of the time constant. 

VI. RESULTS OF EXPERIMENT 2 

       We determined the mean peak load forces, PAWs and mean load force rates with 

standard deviations for different sizes of objects for different conditions as shown in Fig.18, 

Fig.19 and Fig.20 respectively. Fig.18 and Fig.19 jointly show that the pattern of the PLF 

characteristics for the 4 conditions (Fig.18) does not match with that of the PAWs (Fig.19). 

Hence, it may be concluded that the PAW is not related to the PLF magnitude when lifting 

objects with the PARS. It means that the magnitude of the PLF does not affect the perceived 

weight (heaviness) of the object lifted with the PARS i.e., reduced PLF does not reduce 

perceived weight; rather the reduced heaviness may reduce the PLFs. However, the 

magnitude of the PLF may affect the motion (acceleration) of the object lifted with the 

system that we discussed in section I. We determined the mean peak accelerations based on 

the acceleration time trajectories for each size object in each condition and found as shown 

in Fig.21 that the reduction in the PLFs in four experiment conditions in Fig.18 also reduced 

the peak accelerations as well [27]-[28].The results show that the patterns of PLF (Fig.18) and 

peak acceleration (Fig.21) match with each other. On the other hand, Fig.19 and Fig.20 jointly 

show that the pattern of the load force rates for the four conditions (Fig.20) matches with that 
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of the PAWs (Fig.19). Hence, it may be concluded that the PAW is related to the load force 

rate when lifting objects with the PARS. It means that it is the load force rate that affects the 

perceived weight (heaviness) of object lifted with the PARS. 

    This experiment proves that the effects of magnitude of PLF and its rate on the 

performances and characteristics of the PARS for lifting objects are different. The magnitude 

of PLF affects the motion (acceleration), but the load force rate affects perceived heaviness. 

Hence, the magnitude of PLF is to be optimized to optimize the motion of the PARS and load 

force rate is to be optimized to optimize the feeling of heaviness of object lifted with the 

PARS. As we studied in past, the magnitude of the PLF can be optimized (reduced) by 

applying a novel control strategy (values of m1 in conditions 3 & 4) [27].On the other hand, 

load force rate is related to the mechanical time constant of the robot system as we found in 

experiment 1. Hence, perceived heaviness can be optimized by optimizing the mechanical 

time constant. The results of condition 4 show that the exponential reduction of m1 cancels the 

effect of higher value of T. It indicates that it may be difficult to optimize both the magnitude 

of PLF and its rate simultaneously. It means that simultaneous optimization of motion and 

perceived heaviness may be difficult in practical applications. In that case, modification of 

condition 4 may help achieve simultaneous optimization of motion and perceived heaviness. 

The modification may be done by (i) further optimizing the value of m2, and (ii) using the 

actuator with higher mechanical time constant.  Here, the optimization is proposed to be 

determined subjectively based on human’s feelings [29]. 

 

 

Figure.18 Mean peak load forces with standard deviations for different sizes of objects for 

different conditions. 
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Figure.19 Mean PAWs with standard deviations for different sizes of objects for different 

conditions. 

 

Figure.20 Mean load force rates with standard deviations for different sizes of objects for 

different conditions. 

  

 We also compared the displacement time trajectories between MLOs (experiment 1, step 1, 

m=0.5kg) and PAOs (experiment 2, condition 1) and found that there was a time delay in 

position sensing for the PAOs [20].However, the time delay in position sensing was absent or 

very low for the MLOs. Again, mean peak velocity and peak acceleration for the PAOs were 

lower than that for the MLOs. We assume that the time delay in position sensing in the PARS 

may be another cause of reduced heaviness, which will need to be addressed in near future. 

VII. DISCUSSION 

We kept the servomotor in velocity control mode. Another mode, torque control mode, may 

be tested to further justify the results. The effectiveness and accuracy of the results may be 
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Figure.21 Mean peak accelerations with standard deviations for different sizes of objects for 

different conditions. 

 

increased by replacing the ball screw by a linear or a direct-drive motor. As the results may 

depend on back-drivability, mechanical inertia, compliance, friction and servo motor control 

response delay of the system, these parameters may need to be reflected in the proposed 

dynamic modeling. In Eq. (1), fh is the load force applied by the human. Actually, in this 

system the PARS also provides the force on the object i.e., the actuator force (fa). There may 

have disturbance (s). However, we did not consider disturbances, fa, friction, viscosity etc. in 

Eq. (1) because (i) we considered Eq. (1) as the targeted dynamics of the system, (ii) the 

position control compensates some of these effects, (iii) we wanted to keep the system simple 

for the time being etc. Consideration of all of these may enhance the accuracy and 

effectiveness of the results though the present findings are also reliable and useful. Accuracy 

may be further increased by adding more reference weights, subjects, trials etc.      

The findings do not violate the well-established size-weight illusion concepts because the 

objects of different sizes were lifted independently [30]. Most of the results are based on 

subjective evaluations instead of objective data. However, we argue that the subjective results 

are acceptable because (i) it is difficult to collect objective data in a human-robot interaction 

system, and (ii) this type of subjective results have already been proven reliable in many cases 

[31]-[36].Again, subject’s memory is not transient, rather more stable for estimating 

perceived weight. Research shows that the sensorimotor memory is fully maintained for a 

period of 15 minutes and largely retained for 24 hours, even in presence of misleading visual 

size cues. Hence, the subjects did not forget the perceived weights of the power-assisted 
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object while comparing them with the reference weights, which made the subjective 

estimation reliable [40]. 

Though the control is simple the findings are totally novel. The novelties are: (i) we 

included weight perception in dynamics and control, (ii) we improved the control using a 

human-features-based control algorithm, (iii) we proposed novelty in power-assist 

applications, (iv) we brought novelty in experiment objectives and procedures, (v) we 

analyzed weight perception, motions, forces etc. with novel contexts, (vi) we discovered the 

relationship between time constant and perceived weight, (vii) we demonstrated how to 

control motion and perceived heaviness separately and simultaneously, (viii) we applied 

psychophysical and biomimetic approach to robotic system design etc. It is possible to 

compare the methods and results derived in this paper to that derived in other similar works. 

Niinuma et al. developed a power assisted system to lift objects [15]. Takubo et al. developed 

a PARS for manipulating objects [16]. Doi et al. developed a pneumatic PARS for lifting 

objects [17].Hara proposed a power-assisted cart system to transfer objects[37] etc. Kazerooni 

[38] and Hayashi et al. [39] proposed power assist systems for object manipulation. However, 

their system configurations were exoskeleton type, and hence were not suitable for 

manipulating heavy industrial objects. Again, no research as mentioned above considered 

human’s weight perception, load forces and object’s motions to develop and modify the 

control of the PARS. This is why the aforementioned PARSs could not produce satisfactory 

interactions between human users and the robots. The novel relationship between mechanical 

time constant and system characteristics such as perceived heaviness, motions etc. was never 

addressed by any researcher. Hence, the findings of this paper are novel and significant to 

optimize the human-robot interactions for power assist robots for manipulating objects. 

In (2), we hypothesized that m1≠m2≠m, and m1<<m, m2<<m. However, in section d.ii Step 

2 we used m1=1.5, m2=1.5; m1=1, m2=1; m1=0.5, m2=0.5. Values of m1 and m2 were fixed at 

m1=0.5, m2=0.5 in steps 3 & 4. In fact, we used the same values for m1 and m2 in the 

experiments to compare power-assisted manipulation to manual manipulation at similar 

conditions. Again, m1=0.5, m2=0.5 were derived as the best values for the system in [22]. 

However, m1 could be completely different from m2 for the best values if more values of m1 

and m2 were used in the simulation [22].Hence, using the same value of m1 and m2 in some 

experiment conditions is not against our hypothesis, and this is different from using only one 

m because the control programming is different for these two cases. 
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The values of m2 used in this paper do not mean the actual masses of PAOs to be 

manipulated in industries; rather they mean the values that should be used to develop the 

control for getting satisfactory system characteristics and performances. We could not use a 

real robotic system and heavy objects, but we used a simulated system, low simulated and 

actual weights (between 0.5kg and 1.5kg), and small object sizes for the following reasons: (i) 

we, at this stage, want to reduce the costs of developing the real system because a real system 

suitable for manipulating heavy objects is expensive [16]-[17], (ii) we want to compare the 

findings of this paper to that of other psychological experiment results available in literatures, 

and  for this reason our object sizes and weights should be small because most of the 

psychological tests use low weights and small objects (such comparison with equal basis may  

produce important information that may help develop the real system in near future adjusting 

with human perceptions such as naturalness, best feelings etc.) [25]-[26],[30],[40], (iii) we 

want to use the preliminary findings of this paper (e.g., design ideas, assumptions, 

hypotheses, dynamic modeling, control programming, system characteristics reflecting 

human-robot interactions such as relationship between time constant and perceived weights, 

force and motion characteristics etc.) to develop a real robot capable of manipulating heavy 

objects in near future [11], [18], [20]-[22],[27]-[29]. We believe that the findings we have 

derived will work (but magnitudes may change) for heavy and large size objects. It may be 

true that the findings are incomplete until we validate those using heavy objects and a real 

robot. But, it is also true that the findings are novel, important, useful and thus have potential 

for developing real robots for manipulating heavy objects.  

There was no possibility of object slip and the subjects did not experience any slip of the 

objects when doing experiments in the present setup. We think that slip prevention is related 

to the configuration of the real robot systems. We will configure the real robot system in such 

a way that the configuration will prevent slipping the objects. We will improve the object 

grasping devices and its surface conditions (friction) for the real system so that slip does not 

occur. However, operator’s training and awareness are also important to prevent slip. 

We put m2=0.5kg in the experiment and the human who lifts the object with the system 

feels 40% of m2 value, i.e. 0.2kg [27]. It means that the human will feel only 0.2kg even when 

he will lift a very heavy object (such as 20kg) with the real system in industry because the 

load will be carried by the robot system (not by the human) and human’s cooperation 

(grasping and applying forces) will  control the motions (displacement, velocity, acceleration) 

of the lifted object. Hence, it will be possible for the human to lift heavy objects with only one 

hand and the whole body will not need to be used. This is the benefit of the power assist 
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system that it reduces human’s burden and makes the works easy. Use of one hand or two 

hands, lift posture and lift start position definitely affect the results, and the results are slightly 

different for these variations. However, the differences are not very high as we found in 

another research [27]. We suggest that appropriate grasping method (one hand or two hands), 

lift posture and lift start position should be decided and adjusted for particular tasks 

considering the task requirements. 

        Seki et al. [19] introduced some basic requirements of a general PARS. However, we 

think that the required conditions for an industrial PARS to manipulate heavy objects in 

industries may be identified with a broader perspective as the following: (i) perceived 

heaviness should be optimum, (ii) manipulative force (load force) should be slightly larger 

than the perceived heaviness, (iii) motions, maneuverability, stability, safety, naturalness, ease 

of use, comfort (absence of fatigue), situational awareness of user, system efficiency, 

manipulating speed etc. should be optimum, (iv) the PARS should be enough flexible to 

adjust with objects of different shapes, sizes, weights etc., (v) objects can be manipulated with 

the system in various DOFs such as vertical, horizontal and rotational, (vi) the PARS should 

produce satisfactory performances even in worst-cases, uncertain, rapid changing situations, 

disturbances etc., (vii) the PARS should satisfy operator’s biomechanical requirements etc. It 

is assumed that the optimum heaviness and motion as derived in this paper will play the 

pivotal role to satisfy these requirements. The results of this paper along with our previous 

works related to the development of power assist devices and the investigations on human 

characteristics as well as our future extension works are to satisfy all of the design 

requirements for the proposed industrial robotic system [27],[32]. 

VIII. CONCLUSIONS AND FUTURE WORKS 

We developed a 1 DOF PARS for manipulating objects. We analyzed weight perception, load 

force and its rate, object motion etc. for lifting objects manually and with power-assist and 

successfully determined a relationship between mechanical time constant and perceived 

heaviness. Relationships among perceived heaviness, load force and its rate, and motion were 

determined. It was proved that motion is related to load force magnitude, and perceived 

heaviness is related to load force rate. Therefore, techniques to optimize motion and 

perceived heaviness independently and simultaneously were demonstrated. This paper thus 

brings novelty in the applications of power assist robots, applies bionic and psychophysical 

approaches to power assist robot design and includes human features in robot dynamics and 
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control to improve system performances and human-robot interactions in terms of 

maneuverability (perceived heaviness), motion, safety etc. 

The results were derived following bionic approaches as the knowledge on human 

characteristics was used to suggest improving the robot performances. Psychophysics was 

used that determined relationships between physical stimuli and sensory responses. All the 

hypotheses adopted were addressed properly. The results are novel in fields of robotics and 

can contribute to develop human-friendly power assist robots for manipulating heavy objects 

in industries that would optimize interactions between human users and robots.  

We will verify and validate the results using heavy objects and real robots in near future. 

Experiments in torque control mode of the servomotor as well as with a direct-drive motor 

will be conducted to verify the results. The system will be upgraded to a real multi-DOF 

system and the results will be investigated for other DOFs. The results will be theoretically 

analyzed and mathematical reasoning behind each empirical finding will be searched. 
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