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Abstract- Optical remote sensing tools are being used in a number of agricultural applications by 

recording an object's transmission of electromagnetic energy from reflecting and radiating 

surfaces. This unique spectral information is used to characterize the features of green vegetation. 

With the development of proximal sensing tools, vegetation or crop health can be determined and 

monitored in real-time. This information provides an opportunity for precise management of input 

resources to optimise plant growth and reduce the potential for an adverse environmental effect.  

Pasture management is of major importance in New Zealand.  This paper describes the operation 

of multispectral (Crop Circle
™

 and CROPSCAN™) and hyper spectral sensors (ASD Field Spec
® 

Pro) to explore the pasture quality and quantity. The ability to manage these factors is an important 

component in grazing, livestock management, and a key driver of animal performance and 

productivity. The results indicate that these sensors have the potential to assess vegetation 

characteristics. 
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I. INTRODUCTION 

 

During the last twenty years New Zealand has seen a significant expansion of the dairy 

industry both in terms of the area being farmed under dairying and the productivity of the 

industry. The dairy industry contributes about 7 per cent to New Zealand’s GDP, to the  New 

Zealand economy, it has secured it as a world leader in dairy exports [1]. In order to improve 

the current system of dairy farming, pasture, grazing and livestock management need to be 

continually improved. Not only must more pasture to be grown economically but the  quality 

of the pasture which directly influences  milk production and livestock performance [2] must 

also be improved. Hence, monitoring the quality of pasture is an important operation to 

improve efficiency. Traditional laboratory techniques are sometimes used to estimate the 

pasture quality, but these procedures are expensive, laborious and time consuming, and the 

results of measurement often come back to the farmers after the pasture has been grazed, 

hence significantly reducing any benefit to the farmer in terms of feed management and 

budgeting for his animals. Therefore, rapid and non-destructive tools, and techniques are 

required to assess the pasture quality in the field giving near instant results. 

Since the advent of remote sensing technologies many researchers have studied the potential 

of remote sensing devices to monitor green vegetation health [3], [4] and [5] . They 

developed robust and significant relationships between sensor derived measurements and 

ground truth vegetation measurements such as biophysical and biochemical variables. So far, 

in remote sensing, these optical sensing tools tend to operate from suborbital aircraft and 

satellites, and are used for describing green vegetation features. Although there are 

advantages of speed from surveying using space and airborne sensors, it involves extremely 

expensive equipment, complex processing, and suffers from frequent cloud cover, meaning 

no images can be collected. To overcome these problems ground or field based optical 

sensing tools (or proximal sensors) are emerging and are commercially available. These have 

been used to evaluate vegetation and field crops characteristics. In addition, proximal sensors 

provide real-time information for decision making. 
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Reflectance 

This paper presents the description of optical (multispectral and hyperspectral) sensors and 

the potential to estimate pasture quality, and outlines methods for developing robust 

relationships between spectral reflectance and pasture quality variables.  

 

II. THEORETICAL BACKGROUND 

 

The principle of optical remote sensing originated from spectroscopy, which is the study of 

the interaction between electromagnetic radiation and matter. In contrast to spectroscopy, 

remote sensing focuses on reflectance rather than absorbance.  

According to the Beer-Lambert law  [6], in Figure 1, when energy hits the object (leaf) it can 

be absorbed, transmitted and reflected. The fraction of energy reflected at a particular 

wavelength varies for different features. Additionally, the reflectance of features varies at 

different wavelengths. Thus, two features that are indistinguishable in one spectral range may 

be very different in another portion of the spectrum. Therefore, this essential property of 

matter allows different features to be identified and separated by their spectral signatures. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Interaction between energy source, leaf structure and spectral sensor [7]. 
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Table 1. Absorption features related to common quality components [9]. 

 

The spectral reflectance defined as the ratio of the reflected radiation to the total radiation 

falling upon the surface and the mathematically definition [8]: 

 

 

 

Where ρλ- spectral reflectance of λ wavelength; Io -energy of wavelength reflected from the 

object; It - energy of wavelength incident upon the object. 

  

Spectral response of vegetation is primarily influenced by physical structure of the plants and 

canopy. Figure 1 indicates the interaction between cells structure of leaf and electromagnetic 

energy [1]. Most of the visible radiant flux of the electromagnetic energy absorbed by 

palisade cells, which contain chlorophyll pigments and green light, is reflected back, which is 

why green leaves appear green in colour (Figure 1). However, the NIR radiation is not 

affected by the palisade cells and penetrates to the spongy mesophyll.  

The typical reflectance of green vegetation shown in Figure 2; healthy vegetation has high 

absorption in visible region and low absorption in infrared region while the stressed 

vegetation has lower absorption in visible region and higher absorption in infrared region, 

thus, these unique spectral signatures can be used to determine vegetation health. 

 Biochemical Wavelength (nm) 

1 Chlorophyll and Nitrogen 350-750  (Visible region) 

2 Protein 910, 1020, 1730, 1980, 2130, 2240, 2300 

3 Lignin 1120, 1420, 1690 

4 Cellulose 1490, 1736, 1780, 1820, 1924, 2100, 2270, 2340, 2350 

5 Starch 990, 1450, 1530, 1580, 1900, 2000, 2100, 2250, 2340 

6 Sugar 1450, 1490, 1940, 1960, 2080, 2270 
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The unique spectral signatures of green vegetation from visible region of the electromagnetic 

spectrum allow quantifying biomass, dry matter, chlorophyll, nitrogen and vegetative fraction 

etc. While infrared radiation of the electromagnetic spectrum is also responsible for 

determining the other biochemical concentrations. These infrared (near and shortwave 

infrared) signatures originates from the energy transition of the molecular vibration (rotation, 

bending and stretching) of the C-H, N-H, O-H, C-N and C-C bonds, which are the primary 

constituents of the organic compounds of plant tissues. Therefore, the reflectance from the 

infrared region is a function of chemical composition. For instance, Table 1 describes that 

each quality component has its own spectral signature as absorption peaks at specific 

wavelength [9]. 

 

 

 

 

Figure 2. Reflectance of green vegetation across the electromagnetic spectrum [1]. 

 

III. DESCRIPTION OF THE SENSORS 

 

There are a wide range of optical sensors available, based on their spectral properties they 

classified as multispectral and hyperspectral spectral sensors.  
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Figure 3. The sensors being used in a field experiment 

CROPSCAN™ ASD Field Spec
®

 Pro 

Crop Circle™ 

R.R. Pullanagari, I.Yule, W. King, D. Dalley and R. Dynes, The Use of Optical Sensors to Estimate Pasture Quality



 

A multispectral sensor (Crop Circle
™ 

 and CROPSCAN
™

) has wide spectral resolution with a 

limited number of wavebands used to describe a limited number of features such as nitrogen 

[10] and biomass variation, and leaf area index [11]  while hyperspectral sensors such as the 

ASD Field Spec
® 

Pro offer fine spectral resolution with numerous and contiguous wavebands 

across the electromagnetic spectrum which provides detailed information about the object 

such as detailed biophysical and biochemical information. The importance of high spectral 

resolution sensor in quantifying the various features with high precision and accuracy is 

highlighted in [12]. Based on the source of light, these sensors are classified into active and 

passive sensors. Active sensors such as the  Crop Circle
™ 

ACS-470 from Holland Scientific 

Inc., uses its own light source and can be used to collect data within a range of lighting 

conditions or even darkness making it much more usable to growers. In contrast, passive 

sensors, for example: CROPSCAN
™

 (Rochester, Minnesota), completely depends upon 

natural light (sun radiation) for radiant flux and used to collect information on the level of 

that varying natural light. 

Table 2 describes the technical specifications of the multispectral and hyper spectral sensors 

which were used in this study. Investigating the spectral resolution and spectral range of the 

optical sensors was a critical component for the study because of each feature can be 

characterised by specific wavebands (Table 1) with optimum resolution.  

 

Table 2. Sensor Specifications for example hyperspectral and multispectral sensors 

  

 

S.No Specification Hyper Spectral Sensor Multi Spectral Sensor 

1 Name ASD Field Spec
® 

Pro CROPSCAN™ Crop Circle™ 

2 Sensor type Passive Passive Active 

3 Spectral range 350-2500 440-1680 450-880 

4 Spectral Bands 2150 16 3 

5 Spectral Resolution 1-2 nm 10 nm 10-20 

6 Detectors 
Silicon (300-1000nm) 

TE cooled, InGaAs (1000-2500 nm) 

Silicon and 

Germanium 
Silicon 

7 Foot print 20 cm 60 x 60 cm 5×60 cm 

8 FOV 8°,18°,25° 28° 32°/6° 

9 Distance from target 1 m 1.2 m 0.6-1.2 m 
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IV. COMPUTATION 

 

Several computational and statistical approaches have been developed to build a robust 

relation between spectral reflectance data and variables of interest. Of which, univariate 

regression and multivariate regression approaches have been widely used [13].  

Due to the ease of establishing and interpretation of univaraite regression models, these have 

commonly been used in predicting the required variables. For developing univariate 

regression, reflectance data uses either individual wavebands or a combination of bands: 

subsequently calculated as vegetative indices. Usually, these vegetative indices use a 

combination of visible and near infrared reflectance data to reflect the reflectance values as a 

single value. Tremendous efforts have been done in order to improve sensitivity of the 

vegetation indices to the required properties and as a result of this, numerous vegetation 

indices are being reported in the literature [14]. Among that natural difference vegetative 

index (NDVI) is best-known indice and has been widely used in remote sensing, it is 

calculated as [15]: 

 

 

To develop a model, reflectance values of individual bands or vegetative indices are 

regressed against the reference values, standard measured values. These spectrally derived 

univariate models may describe limited information such as, green biomass, dry matter, leaf 

area index and nitrogen concentration etc. and differ with species and site.  

In order to improve the accuracy and stability of prediction models, and to define more finite 

features, multivariate regression approaches have been developed which utilise a higher 

number of spectral wavebands. The prominent multivariate regression techniques are; step 

wise regression, principle component analysis (PCA) [16] and partial least square regression 

(PLSR) [17], all previously used in remote sensing [13]. 

The analysis of hyperspectral data usually involves manipulation steps followed by statistical 

treatment [17], described in Figure 3. 
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Figure 4. Flow chart of hyperspectral data analysis 
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V. RESULTS 

 

Multispectral (Crop Circle
®
 and Crop Scan™) and hyperspectral sensors (ASD Field Spec

® 

Pro) were used to collect spectral signatures from pastures.  

 

 

Figure 5 Regression model showing the relation between measured nitrogen and sensor 

(Cropcircle™) derived reflectance readings as natural difference vegetative index (NDVI) 

 

In a nitrogen fertilizer experiment, conducted by Landcare, Palmerston North, a Crop Circle 

sensor (ACS-470) was used to acquire reflectance from plots which received different 

nitrogen treatments, with the purpose of being able to predict nitrogen content of the pasture 

from the reflectance readings. The captured reflectance was calculated as NDVI from a 

combination of the visible (670/22 nm) and near infrared regions (760/LWP). The sites used 

were cut and the nitrogen concentration in the pasture measured. A significant correlation 

between the measured nitrogen percentage and reflected readings as NDVI with a coefficient 

of determination (r
2
) of 0.764 was obtained (Figure 4).  

 

In order collect hyperspectral readings, various experimental sites were used to create a wide 

range of biochemical variations and environmental conditions.  Typically, the ASD Field 

Spec
®
Pro is a passive sensor, but, artificial illumination was provided using a standard 
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canopy pasture probe (CAPP)-top grip coupled with 50 Watt tungsten-quartz-halogen lamp 

[18].  

After obtaining spectral signatures, concurrent ground truth samples were harvested and then 

immediately sent to the FeedTech (AgResearch Grasslands, Palmerston North) laboratory for 

near infrared spectroscopy analysis which is used extensively for determining chemical 

composition of dried ground samples. 

 

 

Figure 6. Scatter diagram showing the relation between observed and predicted observations 

[19] 

 

Prior to data analysis the data manipulations steps illustrated in Figure 3 were used to process 

the data, PLSR algorithms were then applied for statistical analysis. Then as part of the 

calibration of the model the measured crude protein concentrations were plotted against the 

predicted levels, satisfactory results were obtained with an r
2
 value of 0.832. The prediction 

accuracy of the hyperspectral sensor is greater than the multispectral sensor and wide had 

wide range of applicapability. 

 

VI. CONCLUSION 
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These research findings demonstrate that there is potential in using optical sensors to provide 

a practical solution for providing greater accuracy in pasture quality measurement in the field. 

This takes optical technology out of the laboratory and onto the farm to give near real-time 

information to the farmer. When proximal sensors are coupled with global positioning system 

(GPS) pasture quality spatially can be monitored spatially which allows the relationships 

between environment and production inputs such as fertiliser to be further optimised. This is 

currently possible with a small range of sensors using two or three channels to estimate crop 

biomass in crops such as wheat, the information from these sensors is used to make decisions 

around the fertiliser application to the crop. The advantage of crops such as wheat is the 

paddock is usually around the same growth stage, weeds are suppressed and so variability is 

limited. In pasture the situation is somewhat different; the pasture has been subject to grazing 

and highly variable (N) application through urination events from cows, in addition to other 

environmental factors relating to topography and soil. The maturity of the sward also changes 

throughout the year, as does species composition, and calibrations achieved at one part of the 

season may not be relevant to later stages. Clearly further work needs to be completed to 

establish robust calibration models and methodologies to operate over a range of conditions. 

 

If this technology were applied to pasture management, the results from pasture measurement 

would make a significant difference to farmer’s decision making on such issues as fertilizer 

application, pasture and grazing management. This should lead to better productivity for 

farmers but also better environmental outcomes as a result of reduced error margins in current 

farm practices and better informed management decisions.  
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