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Abstract – Optimized spectrum sensing using distributed detection techniques for secondary user 

spectrum access is becoming important in Cognitive Radio (CR) systems, which have been proposed 

to utilize the available frequency spectrum more efficiently. For achieving best performance and 

ensuring minimal acceptable interference to spectrum owners, it is important to accurately sense 

and detect the presence or absence of primary licensed users. For this purpose, the solutions 

learned within the framework of distributed detection in wireless sensor networks have been 

considered. In this paper, we review sensing algorithms and approaches of distributed detection and 

their relevance to CR systems. 
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I. INTRODUCTION 

 

Increases in the use of wireless enabled devices and the proliferation of mobile phones with 

demand for voice and data services have necessitated identification of additional frequency 

spectrum and/or efficient use of existing spectrum. The spectrum available in 900 MHz 

through 6 GHz region has been licensed to various services in several parts of the world. Also, 

in existence is the successful operation of wireless devices in the unlicensed Industrial, 

Scientific and Medical (ISM) radio band. Hence, new services could be provided either 

through a spectrum underlay mechanism such as Ultra Wide Band (UWB) or a spectrum 

overlay mechanism [1]. According to a Federal Communications Commission (FCC) report, 

in a typical period survey, the licensed spectrum usage (e.g. particular police dispatch channel 

in New York State) ranges from 15% to 85% [2]. Hence, there exist several periods of time 

intervals when a licensed user is not transmitting signals to its intended recipients. Therefore, 

periods of no activity, which create spectral holes in the frequency spectrum allocated to the 

licensed user, could be identified so that other users could utilize the “available” spectrum 

during those periods. This is the concept behind the opportunistic spectrum access under 

spectrum overlay mechanism. The term Cognitive Radio (CR) is very relevant to spectrum 

access [3]. Software Defined Radios (SDR) were developed to give the ability for a wireless 

transceiver to select, through software and digital signal processing, a particular modulation or 

demodulation scheme, depending on the channel conditions. Certainly, addition of other 

cognitive features, such as directional beam forming that avoids interference from other users 

and the selection of adaptive coding, plus modulation for a specific channel condition, point to 

the evolution of a software radio as a more sophisticated radio device, a Cognitive Radio [4]. 

CR is an important component of the IEEE 802.22 standard being developed for Wireless 

Regional Area Networks (WRAN) for operation in a license-exempt way over the TV 

broadcast bands. A survey of spectrum sensing in current wireless standards and for the 

evolving 802.22 standards is discussed in [5]. In the context of opportunistic spectrum access, 

a licensed user is termed as a Primary User (PU), whereas the other users, who would like to 

access the spectrum during the absence of primary users, will be called Secondary Users (SU). 

In a CR network, some secondary users are allowed to use some portions of licensed radio 

bands opportunistically, provided any interference caused to a primary user is kept below a 

harmful level. Such an operation of a CR network poses several challenges and opportunities 

for the development of new devices. Deployment of a CR network involves spectrum sensing, 

Ramanarayanan Viswanathan and Babak Ahsant, A Review of Sensing and Distributed Detection Algorithms 
 for Cognitive Radio Systems

178



spectrum exploitation, performance evaluation, and optimization at various levels in the 

network [1, 4]. In this survey paper, we primarily discuss several sensing techniques for CR 

and survey results from decentralized detection theory that could be applied to cognitive radio 

networks. First, we discuss various spectrum sensing methods in section II.  In section III, we 

present some key results from distributed detection (also termed decentralized detection) and 

its applications in wireless sensor networks. Specifically, we discuss data and decision fusion 

schemes and related configurations. In concluding section, we indicate how results from 

decentralized detection are applied to cooperative sensing in CR networks. A somewhat 

detailed survey of detection in cooperative spectrum sensing was given in a conference paper 

[31]. 

 

II. SPECTRUM SENSING TECHNIQUES 

 

Detection of any phenomenon, based on stochastic data, can lead to errors in decision. When a 

PU is present, the sensing device could declare that it is not present, leading to a miss, which 

is the complement of detection. Similarly, when a PU is absent (or spectral hole), the sensing 

device could declare that a PU is present, leading to a false alarm. If a sensing device is 

designed to control one type of error, say, the probability of miss mP , which is One minus the 

probability of detection
dm PP 1 , below a specified value, the other probability of error, the 

probability of false alarm
fP , is determined by the quality of the received signal and the noise 

in the system. From a PU point of view, a larger probability of detection would provide it with 

better protection, as the chance of a SU transmitting while the PU is present will be less. From 

a SU point of view a low probability of false alarm is better, as it provides a SU with more 

access. It is interesting that, depending on the values of these probabilities, one can classify 

the sensing system in three different categories: Conservative System which has an 

opportunistic spectrum utilization rate less than or equal to 50% and a probability of 

interference less than 50% that is 5.0,5.0 fd PP . Aggressive System which expects to 

achieve more than 50% opportunistic spectrum utilization while maintaining less than 50% 

probability to interfere with the PU that gives 5.0,5.0 fd PP . Hostile System that targets 

more than 50% opportunistic spectrum utilization and is likely to cause interference to the PU 

with a probability greater than or equal to 50% that means 5.0,5.0 fd PP  [6]. 
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Furthermore, according to the nature of sensing techniques we can divide the sensing systems 

into two major groups: Blind Sensing that does not rely on any target signal features, like 

energy detection and autocorrelation detection or Signal Specific Sensing that utilizes specific 

target signal features, like matched filter detection and cyclostationary detection. On the other 

hand, IEEE 802.22 standard proposal mentions that no specific spectrum sensing technique is 

mandatory in the standard and designers will be free to implement whatever spectrum sensing 

technique they choose as long as it meets the specified sensing requirements [7].  

In a CR system, depending on the method employed, spectrum sensing techniques could be 

implemented using different strategies [9]; Matched Filter (or Pilot) Detection (MFD), Energy 

Detection (ED), Cyclostationary (or Characterization) Detection (CD), EigenValue Detection 

(EVD), Autocorrelation (or Covariance) Detection (AD), and Wavelet Detection (WD). Also, 

there is a recently proposed scheme, which is called Probability Based Detection (PD). This 

method is based on the assumption that the idle duration of the licensed spectrum band is 

exponentially distributed, so that the probability model regarding the appearance of the 

primary signal at each sampling point of a CR user frame is established [10].  

The MFD method provides coherent detection and gives the best performance in terms of 

signal power to noise power ratio (SNR) as the secondary user receiver assumes the exact 

knowledge of the signal arriving from the transmission of a primary user. This means 

necessity of having exact knowledge of the modulation scheme employed by the primary 

transmitter, time synchronization of arriving symbols, and the channel parameters and if this 

information is not correct, the MFD performs poorly. In many practical scenarios, such exact 

knowledge is unavailable and hence it may not be realizable. Of course, the main advantage of 

MFD is that it needs less time to determine the presence of a PU signal with acceptable 

probabilities of errors tolerance, when compared to other methods. However, a significant 

drawback of a matched filter is that a cognitive radio would need a dedicated receiver for 

every primary user class [11].  

If a signal exhibits cyclostationary properties, its presence could be detected even in low SNR 

because CD is capable of differentiating the primary signal from the interference and noise. A 

signal is cyclostationary, if its autocorrelation is a periodic function. By searching for the peak 

in the spectral correlation function, the presence of the signal can be identified. It is more 

robust as noise does not possess any cyclic property whereas different modulated signals have 

different unique cyclic frequencies. A drawback is that CD is more complex to implement and 

requires the knowledge of modulation format [9]. We can say CD method, as well as MFD 

technique, are good to be used in high processing power systems. For more efficient and 
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reliable performance, the enhanced feature detection scheme, combining cyclic spectral 

analysis with pattern recognition based on neural networks is proposed in [12].  

An EigenValue Detection is not computationally complex and primary user waveform 

information is not required. EVD is based on random matrix theory and autocorrelations are 

applied on received signal samples thereby estimating the covariance matrix. Then, the 

maximum eigenvalue of the covariance matrix is compared with predetermined threshold 

value to determine primary user presence; it has been shown that at lower value of SNR, EVD 

has even better results compare to MFD, ED and CD [13]. 

The Wavelet Detection is based on wavelet transform, which is a multiresolution method 

where an input signal is decomposed into different frequency components. By computing the 

wavelet transform of the power spectral density of received signal, the singularity in spectrum 

can be located and therefore vacant frequency bands can be found. Again, high sampling rate 

and computational complexity are the disadvantages. The covariance detection exploits the 

difference between the autocorrelation of a noise process and that of a signal process in order 

to sense a PU signal this technique is suitable for low processing power systems.  

The Energy Detection is also termed as a radiometer or a noncoherent detection method. An 

ED is simply base on Neyman-Pearson approach and computes the energy of a signal present 

in a certain bandwidth and compares it to certain threshold value to decide whether the desired 

signal is present or not. The main advantage of ED is that it does not require any knowledge 

of the signal, such as modulation format or symbol synchronization. When a PU is 

transmitting, a SU which is located within a reasonable distance from the PU receives the PU 

signal in noise. The nature of channel between the PU and the SU and hence the power of the 

received signal in relation to the noise level will impact the performance of the ED. The 

performance improves with increased signal sensing (observation) time, which, however, 

results in lapsed opportunity to exploit a significant portion of the duration of PU spectral hole 

for SU transmission. Moreover, accurate determination of noise level is needed in order to 

guarantee a certain false alarm probability; error in noise power estimation can result in 

performance loss. The energy detector shows poor performance in low SNR, because the 

noise variance is not accurately known at low SNR. Although ED has a simple algorithm 

when compared to other techniques, at values of SNR below certain threshold, the ED could 

become useless. Another drawback is the inability of ED to differentiate the interference from 

other SUs and a PU. There are some other spectrum sensing techniques like Multi-Tape 

Spectrum Estimation (MTSE), which is based on maximal energy concentration of the Fourier 

Transform of Slepian Vectors and Filter Bank Spectrum Estimation (FBSE), which is a 
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simplified version of MTSE; more details about these methods and a comparison between 

different sensing techniques could be found in [7].   

It is conceivable that the sensing performance of a CR network could be significantly 

improved, if two or more SUs, who want to opportunistically use the spectrum in a given 

band, cooperatively sense the presence or absence of a PU in their vicinities. The success of 

such a cooperative spectrum sensing depends on several factors: first, the SU’s ability to 

cooperate and network among themselves; second, mobile SUs may necessitate dynamically 

configuring CR networks and third, establishment of a network coordinator or a fusion center, 

where a final determination based on the sensing data from several SUs could be made. The 

superiority of cooperative sensing results from the fact that multiple pieces of information 

from several SUs would be better than one piece of information at a single SU; this is 

especially true when one of the SU receivers is hidden from a nearby PU transmitter, whereas 

one or more of other SU receivers in the vicinity of the PU may pick up the transmitted signal.  

However, there may exist a scenario, where the determination of the presence of a PU by a set 

of SUs may not be relevant to another SU, simply because the particular PU sensed may really 

belong only to the “vicinity” of other SUs and not to the one SU under question. This brings 

up the question of vicinity determination before SUs could cooperatively sense. Hence, one 

could argue that the determination of a PU is not only with respect to time (present or absent) 

but also with respect to the location. A detailed discussion of this aspect with ensuing analysis 

is presented in a recent paper [8]. In this survey, we make the simplified assumption that an 

appropriate group of cooperative SUs has been determined in order to assess the presence of a 

PU in their vicinity. Cooperative sensing mechanism draws upon results from distributed 

detection and its application to wireless sensor networks. 

 

III. DISTRIBUTED DETECTION AND WIRELESS SENSOR NETWORKS 

 

In distributed detection, a set of sensors, possibly geographically dispersed, gathers data 

regarding the presence (Hypothesis 1H ) or absence (Hypothesis 0H ) of a target or a 

phenomenon of interest [14-17].  It is possible that sensors could be deployed to decide on the 

presence of one of many possible signals (M-ary Hypotheses) or to estimate the value of a 

signal present (estimation problem). While some results developed for the binary case 

naturally extend to the M-ary case (see the above references), many more specific results have 

been developed for the binary case. In CR context, the phenomenon of interest is the presence 
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or absence of a PU signal and therefore only the binary case is considered in the sequel. 

Depending on the configuration of processing of signals in general we can say there are two 

types of distributed (decentralized) decision making rules: Data Fusion and Decision Fusion. 

Also, there are three major topologies used for distributed detection, which are the results of 

different approaches and implementations, known as Tree, Parallel and Serial. 

1) Sensors can send their observations in a tree structure manner to other nodes; there exist a 

final root sensor, which is responsible for decision making. Compared to serial and parallel 

methods given below, tree structured networks need more simultaneous optimizations and are 

also much more difficult to implement. Figure 1 shows the tree structure topology. 

2) Sensors could process its own data only and then send condensed data to a fusion center, 

where a final determination is made. This approach is called parallel fusion and the topology 

of this kind of systems is shown in Figure 2. 

3) First sensor in a sequence could pass its condensed information to the next sensor in the 

sequence, which makes its own condensed data based on its own data and the condensed data 

it had received from the previous sensor, and then passes its condensed data to the next sensor 

in the chain, and so on, with the last sensor in the configuration making the final decision. 

According to its nature, this method is known as serial or tandem fusion and is illustrated in 

Figure 3. An interesting issue in serial fusion is the ordering of non-identical detectors. It 

might be tempting to put the better detectors toward the end but there exist examples that 

show that placing the better detectors toward the end need not always be optimal. Ordering 

depends on many factors such as prior probabilities, costs, etc. and no general result on this 

issue is available [15]. 
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Figure 1. Tree Topology in Distributed Decision  

 

 

Figure 2. Parallel Topology with Fusion Center 
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Figure 3. Serial Topology in Distributed Decision 

 

In a Fusion Center (FC) based approaches, assuming that the links between sensors and fusion 

center, and between the sensors themselves, if configured, are band limited, processing of data 

at individual sensors is needed so that only a limited or quantized data needs to be sent over 

these links. In wireless networks, the links are unreliable due to path loss, possible shadowing 

and fading. Unreliable nature of wireless links implies that a FC may receive possibly a 

severely corrupted copy of the transmitted condensed data. Hence, in addition to reliability of 

sensing, reliability of transmission channel plays a determining role in the overall 

performance of a CR network. The quantized data at a sensor could assume D possible values, 

with D equal to two, corresponding to the case that a sensor making the decision on the 

presence or absence of a PU signals. The binary quantization is the extreme level of 

quantization or data compression, with the original sensor data representing the other extreme 

of unquantized data. If sensors send unquantized data to a fusion center over perfectly reliable 

links, the fusion center could optimally combine the data. Such a fusion scheme is called a 

Central Fusion scheme, which provides an upper bound on the performance of any scheme 

based on quantized data and unreliable sensor to FC links.     

Consider the case of D equal to two; borrowing from classical detection theory, one could 

determine an optimum test at a sensor, or at the fusion center, based on a well chosen criterion 

such as, the Bayes criterion or Neyman-Pearson (N-P) criterion. For either criterion, if the 

sensors observations are conditionally (conditioned on the true hypothesis) independent, it has 

been shown that the optimum tests at the sensors and at the fusion center are Likelihood Ratio 

Tests (LRT) based on their own observations. If conditional independence assumption is not 

satisfied, then the problem becomes N-P Complete [18]. Also, when the sensor observations 

are conditionally independent and identically distributed (i.i.d), it is asymptotically optimal to 

have identical likelihood ratio tests at the sensors, as the number of sensors become infinitely 

large [17]. When tests at the sensors are identical and sensor observations are i.i.d, the 

likelihood ratio test at the fusion center becomes a counting rule, i.e., the fusion center simply 

counts, based on the sensor decisions received at the fusion center, how many decisions are in 

favor of hypothesis 1H  and then declare in favor of this hypothesis if this count exceeds a 

predetermined threshold, say k. If N is the total number of sensors, then k could be one of 

1N  integer values over the set of 0, 1, 2 … N. It can be seen that 1k corresponds to the 

Boolean OR rule, Nk  corresponds to the AND rule, and 2)1(Nk  corresponds the 
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Majority Logic rule. Depending the requirements of a specific fP  (or a specific dP ), it may be 

necessary for the fusion center to employ a randomized decision rule, which is randomized 

between two counting rules with adjacent threshold values. Depending on the underlying 

distributions of sensor observations under the two hypotheses, it is possible that the 

probability of miss, at a given probability of false alarm, may not tend towards zero, even 

when N tends to infinity [19].  Hence, in large networks, extreme counting rules such as, OR 

and AND have to be used cautiously. 

In order to consider the effect of unreliable nature of wireless links on the performance of a 

wireless sensor networks in detection applications, various methods and performance 

assessments have been carried out. We consider some of them here [20-24]. Let us assume a 

parallel configuration of fusion of sensor decisions for detecting a PU. By allowing the 

number of levels in each sensor (or CR) to be different, say Di  for thi  CR, [20] examines the 

allocation of optimal number of bits in each sensor as:  

RDLog i

N

i

)(
1

2  

Here, the problem is to minimize the probability of error at the fusion center, subject to the 

above capacity constraint of R bits per unit time carried by a multiple access channel. In the 

asymptotic case of a large number of sensors, for the problem of detecting deterministic 

signals in Additive White Gaussian Noise (AWGN), it was shown that having a set of 

identical binary sensors is optimal. Thus, the benefit of having more sensors, each sending 

coarse information, exceeds the benefit of getting detailed information from less number of 

sensors. Similar to this result, analysis of a system under both power and bandwidth 

constraints shows that it is better to combine many not-so-good local decisions rather than 

relying on one (or a few) very-good local decisions [21]. In [22], the bandwidth constraint is 

taken into account by assuming non-orthogonal communication between sensors and the data 

fusion center via Direct Sequence- Code Division Multiple Access (DS-CDMA) spreading.   

When sensors (or CRs) use a binary modulation scheme to transmit their binary decisions to 

the fusion center, a natural question is whether to combine the demodulator outputs, 

NiZ i ,...2,1,  to make a final decision or to make individual decisions iV , based on each iZ , 

and then employ a counting rule for the final decision. If the individual CR error probabilities 

and the channel state information for each sensor to fusion link are completely known, then a 

LRT based on iZ
 
can be implemented. If the sensors do not employ identical tests, then a 
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test based on iV , termed Chair-Varshney (a LRT based on the individual sensor decisions) 

can be designed [23]. By observing similarity to diversity combining, one can attempt to 

combine the demodulator outputs using an Equal Gain Combiner (EGC) or a Maximal Ratio 

Combiner (MRC). One significance difference between diversity combining and detection in 

sensor networks is that in the case of former, there is one source and many diversity paths, 

whereas in the case of latter, not all sensors may decide on the same hypothesis and hence 

may not be transmitting the same bit. Whereas, in diversity combining, MRC is an optimal, 

maximal SNR linear combiner, no such optimality exists for MRC in the sensor network 

context. In fact, in sensor network, MRC performs poorly when compared to EGC and a 

counting rule in many situations [23, 24]. Interestingly, except for very small SNR, both EGC 

and the Chair-Varshney rule outperform MRC. Extension of this analysis to a large number of 

sensors shows that similar comparative performance still holds true [24].  

The effect of link quality of the performances of a counting rule and other rules were also 

addressed in [24]. Each link between a sensor and the fusion center is modeled as an 

independent and identically distributed slow Rayleigh-Fading binary modulation signal 

received in AWGN. This study considered the impact of the sensor-fusion center link on the 

quality of the decision received at the fusion center and the minimum required sensor decision 

quality, given the availability of a minimum sensor-to-fusion link SNR, in order that the 

asymptotic (large number of sensors) error in the counting rule classification goes to zero.  

With a proper choice of threshold for non-coherent On-Off Keying (OOK) detection, it was 

shown that an asymptotic performance comparable to that of Frequency-Shift Keying (FSK), 

while achieving some energy saving, is possible.  

 

IV.  CONCLUSION 

 

In this review, we have argued that cooperative spectrum sensing, when implemented 

appropriately, would yield better sensing performance and better throughput in CR networks. 

We have also indicated the distributed detection algorithms in wireless sensor networks form 

the basis for cooperative sensing in CR networks. Once we have an appropriate model for 

observations that sense the presence or absence of a PU in a CR, the results surveyed in this 

paper are directly applicable to cooperative spectrum sensing. Some of those methods 

discussed in the literature involve energy detection with log-normal shadowing and sensor 

correlation accounting for the sensor observation model [25]. Other discussions consider 
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OFDM type PU signals and employ autocorrelation based spectrum sensing [6, 26-28]. In 

general, many of those references discuss performance of Boolean rules such as AND, OR, 

Majority Logic and Likelihood Ratio Tests at the FC. Others discuss different performance 

issues such as, sensing-throughput trade-offs [30] or alternative ways of performance 

characterization, such as SNR walls [29]. A detailed study of these methods is beyond the 

scope of this survey paper. 
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