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Abstract-This paper proposes system identification on application of nonlinear AR (NAR) 

based on Artificial Neural Network (ANN) for monitor of dengue infections.  In building the 

model, three selection criteria, i.e. the final prediction error (FPE), Akaike’s Information 

Criteria (AIC), and Lipschitz number were used.  Each of the models is divided into two 

approaches, which are unregularized approach and regularized approach.  The findings 

indicate that NARMAX model with regularized approach yields better accuracy by 80.60%. 

The best parameters’ settings for this thesis can be found using the Lipschitz number criterion 

for the model order selection with artificial neural network structure of 4 trained using the 

Levenberg Marquardt algorithm. 

 
Index terms: dengue fever, NAR model, AIC, Lipschitz, FPE, ROC and AUC. 
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1. INTRODUCTION 

Dengue fever (DF) ranks highly among the newly emerging infectious diseases in public 

health significance.  Hence it is considered to be the most important of the arthropod-

borne viral diseases.  In Malaysia, the disease is endemic but major outbreaks seem to 

occur at least once in every four years [2].  Dengue fever was first reported in Malaysia 

after an epidemic in Penang in 1902 [3, 4]. Since the early 1970s, the World Health 

Organization (WHO) has been actively involved in developing and promoting strategies 

for treatment and control of dengue.  In 1997, WHO published a second guide to the 

diagnosis, treatment and control of dengue haemorrhagic fever [1].  Dengue were 

reported throughout the year and started to increase from 1997 to 1998.  In 1998, 27,373 

dengue cases with 58 deaths were reported as compared to 19,544 cases with 50 deaths in 

1997.  This has shown an increase of 7,829 cases or 40.1% over the number of cases in 

1997 [5].  Therefore, accurate classification of dengue infection a very useful tool for 

doctors in diagnosing diseases early. 

Fatimah et. al. [6] describe a noninvasive prediction system for predicting the day of 

defervescence of fever in dengue patients using ANN.  The developed system bases its 

prediction solely on clinical symptoms and signs and the results show that around 90% 

prediction accuracy. 

This paper describes a noninvasive classification system for dengue infections using 

NAR models.  The rest of the paper is structured as follows:  In Section II nonlinear 

autoregressive (NAR) model is presented.  Methods are provided in Section III.  In 

Section IV shows the results.  Finally, concluding remarks and discussions are presented 

in Section V. 

 

II. NONLINEAR AUTOREGRESSIVE MODEL 

The NAR model consists of an autoregressive which is represented as past output data 

and the nonlinear function was selected as hyperbolic tangent. 

)](),(),...,1([)(ˆ tuntytyFty y−−=               (1) 

where F is a nonlinear part, y(t) and u(t) represent the output and input, respectively.  ny 

is the associated maximum lags.  Block diagram for NAR model is as shown in Figure 1. 
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Figure 1: NAR Model 

 

a. Model Order Selection 

Model order selection is dependent upon the quality of the model since the model order is 

varied and the cost function is monitored.  A useful measure to aid this procedure is to 

measure the significance of each additional model.  Assessing the significance of each 

model is not only necessary for model order selection but also for further analysis of the 

estimated model and can aid the design and analysis of medical applications. 

 

b. Model Estimation 

The third step is model estimation, which involves determining the numerical values of 

the structural parameters, which minimise the error between the system to be identified, 

and its model. 

 

c. Regularization 

If the network has been trained to a very small value of criterion, the model needs not be 

particularly good.  A good performance on the training set does not automatically imply 

that the model generalizes well to new inputs.  In particular, it was shown that if the 

model structure was too large (contained many weights) it led to overfitting [15], that is, 

the noise in the training set was also modelled.  The average generalization error was 

introduced as a quantity assessing a given model structure.  One way of controlling the 

average generalization error was to extend the criterion with a term called regularization 

by simple weight decay [15].  The weight decay reduced the variance error at the expense 

of a higher bias error. 
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d. Model Validation 

Receiver operating characteristic (ROC) curves are commonly used in medicine and 

healthcare [18], where they are used to quantify the accuracy of diagnostic tests [19, 20].  

The performance of an “expert” human or machine, can be represented objectively by 

ROC curves [21].  Such curves show, for example, the trade-off between a diagnostic test 

correctly identifying diseased patients as diseased, rather than healthy, versus correctly 

identifying healthy patients as healthy, rather than diseased.  Terms commonly used in 

ROC curves are sensitivity, specificity and diagnostic accuracy, to show the accuracy of 

the designed system. 

 

i. Receiver Operating Characteristic (ROC) Curves 

ROC curves display the relationship between sensitivity (true positive rate) and 1-

specificity (false positive rate) across all possible threshold values that define the 

positivity of a disease.  They show the full picture trade-off between true positive rate and 

false positive rate at different levels of positivity. 

The ANN must be trained before the ROC curve can be generated.  The resulting network 

is referred to as a “basic trained network”.  This initial instance of the ANN provides one 

operating point.  The result is a set of instances of the network chosen to represent a point 

on the ROC curve.  The goodness of this set of network instances are then evaluated 

using separate test data. 

Table 1 shows a diagnostic accuracy results after training the ANN.  The decision 

variable can produce two sets of values, which represents two category types dengue 

infection.  The true dengue infection is denoted as D+, whereas the false dengue infection 

is indicated as D-. 

Table 1:  Diagnostic Accuracy table 

 Diagnosis (Dengue Infection) 

Test Result 

(Decision Model) 

Positive 

(Dengue) 

Negative 

(Healthy) 
Total 

Positive TP FP T+ 

Negative FN TN T- 

Total D+ D-  

786

H. Abdul Rahim, F. Ibrahim  and M. N. Taib, SYSTEM IDENTIFICATION OF NONLINEAR 
 AUTOREGRESSIVE MODELS IN MONITORING DENGUE INFECTION



In general, four possible decisions and two types of errors are made when comparing a 

test result with a diagnosis, as shown in Table 1.  If both diagnosis and test are positive, it 

is called a true positive (TP).  The probability of the TP to occur is estimated by counting 

the true positives in the sample and dividing by the sample size.  If the diagnosis is 

positive and the test is negative it is called a false negative (FN).  False positive (FP) and 

true negative (TN) are defined similarly.  The two sets of values produced in the 

threshold are the total positive and negative indicated as T+ and T-. 

Sensitivity and specificity are the basic measures of the accuracy of the diagnostic test.  

They describe the abilities of the test to enable one to correctly diagnose disease when the 

disease is actually present and to correctly rule out disease when it is truly absent. 

The accuracy of a test is measured by comparing the results of the test to the true disease 

status of the patient.  Sensitivity and specificity depend on the threshold (also known as 

‘operating point’ or ‘cut point’) used to define positive and negative test results.  As the 

threshold level decreases, the sensitivity increases while the specificity decreases, and 

vice versa. 

Sensitivity is the ratio or percentage of a probability that a test result will be positive 

when the diagnosis is present, also known as true positive rate (TPR), defined as: 

+
=

D
TPTPRySensitivit :                (2) 

Specificity is the ratio or percentage of a probability that a test result will be negative 

when the disease is not present and also known as true negative rate (TNR), defined as: 

−
=

D
TNTNRySpecificit :            (3) 

 

III. METHODOLOGY 

a. Data Collection 

The data were obtained from the previous work [22].  For the first group, the severity of 

the DHF is classified into grade I to IV, according to WHO recommendation [23].  Acute 

dengue infection was confirmed subsequently by the use of ELISA to detect elevated 

dengue specific IgM (primary infection) and IgG (secondary infection) [24].  Patient 

serum samples were tested for hemoglobin determination using an automated counter 
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(Coulter STKS machine).  The second group is the control group for healthy female and 

male subjects. 

The second group of patients (control subjects) who do not have past medical history of 

dengue were recruited and studied using the same guidelines as in the BIA subject 

preparation used for the first group [22].  The BIA safety measurements procedure and 

other safety precautions were made known to the subjects and their informed consent was 

obtained from each subject prior to the BIA measurement. 

For the control subject, the weight was taken once.  However for subjects with dengue 

infection, the weight was measured daily until upon discharged. 

 

b. Clinical Experiments 

One of the clinical methods in making dengue diagnosis is to establish the clinical 

history-taking, physical examination and investigation.  Each patient undergoes detailed 

history taking, physical examinations and blood investigations following their admission. 

Clinical evaluations and haematological investigations are conducted continuously until 

they are discharged. 

The patients were also admitted at different stages of their illness, thus it is important to 

have the results of clinical signs and symptoms, blood investigations, and other analyses 

dated with a consistent and proper reference point [22].  Nevertheless, thorough 

documentation of symptoms and blood investigations do not offer definitive advantage in 

the management and monitoring of dengue cases. A more useful measure is to develop a 

complete day-to-day profile of clinical manifestations and blood investigations made 

according to a proper reference point based on the ‘Fever day’ definition [22].   This is to 

ensure that the data used in the analysis will refer to a common reference point, 

regardless of how many days of fever the patient has experienced 

The Hb status of control subjects cannot be determined at a low frequency of 50 kHz, 

since the membranes of blood cells will act as insulators. In DHF patients however, 

pathophysiological changes caused by the dengue infection lead to a plasma leakage. And 

this in turn causes low thrombocytopenia and coagulopathy [23].  It is therefore possible 

to estimate the Hb volume indirectly using the BIA technique. 
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c. BIA Experiments 

The bioelectrical impedance experiments are conducted using the bioimpedance analyzer.  

It is important to note that there is no historical or clinical evidence that bioimpedance 

testing is unsafe, even for pregnant women or persons with pre-existing heart conditions.  

During the years 2001 and 2002, two hundred and ten adult patients aged twelve years 

old and above, with serological confirmation (WHO 1997) of acute dengue infection, 

admitted in HUKM, Malaysia were prospectively studied.  At present, the knowledge 

acquisition to present pattern to classify the dengue infections is limited to the clinical 

symptoms and signs. Thus, only clinical symptoms were used as the input data for 

classify the dengue infections. 

A total of one hundred and forty two volunteers with no past medical history were 

recruited and studied as the control subjects. For the control subject the weight was taken 

once, however for subjects with dengue infection the weight was measured daily until 

upon discharged. 

The statistical analysis was performed using SPSS statistical package version 10.01 for 

Window 1998. Simple linear regression was used in the preliminary analysis for testing 

the significance of the variables. These variables were then included in the multivariate 

analysis. Multiple linear regression was used to analyse the control effects of the patient 

demographic and symptom variables and BIA parameters on Hb. The model was 

constructed in three steps as follows: 

a. When correlation exits between variables, one or more variables were excluded 

for the multivariate analysis. 

b. The demographic variables were first included in the model. Once the 

demographic predictors were identified, add in the BIA parameters and find, 

which of these parameters were important predictors. 

c. The last step was to include symptom and find out whether with the addition of 

this predictor will make further significant contribution or not. 

The last step was to include symptom and find out whether with the addition of this 

predictor will make further significant contribution or not. 

Only five variables are highly significant which gender, weight, reactance (Xc), vomiting 

and day of fever [22, 25-27]. 
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These predictors will be the inputs for linear and nonlinear system identification based on 

ANN. All the inputs data for these models were normalized from ‘0’ to ‘1’.  Only for 

linear and nonlinear system identification based on ANN the output data were categorize 

into 2 parts, for classifying the dengue infections disease which is 0 for no dengue 

infection, while 1 for dengue infections. 

Then, the input data were divided randomly, between 2 sets: a training set and a testing 

set.  These five input variables were fed into the FFNN and trained using LM algorithm. 

During this process, the NAR application was optimized via four steps where each of 

these steps was implemented to find optimum value for the model order, the number of 

hidden layers, maximum iterations, and lastly the number of parameters regularization. 

At each experiment, the respective parameter to be optimized was varied while the other 

three were fixed. Selection of the optimum parameter value for each step was based on 

the performance evaluation of the model through the final prediction error (FPE) analysis 

as well as the diagnostic accuracy (DA). For simplicity, threshold for the output logic 

levels was fixed to 0.5 for each models used in this work. At the next stage, the most 

appropriate threshold level would be decided by analyzing the minimum Euclidean 

Distance (ED) values from the receiver operating characteristic (ROC) plot. 

Finally, the area under the ROC curve was applied to measure the accuracy of dengue 

hemoglobin status in the diagnostic test. 

 

d. Experiment for NAR Model 

These experiments were designed to give better accuracy than the previous experiments 

(linear model).  These experiments processes (data preprocessing, model design, model 

estimation and model validation) are described in next section. 
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 Figure 2:  Nonlinear Model Development Process for NAR Experiment 

i. Data Preprocessing 

Two matrices were generated from the data collection: training, and test set.   

These data were then divided randomly into two sets: a training set, and a testing 

set to ensure that it generalizes well.  All data were normalized so that that the 

dataset has zeroed mean and uniform standard deviation. 

The training data was used to guide MLP weight updates during training.  The test 

set was used to test the performance of the MLP. 

ii. Model Design for Nonlinear Model 

For nonlinear models, NAR, was used to monitor the progression of dengue 

infection based on hemoglobin.  Input variables were fed into the feedforward 

ANN and trained using Levenberg-Marquardt algorithm.  The number of hidden 

layers was set to be between 1 to 10 units.  The number was chosen so as to 

reduce time consumption in training the data, and network overfitting [15].   A 
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transfer function for neurons in the hidden layers is hyperbolic tangent sigmoid 

and the single neuron in the output layer has a linear transfer function. 

There were two approaches considered in this study, unregularized and 

regularized approach.  Unregularized approach is the normal method used for 

training the networks, which is associated with Equation 3.42 for FPE.  For the 

regularized approach, it was shown that one way of controlling the average 

generalization error was to extend the criterion with a term called regularization 

by simple weight decay.  The weight decay reduced the variance error at the 

expense of a higher bias error. Nørgaard [15] showed that the value was obtained 

on validation data set when regularized approach was used.  Figure 3 illustrates 

this approach. 

 

 
 

Figure 3:  Steps to monitor progression of dengue infection based on hemoglobin using 

linear model 

i. Model Estimation 

The MLP application was optimized via four steps, each of which was 

implemented to find the optimum value for the number of neurons in the hidden 

layer, training iterations and regularization parameters.  In each step, the 

parameter to be optimized is varied, while the other two are fixed. Selection of the 

optimum parameter value for each step was based on the performance of the 

model through the FPE analysis as well as DA.  For simplicity, threshold for the 
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output logic levels was fixed to 0.5 for each model used in this initial work.  The 

best model for the experiment was then selected for the final application. 

ii. Validation of Nonlinear Models 

In this stage, the most appropriate threshold level was decided by analyzing the 

minimum ED values from the ROC plot.  Finally the AUC was applied to 

measure the accuracy of dengue hemoglobin status in diagnostic test. 

 

IV. RESULTS 

a. Dengue Data 

During the year 2001 to 2002, two hundred and ten adult patients aged 12 to 83 years old, 

suspected of DF and DHF admitted to the Universiti Kebangsaan Malaysia Hospital 

(HUKM), were monitored.  The dengue infection was also confirmed serologically by 

detection of IgM antibody using the ELISA method.  For all the 210 dengue patients 

studied, 119 (56.7%) were male and 91 (43.3%) were females. 

The sample size of the female was more than the male for DF by 4 patients.  However, 

for DHF I the males exceeded the females by 11; the males increased by 22 compared to 

females in DHF II and there was only one female DSS patient. In the age distribution, the 

majority were mainly in the 15-24 years group age (35.71%), followed by the 25-34 years 

group age (25.24%).  Those aged between 35-44 years constituted 20% for all cases. This 

indicates that the majority of the patients were teenagers and young adults, whom were 

more likely to be involved in outdoor activities and thus more likely to be exposed to the 

danger of dengue infection. 

 

b. Bioelectrical Impedance Analysis 

In the analysis of bioelectrical tissue conductivity (BETC) parameters for the healthy 

subjects, it was found that body capacitance (BC) and phase angle (α) were lower in the 

female subjects compared to their male counterparts (Table 5.2). On the other hand, 

resistor (R) and reactance (Xc) were higher in females than in males. A similar trend for 

the BETC parameters was also observed in dengue patients, where a higher α and BC 

values were found in males, and a higher R and Xc values were found in females. For 

example, on ‘Fever day 0’, the mean α for male was 6.69±0.91° and female was 
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5.45±1.02°, while the mean BC was 821.24±187.58pF and 516.82±112.93pF for males 

and females, respectively. However, the female R (592.14±93.90Ω) and Xc 

(56.92±15.73Ω) were higher than the male R (462.77±76.81Ω) and Xc (54.02±11.15Ω), 

respectively (Table 2). 

 

Table 2: BETC parameters for both control data and dengue patients 

Fever of Days Phase Angle Body Capacitance Resistor Reactance
( o ) (pF) (Ω) (Ω)

0 6.69±0.91 821.24±187.58 462.77±76.81 54.02±11.15
+ 1 6.70±0.88 819.61±170.48 462.31±73.31 54.34±11.62
+ 2 6.67±0.80 789.44±186.81 475.19±79.02 55.38±10.43
+ 3 6.75±0.82 785.81±189.71 481.26±82.81 56.82±11.39

Control data 7.35±0.76 818.08±158.03 504.03±63.44 74.57±70.79

Fever of Days Phase Angle Body Capacitance Resistor Reactance
( o ) (pF) (Ω) (Ω)

0 5.45±1.02 516.82±112.93 592.14±93.90 56.92±15.73
+ 1 5.38±0.83 523.39±107.77 574.39±95.24 54.31±12.75
+ 2 5.37±0.85 525.70±113.63 577.16±102.15 54.26±13.02
+ 3 5.43±0.99 527.83±125.93 582.74±116.07 55.48±15.69

Control data 6.31±0.63 556.90±101.18 634.69±71.55 69.86±8.44

FEMALE
Mean±SD

MALE
Mean±SD

 
 

c. Control Data 

The healthy control data, a total of 144 volunteers with no past medical history were 

analyzed.  The patients were between the ages of 13 to 60 years old, and 53 (37%) were 

males and 91 (63%) were females.  The racial and gender distributions are shown in 

Figures 5.7 and 5.8. The majority of the confirmed patients were Malays (95 or 66.0%), 

followed by Chinese with 36 patients (25.0%), Indian with 3 (2.0%) and others with 10 

(7.0%). 

In the age distribution, the majority were mainly in the 15-24 years group age (35.71%), 

followed by the 25-34 years group age (25.24%).  Those aged between 35-44 years 

constituted 20% for all races. 
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e. Experiment for Statistical Analysis 

Correlations between variables were analyzed using Spearman’s correlation coefficient.  

It is a standardized measure of the strength of the relationship between two variables that 

does not rely on the assumptions of a parametric test.  A matrix is displayed giving the 

correlation coefficient between the two variables such as gender and height (0.647), 

underneath is the significant values of the coefficient (0.000) and finally the sample size 

(210) .  The significant value for this correlation coefficient is less than 0.05.  Therefore, 

it can be concluded that there is a significant relationship between the gender and height. 

Linear regression was used to identify the most significant variable among the 

bioelectrical impedance analysis parameters.  The significant variables were resistance 

and reactance (p<0.05).  Table 5.3 shows the model parameters.  This model includes 

nine variables predicting the Hb, but only four variables are highly significant. 

 

Table 3:  Significant parameters for 210 dengue patients on day-of-admission. 

Model Standardized
Coefficients

B Standard Error Beta t Significance
(Constant) 6.012 3.75 1.603 0.112
GENDER 1.309 0.551 0.338 2.373 0.02

RISK -0.241 0.32 -0.063 -0.753 0.453
HEIGHT 0.020 0.025 0.096 0.82 0.414
RACE 0.066 0.177 0.031 0.375 0.709

WEIGHT 0.029 0.014 0.264 2.059 0.042
RESISTANCE -0.002 0.004 -0.105 -0.514 0.609
REACTANCE 0.047 0.019 0.327 2.48 0.015

VOMITING 1.178 0.493 0.191 2.388 0.019
ANOREXIA 0.156 0.341 0.035 0.458 0.648

a. Dependent Variable: Hemoglobin

Unstandardized
Coefficients

Coefficients (a)

 
The best model produced by the multilinear regression using four variables (gender, 

weight, reactance and vomiting) only yields an accuracy of 43%.  This model can be 

written as follows: 

ε++
+++=

)(19.0
)(047.0)(029.0)(309.1012.6

vomiting
reactanceweightgenderHb

        (19) 

where, 

gender = 0 for female and 1 for male 

weight =weight of patients in kg 
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react. = reactance of patients in ohm 

vomiting = 1 for sign of vomit and 0 for no sign of vomit, 

ε = error term 

 

f. AR Experiment 

Three types of input variables, which consisted of a list of dengue clinical symptoms, 

physiological and BIA parameters, were used in the AR Experiments.  These input 

variables were analysed and evaluated using SPSS based on the hemoglobin 

concentration. 

 

g. Data Preprocessing 

210 patients were monitored over a period of 4 succeeding days, depending on their 

severity and duration of stay in the hospital. The patients’ symptoms, BIA parameters and 

physiological data were monitored daily to form a unique set of samples, and producing a 

total of 781 samples. All data were normalized from ‘0’ to ‘1’. These data were then 

divided randomly into two sets: a training set consisting of 527 samples, and a testing set 

of 254 samples.  Each case was arranged as column vectors in the datasets. 

 

The results show that there were only one symptom (vomiting), two physiological data 

(gender and weight) and one BIA parameter (reactance) which were significant based on 

Experiment for SPSS.  These predictors were subsequently used as inputs for Experiment 

for NAR.  ‘Fever day 0’ to ‘Fever day +3’ were important references for the 

physiological changes in the clinical symptoms.  All of these parameters were employed 

as the inputs for the system identification experiments. 

 

h. Model Design 

The model order was chosen using the Lipschitz number, FPE and AIC order selection 

criteria. Figure 4 illustrate Lipschitz number plots for five input variables (vomiting, 

gender, weight, day of fever and reactance) of dengue patients. 
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Figure 4:  Model order of Lipschitz number criterion via AR model 

 

From Figure 4, the optimal number of regression as the knee point of the curve was 4, so 

that the value of the model order was na=4. 

 

i. Model Estimation 

Figure 5 shows the Lipshitz number criterion for finding the neuron number in hidden 

layer.  It can be seen that the DA line shows increasing trend at 3 neurons.  Increasing the 

neurons after this did not improve the model effectiveness in recognizing the test data set 

despite the increasing trend of FPE. Thus, the network model that was iterated for 2 

neurons and showed maximum accuracy (83.52%) is selected with the least value of error 

(0.071). 
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NAR MODEL
Model order selection: Lipschitz Number Criteria

(Maximum Iteration=300, stopping criterion=1x10-5, regularization value(D)=0) 
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Figure 5: Plot of diagnostic accuracy and FPE against the number of neurons in the 

hidden layer using Lipschitz number criteria via NAR model 

 

The iteration is also based on the highest DA and the least value of error. Figure 6 

illustrates the model performance for finding the best iteration and the DA reached its 

maximum (91.21%) when 500 iterations were used, using Lipschitz number criterion. 

NAR MODEL
Model order selection: Lipschitz Number Criteria

(Hidden Layer=3, stopping criterion=1x10-5, regularization value(D)=0) 
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Figure 6: Plot of diagnostic accuracy and FPE against the number of iterations using 

Lipschitz number criteria via NAR model 
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These three steps are usually used for unregularized method.  An addition of an extra step 

is necessary to find the best regularization parameters.  The best regularization parameter 

selected was 0.0001 because the DA is 85.71% (reasonably high) and the value of the 

FPE was 0.064 (the least), hence meeting the maximum iteration (500) as shown in 

Figure 7. 

NAR Models (Lipschitz number) 
Hidden: 2, Max. Iteration: 500, Threshold: 0.5, Regularizarion: 0 to 0.001
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(ii) 

Figure 7: (i)  Plot of diagnostic accuracy and FPE against the value of regularization 

parameters using Lipschitz number criteria via NAR model, ii) Plot of number of 
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iteration against the value of regularization parameters using Lipschitz number criteria 

via NAR model 

Table 4 tabulates the summary of the parameters of NAR model for the different types of 

model order criteria. 

 

Table 4:  NAR model with the different number model order criteria 

Parameter Lipschitz FPE AIC 

Model order 4 15 25 

Hidden Layer 2 4 4 

Maximum 

Iteration 

500 500 500 

Regularization 1x10-3 3x10-3 2x10-3 

 

j. Model Validation for NAR Experiment 

In general, Table 5 shows the different number of the model order using different types of 

criteria and the AUC performance. From this table, it was found that the Lipschitz 

number criterion for regularized approach produced the highest accuracy (80.60%) for 

the NAR model. 

 

Table 5: A comparison of NAR models with the different number model order criteria for 

unregularized and regularized AUC performance. 

 

Criterion Model 

order 

AUC (%) 

unregularized 

AUC (%) 

regularized 

Lipschitz 4 76.2 80.6 

FPE 15 66.0 68.4 

AIC 25 63.6 67.6 

 

The model order, as given by the Lipschitz number criterion, was tested using Neural 

Network-based AR model.  The overall performance of NAR model diagnosis is as 

shown in Table 6. 
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Table 6: The parameters of the diagnostic test using NAR model with different 

approaches. 

 Criterion 

 Lipschitz FPE AIC 

Unregularized    

Sensitivity 87.14 86.57 86.67 

Specificity 85.71 83.33 80.00 

Diagnostic Accuracy 86.81 85.88 85.33 

Euclidean Distance 

from point (0,1) 

0.19 0.21 0.15 

Regularized    

Sensitivity 87.14 83.61 88.33 

Specificity 80.95 83.33 86.67 

Diagnostic Accuracy 85.71 83.54 88.00 

Euclidean Distance 

from point (0,1) 

0.23 0.23 0.18 

 

For Lipschitz number criterion, the diagnostic accuracy of 86.81% was achieved for the 

unregularized method, whereas a small proportion of diagnostic error 13.19% has been 

observed for the total test group of 210 subjects.  An 87.14% sensitivity, 85.71% 

specificity and 95.31% of positive prediction were evaluated for the designed model 

structure.  The area under the ROC curve (AUC) was 76.2%.  The regularized method 

illustrates 85.71% of accuracy in diagnosis while 14.29% is the indicated diagnostic 

error. Overall, the designed model structure has 87.14% sensitivity, 80.95% specificity 

and the positive prediction was 93.84%. The performances were measured based on the 

receiver operating characteristic (ROC) curves. 

The overall performance of NARX model with unregularized approach is as shown in 

Table 6.  The area under the ROC curve (AUC) was 76.20% is shown in Figure 8 

(Lipschitz number).  The closest ED is depicted from the ideal point (0,1) as 0.19 when 

the optimized model has a threshold of 0.4. 
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Figure 8:  ROC curve for Lipschitz number criterion using NAR unregularized model 

 

The ROC curve for the Lipschitz number criterion with regularized approach is shown in 

Figure 9.  The total AUC can be derived by combining the individual area with respect to 

the labeled thresholds in the figure.  For Lipschitz number criterion, AUC is 80.6%.  The 

closest ED is depicted from the ideal point (0,1) as 0.23 when the optimized model has a 

threshold of 0.4. 
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Figure 9:  ROC curve for Lipschitz number criterion using NAR regularized model. 
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V. CONCLUSIONS 

 

Using SPSS analysis, it was found that the work presented has successfully modeled 

heamoglobin status using selected physiological parameters (i.e. gender, vomiting, 

weight and day of fever) and BIA parameters (i.e. reactance). 

The best model produced by the multilinear regression using four variables (gender, 

weight, reactance and vomiting) only yields an accuracy of 43%.  This model can be 

written as follows: 
ε+++++= )(19.0.)(047.0)(029.0)(309.1012.6 vomitingreactweightgenderHb  

NAR model has produced AUC of 72.60% using Lipschitz number with unregularized 

method but the AUC was improve by using the regularized method (80.60%) 

The model accuracies in predicting the haemoglobin status, to indicate the dengue 

progressions, ranges from 43% (using the multilinear regression) to 80.60% (using NAR 

model). 
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