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Abstract- Strontium titanate (SrTiO3) nanopowder has been synthesized through a sol-gel-

hydrothermal method. The X-ray diffraction studies of SrTiO3 nanopowder have shown that the as-

prepared powder was single phase, crystalline, and has a cubic perovskite structure (ABO3) with a 

lattice constant a = 3.903 Å. The particle size calculated from FWHM was ∼22 nm. SrTiO3 

nanopowder was examined using thermo gravimetric analysis; differential thermal analysis and UV-

visible absorption spectroscopy. The transmission electron microscopic investigations have shown that 

the particle size of the as-prepared powder has a mean size of 34 nm. Then highly sensitive and 

selective sensors to H2S based on glass substrate were fabricated successfully by screen-printing 
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technique. Sensitivity, selectivity, response time, and recovery time of the sensors were systematically 

investigated as a function of operating temperature, using H2S, CO, CO2, H2, Cl2, LPG, C2H5OH, O2, 

NH3 and NO2 as test gases. The sensitivity was found to lie below and around the ppm level for H2S gas 

at 150
 o
C.  

 

Index terms: SrTiO3, sol-gel-hydrothermal, nanocrystalline, thick film, gas response, H2S gas sensor. 

 

 

I. INTRODUCTION 

 

Nanostructured materials have been generating tremendous interests in the past years due to their 

fundamental significance for addressing some basic issues in fundamental physics, as well as 

their potential applications as advanced materials with collective properties [1]. Perovskite-type 

oxides are some of the most fascinating materials in condensed-matter research. Strontium 

titanate, SrTiO3 (ST), is arguably the prototypical member of this structure family, not only 

because it can be made to exhibit a diverse range of unusual properties itself. Moreover, STO is 

an important n-type semiconductor with band gap of about 3.2 eV [2], and it has been widely 

studied not only because of its variety of outstanding physical properties (stability, wavelength 

response, and current–voltage) but also for its practical applications, such as their high static 

dielectric constant and good insulation [3,4], their use in grain boundary barrier-layer capacitors 

[5], resistive oxygen gas sensors [6,7], solar cells [8], solid oxide electronic device [9], at large 

scale, as substrate at the time of growth of thin films perovskite compounds [10], and promising 

candidate for efficient photocatalysts [11] and photoelectrodes [12,13]. 

It is well known that the properties of nanoparticles depend not only of the synthesis method and 

chemical composition but also on their structure, shape, and size [14-15]. Therefore, the ability to 

tune the size and shape of ST particles is significant for fundamental studies as well as for the 

preparation of ceramics and composite materials with tailored properties. There were many 

synthesis methods applied to prepare pure and doped ST, including solid-state reaction [16], sol-

gel method [17, 18], micro-emulsion method [19], hydrothermal synthesis [20–23], and the 

polymeric precursor method [24–26]. Recently, controlled homogeneity of the precursor gel in 

the synthesis of ST nanoparticles by an epoxide- assisted sol-gel route was reported by Cui et al. 

[27].  
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Among these various synthetic methods, hydrothermal or chemical reaction methods are of great 

interest because they are safe and environmentally friendly synthesis performed at moderate 

temperatures (around 200
o
C) and they are effective methods for creating novel architectures or 

hierarchical structures based on nanocrystals. [28] 

The development of gas sensors has received considerable attention in recent years, especially in 

the monitoring of environmental pollution. It is well known that performance of gas sensors are 

regulated by their sensitivity, selectivity, response/recovery speed, stability, and reproducibility 

[29–31]. 

The gas sensing is a surface phenomenon of gas-solid interaction, where the conductivity of 

semiconducting oxides can be altered by adsorption of gases from ambient. It is well known that 

depending upon the morphology and operating temperatures; the oxide surface hold various 

oxygen species, such as O
-
, O

2-
, and O2

-
. Their number and distribution also plays an important 

role in the gas sensing characteristics. The literature shows that the metal oxide nanoparticles 

enhance the sensitivity of a gas sensing material, while the selectivity is achieved by doping on 

surface or in the volume. However, recently Korotcenkov [32] suggested that the shape control of 

the nanocrystallites can provide energetically different adsorption sites for the test gases on 

different crystal facets. Thus existence of large surface to volume ratio in the typical 

nanostructured material facilitates better response towards specific gases. Moreover, morphology 

and particle size of nanomaterials depend upon their method of preparation and sintering 

temperatures, and hence one can observe different responses towards gases for the similar 

composition. 

Hydrogen sulfide (H2S) is a corrosive, colorless, toxic, and flammable gas, occurring naturally in 

crude petroleum, natural gas, volcanic gases, and hot springs with smell of rotten eggs. It can also 

be produced from industrial activities that include food processing, coking ovens, craft paper 

mills, tanneries, and petroleum refineries [33]. 

To date, various semiconductor gas sensors have been employed to detect trace concentrations of 

H2S, including those that use SnO2, CuO-doped SnO2, and In2O3 [34-36]. It should be noted that 

the H2S sensors found in the literature often show slow or irreversible recovery reactions. This 

hampers the application of H2S sensors to commercial enterprises. From the viewpoint of 

applications, a small size and low power consumption are other important issues, which can be 
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best accomplished when the micromachining technology is applied to the fabrication of a micro-

heater and microelectrodes. 

In this work we report a route to directly synthesize cubic highly nanocrystalline SrTiO3 powder 

using TiCl4 and SrCl2 as starting materials by the sol-gel hydrothermal method in an oxygen 

atmosphere. The electrical and gas-sensing properties of the films prepared are reported. 

 

II. EXPERIMENTAL 

 

a. Preparation of nanocrystalline  SrTiO3 

In a typical procedure, TiCl4 was diluted with 2 M HCl to form a yellowish solution, and 

Sr(OH)2.8H2O was dissolved in deionized water. The two solutions were mixed to form 

strontium titanium solution. With stirring and N2 bubbling, 6 M NaOH was added to the 

strontium titanium solution, forming a white homogeneous colloidal strontium titanium slurry. 

The mixed solution was transferred into a 500 ml Teflon-lined stainless steel reactor, sealed, and 

then heated at 180 
o
C and kept for 12–48 h under an oxygen partial pressure of 60 psi. At the end 

of the reaction the autoclave was allowed to cool to room temperature. The as-synthesized white 

powder that attached to the bottom and inner wall of the Teflon container was collected, 

centrifuged, washed with distilled water and ethanol to remove the remaining ions, and dried at 

60 
o
C for 6 h under reduced pressure. 

b. Sensor Fabrication 

The screen-printing technique was used to manufacture the sensors. In this process, a thixotopic 

paste of as-synthesized white powder is pressed through a screen on to the substrate using a 

rubber squeeze.The thixotropic paste of sensor material suitable for screen-printing was 

formulated by adding 75 wt% of the fine powder of ST to 25 wt% of the organic binder (solution 

of ethyl cellulose in a mixture of organic solvents such as butyl cellulose, butyl carbitol acetate 

and terpineol etc.) The binder was used to provide the necessary viscosity for the screen-printing 

process. After mixing the powder with the organic binder, the paste was milled in a planetary ball 

mill in order to homogenize the mixture. This thixotropic paste then used for screen-printing of 

thick films on glass substrate in the desired pattern [37, 38]. 

The thickness of films was measured by using weight difference method. The thicknesses of the 

films were observed in the range from 65-75 µm. The reproducibility in the thickness of the films 
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was possible by maintaining proper rheology and thixotropy of the paste. The films were dried at 

80-100 
o
C for 0.5 h. Sintering of the dried films was carried out by heating at temperature 550 

o
C 

in the furnace for 30 min. 

c. Characterization 

The obtained powders were characterized by X-ray powder diffraction (XRD) (Bruker D8) with 

Cu-Kα radiation (  = 1.5406 Å) in the 2  range from 20
o
 to 80

o
 with 0.02

o
 min

−1
.  TG-DTA 

analyses were carried out with a Netzsch-409 STA apparatus with a heating rate of 20
o
C min

−1
 

under flowing air. Microstructural characterization was performed by scanning electron 

microscopy (SEM, JEOL 2300) and transmission electron microscopy (Philips EM 200 make) 

with selected area electron diffraction (SAED). The samples for transmission electron 

microscope (TEM) were prepared by ultrasonically dispersing the powder in methanol and 

allowing a drop of this to dry on a carbon-coated copper grid. A UV–visible absorption 

measurement was performed to analyze the optical properties of the prepared sample. The 

dispersions of the nanoparticles were prepared in deionized water for the UV–visible absorption 

measurements. 

 

III. RESULT AND DISCUSSION 

a. XRD analysis 

The typical room temperature XRD pattern of the as-synthesized white powder is shown in 

Figure 1 All the peaks are indexed for cubic SrTiO3 single phase material. The lattice constant 

calculated from the XRD data is 3.903Å that agrees with the reported XRD data in JCPDS file 

(JCPDS 35-0734) for SrTiO3. No secondary phase was observed in the XRD patterns in the as-

repared powder, thereby indicating that SrTiO3 phase formation was complete during the process 

itself.  In contrast, all the previous wet chemical methods including combustion synthesis 

produced a single phase material only after calcination at temperature ≥1000 
o
C. 
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Figure 1.  XRD patterns of as-prepared SrTiO3 nanopowder. 

b. Thermal analysis 

The thermal characterization of the nanoparticles of SrTiO3 synthesized through the sol-gel-

hydrothermal process was carried out using differential thermal analysis and thermo gravimetric 

analysis up to 1200
o
C at heating rate of 20

o
C/min in nitrogen atmosphere. Figure 2 shows the 

DTA and TGA curves of the as-prepared powders of SrTiO3. No notable changes were observed 

in the TGA as well as in DTA curves of the obtained product. The total weight loss for a 

temperature range of 30-1200
o
C in the TGA curve is < 3% and this weight loss can be due to the 

adsorbed moisture present in the sample. 

 

Figure 2.  TGA–DTA curves of as-prepared SrTiO3 nanopowder. 
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c. Microstructural analysis 

Figure 3(a) and (b) show the TEM micrograph of the synthesized product and selected area 

electron diffraction (SAED) pattern. The particles were submicron-sized agglomerates consisting 

of nanocrystallites. The TEM showed well faceted particles with sharp boundaries, thereby 

indicating that no amorphous secondary phases are segregated at the grain boundaries. In 

agreement with the XRD results, all the rings in the SAED pattern were indexed for cubic 

perovskite structure. Table 1 compares the lattice spacing (d values) calculated from XRD and 

SAED patterns. A deviation of 3% was observed in the d-values, which most likely arise from 

the difference in wavelengths of X-ray and electron beam used for recording the diffraction 

pattern. The average particle size calculated from a number of TEM images was 34 nm with a 

standard deviation of 14 nm. It is worth noting here that by using electrochemical impedance 

spectroscopy Balaya et al [39] showed that SrTiO3 particles up to a mean diameter of 80 nm 

behaves as electrically mesoscopic. SrTiO3 particles synthesized in the present work also fall 

within this size regime. 

     

(a)   
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(b) 

Figure 3.  (a) TEM, and (b) SAED pattern of the SrTiO3 nanopowder. 

 

Table 1: Lattice spacing for different crystal planes as measured from XRD and SAED pattern 

 

h k l dXRD (Å) dED(Å) 

1 1 0  2.767 2.837 

1 1 1  2.257 2.316 

2 0 0  1.955 2.008 

2 1 1  1.595 1.635 

2 2 0  1.381 1.422 

3 1 0  1.232 1.242 

 

d. UV– visible absorption spectra of SrTiO3 

Figure 4 shows the UV–visible absorption spectrum of the as-prepared SrTiO3 nanopowder. As 

can be seen, this product displays a wide absorption peak centered at around 343 nm (3.4 eV), 

which is slightly blue-shifted compared with the band gap of bulk SrTiO3 [40]. Besides, there is 

an absorption tail at the lower energy side, which may be due to the presence of surface states and 

defect levels in the nanocrystalline product [41, 42] 
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Figure 4.  UV– vis absorption spectra of SrTiO3. 

e. Electrical properties 

i. I–V Characteristics 

Fig. 5 depicts the conductivity of pure ST at room temperature. The symmetrical nature of the I–

V characteristics for particular samples shows that the contacts are Ohmic in nature 

 

 

Figure 5.  I–V characteristics plot of the Nano ST thick film. 
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ii. Electrical conductivity 

 

The semiconducting nature of ST is observed from the measurements of conductivity with 

operating temperature. The semiconductivity in ST must be due to large oxygen deficiency in it. 

The material would then adsorb the oxygen species at higher temperatures (O2
−
→ 2O

−
→ O

2−
). 

It is clear from Fig. 6 that the conductivity of pure ST film increase with an increase in operating 

temperature in ambient, indicating a negative temperature coefficient of resistance. This behavior 

confirmed the semiconducting nature of ST.  

 

Figure 6.  Variation of conductivity with operating temperature. 

f. Gas sensing properties of ST thick films 

i. Gas response with temperature 

Gas response of a sensor was defined as the ratio of the change in conductance of a sample on 

exposure to the test gas to the conductance in air. 

                        
Gas Response  

Gg Ga G

Ga Ga
                                                     (1) 

Where Gg & Ga are conductance of a sample in the presence and absence of a test gas 

respectively & ∆G is the change in conductance.  
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It has been firstly investigated that the optimal operating temperatures of the sensor, nano SrTiO3 

thick film, to different testing gases. Figure 7 shows the gas response plots of the SrTiO3 sensor 

towards 80 ppm H2S and 200 ppm of other different testing gases like C2H5OH, ammonia (NH3), 

CO2, CO, Cl2, LPG, H2, NO2, O2 at different operating temperature. The response of SrTiO3 

sensor towards H2S increases rapidly and reaches its maximum at the operating temperature of 

150 
o
C, and then decreases with further increasing the temperature. The same behavior is 

observed in the case of other testing gases, and their maximum responses appear at different 

temperature. Among the testing gases, the SrTiO3 sensor shows the highest response towards 

H2S. The magnitude of the response descends in the order of H2S, C2H5OH, and NH3, which 

seems to be correlated with the interaction strength between the testing gas and the sensing layer 

[43]. The response of the SrTiO3 sensor to H2S reaches the maximum value of 543 at 150 
o
C, 

which is about 5.43 and 20.74 times higher than the responses of C2H5OH, and NH3 achieved at 

the 350 
o
C, respectively. This operating temperature of 150 

o
C could be useful for an improved 

selectivity of gas sensor to H2S. 

 

 

Figure 7.  Variation of gas response of ST thick film with operating temperature. 

 

ii. Selectivity of ST thick film 
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The ability of a sensor to respond to a certain gas in presence of other gases is known as 

selectivity. A good sensor will discern a particular signal by allowing adsorption of the desired 

gas while remaining insensitive to others. 

 

Figure 8.  Selectivity of ST thick film. 

Figure 8 depicts the selectivity of nano SrTiO3 thick films to 80 ppm of H2S gas against various 

gases (200 ppm) at 150 
o
C. It is clear from figure that, nano SrTiO3 thick films shows not only 

enhanced response towards H2S but also very high selectivity. 

 

iii. Variation of gas response with H2S gas concentration 

The dependence of gas response of ST thick films with the H2S concentration at an operating 

temperature of 150
o
C is shown in Figure 9 It is observed that the Gas response increases linearly 

as the H2S concentration increases from 10–80 ppm and then decreases with further increase in 

the H2S concentration. The linear relationship between the Gas response and the H2S 

concentration at low concentrations may be attributed to the availability of sufficient number of 

sensing sites on the film to act upon the H2S. The low gas concentration implies a lower surface 

coverage of gas molecules, resulting into lower surface reaction between the surface adsorbed 

oxygen species and the gas molecules. The increase in the gas concentration increases the surface 

reaction due to a large surface coverage. Further increase in the surface reaction will be gradual 

when saturation of the surface coverage of gas molecules is reached. Thus, the maximum 

sensitivity was obtained at an operating temperature of 150
o
C for the exposure of 80 ppm of H2S. 
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The SrTiO3 is able to detect up to 10 ppm for H2S with reasonable sensitivity at an operating 

temperature of 150 
o
C. The linearity of the sensitivity in the low H2S concentration range (10–80 

ppm) suggests that the SrTiO3 can be reliably used to monitor the concentration of H2S over this 

range. 

 

Figure 9.  Variation of gas response of ST thick film with H2S gas concentration. 

 

iv. Gas sensing mechanism 

Concerning the gas sensing mechanism of resistance-type semiconductor oxide materials, the 

sensing mechanism and change in electrical transport properties are usually involved with the 

adsorption and desorption process of oxygen molecules on the surface of materials [44–51]. 

When SrTiO3 sensors are exposed to air, the oxygen molecules (O2) of circumstance atmosphere 

can  be adsorbed on the surface of the SrTiO3 film to form adsorbed oxide ions (O2
−
, O

−
 or O

2−
) 

via capturing electrons from the conduction band, which decreases the concentration of  electrons 

in the conduction band and results in a higher resistance. When H2S is introduced at the moderate 

temperature, the surface of SrTiO3 film is exposed to the traces of the reductive gas. The 

interaction would occur between these adsorbed oxygen species and the reductive H2S [50], 

which reduces the concentration of oxygen ions, releases free electrons to the film surface and 

thus increases the electron concentration (Eq. (2)), eventually increases the conductivity of the 

SrTiO3 sensor. The reaction kinetics may be explained by the following reactions: 
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                                                                  (2). 

 

                                                                           (3). 

   

The presence of chemically adsorbed oxygen could cause electron depletion in the film surface 

and building up of Schottky surface barrier; consequently, the electrical conductance of film 

decreased to a minimum. The SrTiO3 thick film interacts with oxygen by transferring the electron 

from the conduction band to adsorbed oxygen atoms. The response to H2S can be explained as a 

reaction of gas with the O2(ads)
−
.  

                                     

                                    (4). 

 

Actually, the theory for sensing mechanism of such sensors involves the adsorption and 

desorption processes, which occur at the surface of the sensing materials [46]. Therefore, the 

surface accessibility and high surface area are crucial to maintaining the high sensing properties 

of nanomaterial [49]. Thus the SrTiO3 thick film sensor shows large surface accessibility, which 

may lead to higher sensing performance. 

More gas would be adsorbed by the film surface; consequently, the gas response was enhanced. 

Increase in operating temperature causes oxidation of large number of H2S molecules, thus 

producing very large number of electrons. Therefore, conductivity increases to a large extent. 

This is the reason why the gas sensitivity increases with operating temperature. However, the 

sensitivity decreases at higher operating temperature, as the oxygen adsorbates are desorbed from 

the surface of the sensor (52). Also, at higher temperature, the carrier concentration increases due 

to intrinsic thermal excitation and the Debye length decreases. This may be one of the reasons for 

decreased gas sensitivity at higher temperature (53). 

 

VI. CONCLUSIONS 

 

SrTiO3 nanomaterial was successively synthesized using a sol-gel-hydrothermal method and its 

gas sensing performance was tested. The following conclusions were drawn from the present 

investigation: 
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i. The X-ray diffraction studies of the nano powder of SrTiO3 synthesized through this sol-

gel-hydrothermal route have shown that the as-prepared powder was single phase, 

crystalline, and has a cubic perovskite structure (ABO3) with a lattice constant a = 3.903 

Å.  

ii. The particle size calculated from FWHM is ∼22 nm. The phase purity of SrTiO3 

nanopowders has been confirmed using differential thermal analysis, thermo gravimetric 

analysis, and UV-visible abortion spectroscopy.  

iii. The transmission electron microscopic investigation has shown that the particle size of the 

as-prepared powder has a mean particle size of 34 nm with standard deviation 14 nm. 

iv. The band gap values obtained from the absorption spectra was found to be 3·4 eV. 

v. The maximum sensitivity was obtained at an operating temperature of 150
o
C for the 

exposure of 80 ppm of H2S. 

vi. The results of the SrTiO3 films sensing studies reveal that the as prepared material and 

films are a suitable for the fabrication of the H2S gas sensor. 
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