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Abstract- Use of smart sensor technology along with intelligent signal processing plays a crucial role in 

the implementation and working of ultrasonic wave based damage detection system. In this work, the 

interaction of A0 Lamb mode with damages like crack and delamination are studied. Piezoelectric 

Wafer Active Sensors (PWAS) are used for generation of Lamb waves to detect damages in metal and 

composite structures. Experiments were conducted on aluminum plates to study the interaction of 

Lamb wave with crack oriented at different angles and on a titanium turbine blade of complex 

geometry with a fine surface crack. A geodesic based Lamb wave approach was employed to locate a 

crack in an aluminum plate. The existing geodesic algorithm is improved by replacing the Dijkstra's 

algorithm with the accurate fast marching method. Further, the interactions of A0 mode with multiple 

layer delaminations in glass fiber epoxy composite laminates were studied. Spectral Finite Element 

Method (SFEM) is used for numerical simulation to validate the experimental results. Time-frequency 

analysis techniques, namely Wavelet Transform (WT) and Hilbert Huang transform (HHT) are used to 

study the experimental signals and their performances were compared. This study provides significant 

insight into the problem of identifying localized damages in the structure using integrated PWAS and 

dispersion of multi-frequency signal after they interact with different types of damage. 

 
Index terms: Lamb waves, PWAS, Time-frequency analysis, Composites, Geodesics, Spectral Finite element 

method, Wavelet transform, Hilbert-Huang transform, Delamination. 
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I. INTRODUCTION 

 

Ultrasonic wave based Non-Destructive Evaluation (NDE) methods are widely used for 

interrogating structures to detect the presence of damages of various types, and in recent time, 

with a greater emphasis towards quantifying these damages. But the conventional NDE methods 

(e.g., Ultrasonic C-scan, thermography, radiography etc.) require the approximate location of the 

damage to be known a-priori and that the region being inspected is directly accessible. Further, if 

the structure is larger and of complex geometry, these NDE methods may not be really suitable 

for in-situ monitoring of structures. Lamb wave based NDE method is one which has the 

potential to meet most of these capabilities, that is, (1) large coverage area of inspection due to 

long distance propagation of Lamb waves (2) no need for direct access of the structure (3) rapid 

inspection without disassembly (4) adjustable frequency range for interrogation for various size 

of damage (few millimeter to few centimeter in size). Lamb wave based NDE is most suited for 

health monitoring of plate and shell type structure with limited extension to thin-walled beams, 

stiffeners and other parts of airframes. 

A damage detection system based on Lamb waves for Structural Health Monitoring (SHM) 

requires transducers for both excitation and sensing of elastic waves to interrogate the structures 

in order to detect, locate and characterize defects and damage. The issues of concern in this 

system are the behavior of the integrated transducers for generation of Lamb waves in the 

structure, and also the multi-modal and dispersive nature of Lamb waves. While various types of 

transducers have been explored for this purpose, the advent of piezoelectric active wafer sensors 

(PWAS) has opened a new direction to SHM applications. PWAS are small, light weight, non 

invasive and can be embedded inside or mounted on the surface of the structures. Furthermore, 

they are suitable for Lamb wave actuation and sensing especially for SHM applications of thin-

walled structures [1]. Giurgiutiu et al. [2] employed PWAS for in-situ SHM of metallic beam and 

plate structures. A one-dimensional analytical model was derived to predict the 

electromechanical impedance of the structure measured at the PWAS terminals and was shown 

that the presence of PWAS embedded in the structure has negligible effect on the 

electromechanical impedance response. Ihn et al. [3] used a piezoelectric actuator/sensor network 

for detection of fatigue cracks in metallic structures and extended their Short Time Fourier 

Transform (STFT) technique to the problem of crack growth in riveted structure [4]. Guo et al. 
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[5] studied the interaction of S0 mode with delaminations in composites and showed that the 

delamination locations corresponding to the maximum and minimum reflectivities actually 

correspond to the locations of maximum and minimum shear stresses across the interface under 

S0 mode excitation. Hurlebaus et al. [6] used a smart PVDF layer for locating the crack and 

delamination in a composite plate structure. Paget et al. [7] embedded PZT discs on composite 

laminates for damage detection. Su et al. [8] presented a comprehensive review on the use of 

Lamb waves for identification of damage in composite plate type structures. 

Damage mechanisms in composites being complicated are difficult to classify and quantify. 

Numerical modeling of wave propagation in damaged composite structures helps in 

understanding the wave interaction with damage like reflection, mode conversion etc. It also 

helps in determining the frequency, duration, shape of the acoustic signal for actuation of 

bonded/embedded piezo sensors in the structure. Efficient models are required to understand the 

wave dispersion and scattering in structures. The governing wave equations in the models are 

usually solved analytically for simple domains and by finite element method or boundary element 

method for complex domains. But these methods are computationally expensive and time-

consuming. Spectral method, in particular the time-Fourier spectral finite element method is often 

employed for efficient computation. By virtue of its domain transfer formulation using fast 

Fourier transform and enriched shape function using wavenumber-frequency information, it 

bypasses the large system size of FEM. The choice of finite element degrees of freedom in this 

method is governed mostly by the boundary details and the locations of sensors/actuators. The 

basic framework of Spectral Finite Element Model (SFEM) employed in the present paper can be 

found in ref. [9] for isotropic solid and in ref. [10, 11] for laminated composite. SFEM is ideally 

suitable for health monitoring applications such as damage identification and characterization 

using time history of Lamb wave. This can be used while formulating parameterized model of 

wave scattering due to crack and delamination type of damages.  

Signal processing techniques are essential to analyze sensor signals and extract parametric 

information regarding damages from often mixed packets of complex Lamb waves. A wide 

variety of signal processing methods are currently available, namely the time-series analysis, 

frequency analysis and time-frequency analysis. Time-series methods cannot separate defect 

scattered composition appropriately from a raw signal containing all parts with various different 

frequencies. In the frequency domain analysis, we loose the time information, such as arrival 
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time, wave packet dispersion etc. This problem compels one to combine the time domain 

information along with the frequency domain information resulting in time-frequency analysis. A 

time-frequency representation of a signal provides information about how the spectral content of 

the signal evolves with time, thus providing an ideal tool to analyze and interpret non-stationary 

signals. This is performed by mapping a one-dimensional signal from the time domain to a two-

dimensional time-frequency space. A variety of methods for obtaining the energy density of a 

function, simultaneously in the time and frequency have been developed, most notably the Short 

Time Fourier Transform (STFT), Wigner-Ville distribution (WVD), Wavelet Transform (WT) 

and Hilbert Huang Transform (HHT).  

Prosser et al. [12] used Wigner-Ville distribution (WVD) to study dispersion of Lamb waves in 

composite plates. The drawback of WVD compared to other time-frequency representation 

methods is the presence of cross energy terms, which make time-frequency analysis difficult. The 

cross terms in WVD is taken care by performing reassignment performance on the smoothed 

WVD, but the calculations are computationally intensive, difficult to implement and time 

consuming [13]. Kuttig et al. [14] combined chirplet transform with a modified correlation 

technique to locate the notch in an aluminum plate. Paget et al. [7] embedded PZT sensors in 

composites and conducted experiments to study damages like delamination, impact damage and 

saw-cut damage. WT was then employed to study the experimental signals and damages were 

differentiated by looking at the wavelet coefficients. Grabowska et al. [15] used WT to study 

different damages in metallic structure and were able to differentiate fatigue crack from other 

discontinuities. Benz et al. [16] used reassigned spectogram to analyze the interaction of Lamb 

wave with a notch and proposed correlation technique to locate the notch in an aluminum plate. 

Ip et al. [17] used the Gabor wavelet to extract the dominant wave group from the measured 

acceleration signals. The wave speed of the fundamental anti-symmetrical Lamb wave mode (A0) 

in an aluminum beam was determined and flexural modulus was computed in that work. Pines et 

al. [18] used HHT for health monitoring of civil structures. The signals were studied using HHT 

and the changes in frequency and magnitude were used to characterize the damage in the 

structure. It was found that in HHT, serious problems of the spline fitting can occur near the end 

points, where the cubic spline fitting can have large swings. These end swings can eventually 

propagate inward during Empirical Mode Decomposition (EMD) and corrupt the whole data, 

especially in the low frequency band. The problem of end effects in HHT was analyzed and a 
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method was proposed to remove the end swings in the intrinsic mode functions [19]. Time-

frequency analysis of transient dispersive waves was carried out by Apostoloudia et al.} [20] and 

the performances of WVD, WT and HHT were compared by analyzing the flexural waves in 

beams subjected to an impact load.  

The work presented in this paper encompasses extensive experimental investigations to study the 

interaction of Lamb waves generated using PWAS with different types of discontinuities /defects 

in metallic as well as composite structures. This included an aluminum plate with crack like 

defects oriented in different directions, an actual turbine blade made of titanium alloy with a tight 

surface crack and glass fiber reinforced epoxy composite beam with delaminations in multiple 

layers. Time-frequency signal processing techniques namely, WT and HHT are applied to the 

signals obtained experimentally in order to study the dispersive nature of Lamb waves and to 

extract information about damage present in the structure. The time of flight information from the 

damage obtained using WT is then used with geodesic algorithm to locate a crack in an 

aluminum plate. Spectral Finite Element Method (SFEM) is used to model wave propagation in a 

composite beam structure with delamination. Results obtained from the experiments conducted 

on glass-epoxy composite beam specimen are validated using the SFEM results. The interaction 

of A0 mode with delamination present in multiple layers and the variation of wavelet coefficients 

of the signal with the number of delamination are studied. In addition, the unwrapped phase 

variation of the intrinsic mode functions obtained using HHT with delaminations is also studied.    

 

II. TIME-FREQUENCY ANALYSIS 

 

When measured data contain damage events of the structure, it is important to extract the 

maximum information regarding damage. Time-Frequency representation enables one to 

understand the signal behavior by creating a frequency estimate at each instant in the signal and 

thus provides a better understanding of the evolution of the frequencies. In this paper, two 

techniques namely, the WT and HHT is considered while studying stationary damage and its 

interaction with dispersive and non-stationary, but linear signals consisting of fundamental A0 

Lamb wave mode. 

 

a. Wavelet Transform (WT)} 
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In WT, a varying window function is used, which can be dilated and compressed, which is called 

the mother wavelet. A wavelet is defined using two parameters: a scaling parameter a, which is 

the inverse of frequency and a translation parameter b, which translates the window function 

across the time axis. The continuous wavelet transform of a signal f(t) is given by 

( ) ( ) *1ˆ , ,j t
WT

t bf a b f t e dt
aa

ωψ
+∞

−

−∞

− =  
 ∫  (1) 

where ψ  is the wavelet function. WT overcomes the resolution problem of STFT by letting the 

resolution of both the time and the frequencies vary in the time-frequency plane in order to obtain 

a multi-resolution map.  

 

b. Hilbert Huang Transform (HHT) 

HHT [19] is suitable for analyzing both nonlinear and nonstationary signals in the time-frequency 

plane. This method is adaptive, which makes it superior compared to other methods of time-

frequency analysis. HHT consists of two parts, one is the Empirical Mode Decomposition (EMD) 

and the other part is the Hilbert transform (HT). The objective behind EMD is to decompose a 

measured response signal x(t) into intrinsic mode functions (IMF’s) that admit well-behaved 

Hilbert transforms. The instantaneous frequency is obtained by applying HT to each IMF 

obtained from EMD. The HT of a signal f(t) is given by 

( ) ( )( ) ( )1 ,
f

y t HT f t PV d
t
τ

τ
π τ

+∞

−∞

= =
−∫  (2) 

in which PV indicates the Cauchy principal value of the singular integral. A complex analytic 

signal z(t) is then formed as 

( ) ( ) ( ) ( ) ( ) ,i tz t f t iy t a t e θ= + =  (3) 

where 1i = − , ( ) 2 2a t f y= + and ( ) ( )1tan yt fθ −= . Here, a(t) is the instantaneous 

amplitude, θ  is the phase function and the instantaneous frequency is d dtω θ= . The limitations 

in the above steps are that they do not have a proper mathematical basis compared to other time-

frequency analysis. Also there are numerical convergence issues in getting the IMF’s. Another 

drawback is the use of spline functions in the EMD, which introduces spurious low frequency 

oscillations at the beginning and end of the signal time window. 
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III. SPECTRAL FINITE ELEMENT MODELING OF ELASTIC WAVE 

PROPAGATION IN COMPOSITE BEAMS 

In the present work we are interested in propagation of flexural or A0 mode in the composite 

beam structure. The kinematics and field variables chosen for SFEM modeling are based on the 

A0 mode only. Substituting the displacement field variables in the governing differential 

equations for a particular wave propagation problem [10], one obtains the characteristic equation 

in the frequency-wavenumber ( ),kω  space 

( ) ( ) ( ) { } { }
1

ˆ, , , 0 ,j
N

i k x t
j j n j

n
u x t u e F k uω ω− −

=

 = = ∑    (4) 

where u is the displacement, ju  is the wave amplitude. This yields a sixth-order characteristic 

equation in jk  given by 

( )ˆ , 0, , 1, 2,.... .j n nDet F k n Nω ω  = ∀ =   (5) 

Procedure to solve this equation in order to find the wavenumbers ( )j nk ω  can be found in Refs. 

(Karunasena et al. [24]; Mahapatra and Gopalakrishnan [25]; Gopalakrishnan et al.} [26]). In the 

following sections, we shall use the notation ( ).̂ for Fourier transformed quantitities and ( ). for 

its amplitude (wave coefficients). 

 

a. Spectral Finite Element Modeling Approach 

In this approach, one is able to utilize the dispersion branches over a suitably broad frequency 

band. The accuracy of the wavenumber dispersion curves for the problem of Lamb wave 

propagation in beams and plates depends on the adequate kinematic description of the motion of 

the material points according to the definition of Lamb wave modes. In most engineering 

problems, a first-order or third-order shear deformation theory gives sufficiently accurate 

dispersion curves for the first two Lamb wave modes. After computing the wavenumbers ( )j nk ω  

for a particular sampling frequency nω , the displacement vector at a material point is written as 

( )
( )

( )
( )

[ ] ( )
0

11 16 1

21 26

31 36 6

ˆ , ...
ˆ ˆ, , , , ... , ,

ˆ ...,

n

n n n

n

u x R R u
u x z w x z R R T x u

R R ux

ω
ω ω ω

φ ω

     
     ′ ′= = Λ =    
        







 (6) 
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where [ ]′Λ  is a diagonal matrix with exponential entries ( )jik xe−  [27]. The number of rows in [R] 

corresponds to in-plane displacement, transverse displacement and first-order rotation. The 

number of column in [R] depends on the completeness of the wave modes. These wave modes 

are independent and hence they are automatically obtained by solving the singular value problem 

in Eqn. (4) in the polynomial eigen value framework. Here, the first two are for in-plane wave in 

positive and negative x-direction and the rest of the four are two propagating components of 

flexural-shear wave and two attenuating components. The type of attenuation and direction of 

propagation depend on the real and imaginary parts of jk  and its sign. By evaluating Eqn. 6 at 

the element nodes at x=0, L (for one-dimensional element) the element nodal displacement vector 

can be expressed as 

( )
( )

0
,

ˆ .
,

n xe

n x L

T x
u u T u

T x

ω

ω
=

=

′ 
′′= = 

′  
   (7) 

The non-singular complex matrix T ′′ represents the local wave characteristics of the displacement 

field. Eliminating the unknown wave coefficient amplitude vector u from Eqn. (6) using Eqn. (7), 

the generic displacement field ( )ˆ , nu x ω can be expressed in terms of the nodal displacements as 

( ) ( ) ( )1ˆ ˆ ˆ, , , ,ee e
n n nu x T x T u N x uω ω ω−′ ′′= =  (8) 

where ( ), nN x ω is the exact/enriched spectral element interpolation function matrix. Next, the 

natural boundary conditions are evaluated for x=0, L which yield the element nodal force vector 

ˆ ef as 

( ) ( ) ( ) ( )0 0 1ˆ ˆˆ ˆ ,x xe e e e
n n n n

x L x L

Q R Q R
f T u K u

Q R Q R
ω ω ω ω= = −

= =

′ ′ ′′ ′′− Λ − Λ 
′′= = ′ ′ ′′ ′′− Λ + Λ 

 (9) 

where ( )ˆ e
nK ω  is the spectral finite element stiffness matrix and it is a complex matrix function 

of frequency unlike the form 2M Kω− + as obtained via hp-FEM with polynomial space 

interpolation. Q′  and Q′′are both real matrices whose entries are the functions of the cross-

sectional stiffness. ′′Λ  is a diagonal matrix obtained as 

.jj jjx
∂′′ ′Λ = Λ
∂

 (10) 
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For those kinematic descriptions of material points in the plane of wave propagation (e.g., higher 

order beam, plate and layered system) where the complete wave vector is to be considered 

instead of a scalar wavenumber as in case of simple beam, it is not always possible to construct 

an exact spectral element. However, it is possible to construct an enriched spectral element for a 

given h-p refinement using incomplete set of dispersion curves ( ),k ω [28]. In the next section we 

discuss the SFEM for modeling Lamb wave interaction with delamination. 

 

 

 

 

 

 

 

 

 

       (a)                 (b) 

Figure 1.  (a) Modeling of an embedded delamination with base-laminates and sub-laminates (1D 

waveguide). Waveguide 1-2: base-laminates; Waveguide 3-4: sub-laminates. (b) Force balance at 

the interface between base-laminate and sub-laminate elements 

 

IV. MODELING OF WAVE PROPAGATION THROUGH DELAMINATED BEAMS 

 

The location of the nodes of the spectral elements for a delaminated beam is shown in Fig. 1a. In 

the absence of delamination, a single spectral element between node-1 and node-2 is sufficient. 

This is of great advantage that a very small system of equations is to be solved at each frequency 

while adopting a suitable parameter estimation scheme like neural network, genetic algorithm 

(see [27, 29, 30]) etc. The presence of delamination, when treated as structural discontinuity by 

neglecting the effect of stress singularity at the delamination tip, increases the number of 

elements from one to four. Six more nodes are introduced to model individual base-laminates and 

sub-laminates. For the sub-laminate-elements (element-3 and 4), the nodes are located at the mid-

plane of the sub-laminates, and element lengths are equal to the length of the delamination. The 
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kinematic assumption for the interface of base-laminate and sub-laminates is that the cross-

section remains straight, that is, the slope is continuous and constant at the interface. Under this 

assumption, one obtains the following kinematic relationship between the nodal degrees of 

freedom: 
0 0 0
3 4 2 4 2 4

3 3 4 4 4,

3 4 4

ˆˆ ˆ ˆ1 0
ˆ ˆ ˆ ˆ ˆ0 1 0

ˆ ˆ ˆ0 0 1

u u h h u
u w w w S u

φ

φ φ φ

     +  
       ′= = = =      
            

 (11) 

0 0 0
5 4 2 4 2 4

5 5 4 4 4

5 4 4

ˆˆ ˆ ˆ1 0
ˆ ˆ ˆ ˆ ˆ0 1 0

ˆ ˆ ˆ0 0 1

u u h h u
u w w w S u

φ

φ φ φ

     − − 
       ′′= = = =      
            

 (12) 

for the left interface of the delamination, and similarly, 

6 7 8 7ˆ ˆ ˆ ˆ,u S u u S u′ ′′= =  (13) 

for the right interface of the delamination (see Fig. 1). 

For the equilibrium of forces at the left interface AB (Fig. 1b), one can derive the following force 

balance equation in frequency domain as 

( )
( )
( )

( )
( )
( ) ( )

( )
( )
( ) ( )

4 3 5

4 3 5

4 3 2 3 5 1 5

ˆ ˆ ˆ0 0 0
ˆ ˆ ˆ0 0 0 ,
ˆ ˆ ˆ ˆ ˆ 0

n n n

n n n

n n n n n

N N N

V V V

M M h N M h N

ω ω ω

ω ω ω

ω ω ω ω ω

                         + + + + =           
           −               

 (14) 

where ˆ ˆ ˆ, ,N V M stand for frequency domain axial force, shear force and bending moment, 

respectively. Equation (14) can be rewritten in matrix form as 

4 3 5
ˆ ˆ ˆ 0.T Tf S f S f′ ′′+ + =  (15) 

Similarly, from the equilibrium of the right interface CD, one has 

7 6 8
ˆ ˆ ˆ 0.T Tf S f S f′ ′′+ + =  (16) 

After a finite element assembly of Eqns. (9), (15) and (16), one has the global system equation: 
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( )

( )

(1) (1)
11 12

(1) (4)
22 11(1) (4) (3)

21 12 12(3)
11

(2) (4)
11 22(4) (3) (2)

21 21 12(3)
22

(2) (2)
21 22

ˆ ˆ 0 0
ˆ ˆ

ˆ ˆ ˆ 0
ˆ

ˆ ˆ
ˆ ˆ ˆ0

ˆ

ˆ ˆ0 0

T
T T

T

T
T T

T

K K

K S K S
K S K S S K S

S K S

K S K S
S K S S K S K

S K S

K K

 


 ′ ′ +
′ ′ ′′ ′′+   ′′ ′′+  


 ′ ′+ ′ ′ ′′ ′′+    ′′ ′′+ 




1 1

4

7

2 2

ˆˆ
ˆ 0

.
ˆ 0

ˆˆ

u f
u
u
u f


          × =   

   
       




 (17) 

Performing stationary condensation at each sampling frequency ( )nω for the degrees of freedom 

at the internal nodes-4 and 7, the final form of the equilibrium equation for the delaminated beam 

is obtained as 

( ) ( )
( )

( )
( )

11

2 2

ˆˆˆ ,ˆˆ
nn

n
n n

fu
K

u f

ωω
ω

ω ω

     =   
     

 (18) 

where K̂  is the effective dynamic stiffness matrix for the spectral element with embedded 

delamination. Now, one only needs to replace an usual spectral element with this {\it spectral 

element} with embedded delamination wherever a possible delamination may exist, keeping the 

original FE mesh unaltered. The parameters hidden inside are ( )1 2 1 2, , ,h h L L , see Fig. 1. Hence, it 

is evident that insertion of this parameterized element with a modular approach is very much 

suitable for faster modeling and simulation. 

 

V. EXPERIMENTAL DETAILS 

 

The experimental setup consists of a NI-PXI 6115 DAQ card, preamplifier and voltage amplifier. 

The schematic of the experimental setup is shown in Fig. 2. Using analog output of the NI-DAQ 

card, a tone burst signal was generated. This signal was further amplified using a voltage 

amplifier and applied to the PWAS transmitter for generation of Lamb waves in the structure. 

The low energy waves picked up by the PWAS receiver was amplified by the inbuilt low noise 

high frequency preamplifier. The NI-DAQ card was used to collect the signal from the pre-

amplifier and signal was stored in the computer for further signal processing. The Labview 

software was used to filter the unwanted noise from the signal. The PWAS sensors (APC 850) 

used were 10mm in diameter and 1mm in thickness. 
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Figure 2.  Schematic diagram of the experimental setup 

 
Figure 3.  Schematic diagram of the aluminum plate with various different notch configurations. 

 

a. Aluminum plate with crack 

Experiments were carried out on an aluminum plate of dimensions 600mm x 300mm x 3mm. The 

PWAS sensor was bonded at a distance of 150mm from the actuator (Fig. 3). The group velocity 

of A0 mode is obtained experimentally and is in close agreement to the theoretical values as 

shown in Fig. 4. Damages in the aluminum plates were introduced by machining 0o, 45o and 90o 

through thickness crack of dimensions 50mm length and 3mm width at a distance of 300mm 

from the left end of the structure. The A0 Lamb wave mode acquired by the sensor for various 

angle cracks is shown in Fig. 5. A similar numerical study with different crack orientations was 

carried out by Kogl et al. [31] and they used the higher harmonics of the excitation frequency 

introduced by the nonlinearity of the defect to locate the crack. WT is applied and the continuous 

wavelet transform of the signals are shown in Fig. 6. The contour plot of the wavelet coefficients 

indicates clearly the location of defect and also by looking at their magnitude the orientation of  
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Figure 4.  Dispersion curve for aluminum - experimental and theoretical A0 mode group velocity. 

 
Figure 5.  Experimental study of wave propagation in aluminum plates with different crack 

orientation. 

the defect in the plate structure can be correlated. The wavelet coefficients of the signals are 

computed at 200KHz and is shown in Fig. 7. The amplitude of the wavelet coefficients of the 

reflected wave from defect is high for 0o, 45o orientation of crack and less for 90o crack. In the 

case of 0o, 45o crack configurations, the interaction of waves with crack results in decrease in the 

magnitude of wavelet coefficients of the reflected wave packet from the free boundary of the 

plate. For 90o crack the high magnitude value of the wavelet coefficient of the reflected wave 

from the free boundary of the plate indicates that more energy is transferred across the crack as  
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Figure 6.  Time-frequency map obtained from sensor signal for Aluminum plate with different 

crack configurations: Contour shows the continuous wavelet transform coefficients of the signals. 

 
Figure 7.  Aluminum plate with various different crack configurations: Wavelet transform 

coefficients of the signal at 200 KHz. 

there is less interaction of waves with notch. The HHT is then applied to the acquired signals 

shown in Fig. 5 and the first intrinsic mode function (IMF) is shown in Fig. 8. The first IMF 

captures the highest frequency components present in the signal and removes the unwanted lower 

frequency components. In this case, the highest frequency is close to 200KHz from the higher 

side of the narrow bandpass filter used. The instantaneous phase is computed only for the first  
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Figure 8.  First Intrinsic Mode Function (IMF) of the sensor signal for Aluminum plate with 

various different crack configurations. 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Evolution of unwrapped phase of sensor signal obtained by HHT for various crack 

orientations. 

IMF and the phase information is used as a damage detection tool. Unwrapped phase is then 

computed in order to obtain a monotonically increasing phase function with time. The local 

change in slope of the unwrapped phase is related to the presence of damage in the structure. The 

unwrapped phase of the IMF1 for each crack configuration is computed and is shown in Fig. 9. 

The unwrapped phase also indicates the number of oscillations of the wave and the increase in 

slope of unwrapped phase variation for 0o and 45o is attributed to the presence of more reflection 
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of waves from the crack. In the case of 90o crack, the reflection of waves from notch is very small 

and the slope of unwrapped phase variation is below the other crack configurations. From this 

plot, we can conclude that the reflection from the damage is interpreted by a slope change in the 

Hilbert phase and the slope change appears to be dependent on the size and orientation of the 

crack as seen in the Fig. 9. Thus, the Hilbert phase allows the size and orientation of damage to 

be determined. These results give us an insight regarding the interaction of the A0 mode with 

crack of different orientations. 

 

 

 

 

 

 

 

 

Figure 10.  A gas turbine blade made of Titanium with a poorly visible fatigue crack at the 

surface. 

 

 

 

 

 

 

 

 

 

Figure 11.  Signal picked up by sensor in titanium blade with crack. 

b. Detection of small surface cracks in Gas turbine blades 

Experiments were carried out on a gas turbine blade made of titanium with a complex geometry 

as shown in Fig. 10. The damage in the form of surface crack was induced by fatigue loading. In 

order to suppress the reflection from the edges of the blade, modeling clay was applied on the  
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        (a)              (b) 

Figure 12.  Time-frequency map obtained from sensor in the titanium blade with crack (a) 

Continuous wavelet transform (b) Hilbert Huang transform. Color bar indicates the magnitude of 

the WT or HHT coefficient 

edges to absorb the unwanted reflections. The PWAS for actuation was bonded at the right end of 

the blade to excite the Lamb wave mode in the structure. A Hanning window toneburst signal of 

4 cycles centered at 100KHz was applied to the PWAS. The generated wave picked up by the 

sensor at 25mm from the actuator is shown in Fig. 11. The continuous wavelet transform and the 

Hilbert energy density of the signal is shown in Fig. 12a and 12b, respectively. The contour map 

of both WT and HHT clearly indicates the reflection from the crack in the time-frequency plane. 

The group speed of the A0 mode is determined experimentally to be 2000m/s from the time of 

flight information. Using the group speed value of Lamb wave mode, the location of the crack is 

found out to be 86.5mm from the actuator. The location of the crack position was then 

determined using eddy current testing method and the crack was located at 90mm from the 

actuator position. The eddy current and Lamb wave results are close to each other and the 

difference in the crack location can be attributed to the assumption of constant group velocity in 

turbine geometry with varying thickness and curvature along the length of the blade.  

The results in this section show that Lamb waves along with time-frequency analysis methods 

can be used for extracting damage information's like defect orientation and time of flight 

information. In the next section, a geodesic based Lamb wave approach using the time of flight 

information from damage is employed to identify the damage location in a metallic plate 

structure. 
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VI. LOCATION OF A CRACK IN AN ALUMINUM PLATE USING GEODESIC METHOD 

 

The geodesic approach proposed by the authors [32] has been used in this work to locate the 

defect in the structure. In the present work the geodesic algorithm is improved by replacing the 

simpler Dijkstra's algorithm with fast marching method (FMM) to compute accurately the 

discrete geodesics in the discretized structure. The drawback of Dijkstra's algorithm is the 

geodesic path was restricted to the triangle edges, and sometimes it can lead to incorrect results. 

In fast marching method the geodesic path can pass through the triangular faces of the mesh and, 

thus the shortest path obtained between two points in a triangular mesh using FMM is more 

accurate than Dijkstra's algorithm. The geodesic algorithm involves a two step strategy of first 

computing the discrete geodesics numerically using FMM followed by locating the damage 

through the intersection of these geodesics from the sensor array based on voronoi diagram 

concept. 

 

a. Geodesic formulation 

Let 1 2,t t  be the time taken by the wave generated from the damage S to reach the sensors S1, S2 

respectively. The difference in time for the wave reaching the two sensors given by 1 2dt t t= −  is 

proportional to distance difference between the source and the sensors. Hence, the governing 

equation is given by, 

( ) ( )1 2 .D S S D S S Vdt− − − =  (19) 
where V is the velocity of the wave in the structure. The only unknowns in the Eqn. 19 are the 

locations of the damage. Hence by forming enough distance-time-difference equations we can 

solve for the damage location. This can be seen as an implicit function, 

( ), , 0.D V dtΦ =  (20) 
The above Eqn. 20 combines the information from geometry of the surface (geodesics) and the 

information from the material (velocity), with the experimental observation (dt). The geodesics 

{D} in above formulation are computed numerically on the triangular mesh using FMM.  
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b. Fast marching method (FMM) 

Fast marching method is a numerical algorithm introduced by Sethian [33] to study the motion of 

propagating interfaces. FMM on triangulated surfaces was proposed by Sethian and Kimmel [34] 

to compute the shortest path between two points in the mesh. The general idea for FMM was 

borrowed from the graph theory and is a direct extension of Dijkstra's algorithm. FMM computes 

for each point x on the mesh the time of arrival T(x) of the wave front originating from the source 

node x0. The initial approximation of T(x) is, like in Dijkstra’s algorithm, zero at x0 and infinity 

elsewhere. The algorithm classifies the points of the mesh into three categories (Fig. 13). Black 

points are points where the arrival time has been computed and since the wave front is assumed 

to propagate only in forward direction these values are not going to change in the future. Gray 

points are unprocessed points, for which the arrival time has not been computed yet. White points 

are those belonging to the propagating wave front, which can be considered an interface between 

the black and the gray regions of the mesh. Initially, only the source x0 is marked as black and all 

points adjacent to it are marked as white. The remaining points are marked as gray. Like 

Dijkstra's algorithm, at each iteration we process the white point with the smallest value of T(x) 

by updating the approximation of all the non-black points in triangles sharing it. The white point 

is then tagged as black and the updated adjacent points are tagged as white. The process 

continues until all points become black. In geodesic algorithm, FMM is used to compute the 

shortest path accurately from the sensor nodes to other nodes in the mesh.  

 

 

 

 

 

 

 

 

 

Figure 13.  Fast marching method algorithm.. 
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c. Voronoi diagram concept 

The second part of the algorithm is the construction of voronoi like diagram to locate the damage 

using the intersection of geodesics from the sensors. The implementation of Voronoi diagram 

concept is explained below. For a given mesh, 

1) Let nk be the thk  node in the mesh, 

2) D(nkSi) be the distance between thk node and thi sensor and, 

3) ( )ijDk S be the difference in distances of a node k from sensors Si and Sj,  

i.e., ( ) ( ) ( ).ijDk S D nkSi D nkSj= −  

4) Voronoi line between any two sensors Si and Sj is formed by nodes which satisfy the condition 

that ( )ij ijDk S Vdt=  where, ijdt  is the hit arrival-time difference between the sensor Si and Sj and 

D's are geodesic distances and the corresponding line can be seen as set of these nodes which is 

given by 

( ){ }| .ij ij ijL nk Dk S Vdt= =  (21) 

5) The intersection point or damage location in the set ijL  is given by  

( ){ }12 23 13| .S n L L L= ∩ ∩  (22) 
6) For surfaces, which are intrinsically 2-dimensional in parametric space, only two of the above 

sets are to be included for getting the source node. 

The geodesic approach discussed above is validated by performing experiments on an aluminum 

plate and the accuracy of the algorithm in locating the crack position is studied. 

 

d. Experimental details 

Experiments were conducted on an aluminum plate of dimensions 400mm x 400mm x 1.6mm. 

The PZT sensors S1, S2, S3, S4 were bonded at locations (x1=0mm, y1=0mm), (x2=0mm, 

y2=400mm), (x3=400mm, y3=400mm), (x4=400mm, y4=0mm) respectively on the plate. 

Damage in the form of crack of length 25mm is introduced in the plate as shown in the schematic 

diagram (Fig. 14). A narrowband Hanning window toneburst signal of five cycles centered at 

100KHz was applied to the sensor to generate the A0 Lamb wave mode in the structure. Huang et 

al. [35] experimentally showed the transduction mechanism affects the axi-symmetric nature of 

Lamb wave modes excited by the circular PWAS source. However these effects are not  
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Figure 14.  Schematic diagram of the aluminum plate with crack. 

 

 

 

 

 

 

 

 

 

 

Figure 15.  Healthy structure- Signals acquired by the sensors S1, S3, and S4 when sensor S2 is 

excited. 

 

dominant, if PWAS is excited with frequencies away from their natural frequencies and they can 

be safely considered as axi-symmetric sources [36]. Furthermore, we assumed that no mode 

conversion of Lamb wave modes takes place in the structure. 

The signals recorded by sensors when sensor S2 is excited for healthy and damaged structure are 

shown in Figs. 15, 16 respectively. These signals were analyzed using WT and the wavelet 

coefficients at 100KHz were computed. The wavelet coefficients of the signals acquired by 

sensor S1 for healthy ( )h WT
S t  and damaged structure ( )d WT

S t is shown in Fig. 17. The difference 

or residual of wavelet coefficients denoted by ( ) ( ) ( )r d hWT WT WT
S t S t S t= −  is computed for  
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Figure 16.  Damaged structure- Signals acquired by the sensors S1, S3, and S4 when sensor S2 is 

excited. 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  Wavelet coefficients at 100KHz of signals acquired by sensor S1 when 

sensor S2 is excited under healthy and damage conditions. 

sensor S1. In ( )r WT
S t , the direct arrivals of excitation pulses have been removed and it contains 

only the back-scattered reflection coming from the crack and also from multiple scattering 

between the crack and the boundaries in the structure (Fig. 17). The arrival time of the reflected 

waves from damage denoted by 1t  for sensor S1 is determined using WT and the same procedure 

is repeated for the other sensors. The arrival-time difference information between the sensors 

( 13 14 34, ,dt dt dt ) is then used along with the computed discrete geodesics on the mesh using FMM  
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        (a)              (b) 

Figure 18.  Aluminum plate with crack: Location of damage computed using the algorithm by 

excitation of (a) Sensor S2 (b) Sensor S4. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19.  Aluminum plate with crack: Location of damage computed using the all the sensor by 

geodesic algorithm. 

from the sensors to locate the crack. The shortest path taken by the wave from the sensors and 

their intersection gives the location of the defect as shown in Fig. 18a. The same procedure is 

repeated for the other sensors and the result for sensor S4 is shown in Fig. 18b. Finally, all the 

sensors results were combined together and the location of the defect was estimated quite 

accurately as shown in Fig. 19. The crack center location computed by the algorithm is given by 
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(x=185mm, y=176mm) and the result shows a deviation of 3.9 percent from the actual crack 

center position (x0=182.5mm, y0=180mm).  

 

 

 

 

 

 

 

 

Figure 20.  Schematic diagram of the glass-epoxy composite beam with delamination. 

 
Figure 21.  Sensor signal showing the first reflected packet from delamination. 

 

VII. DELAMINATED COMPOSITE BEAM: NUMERICAL AND EXPERIMENTAL 

STUDIES 

 

The schematic diagram in Fig. 20 shows a unidirectional glass-epoxy composite beam (12 layers) 

of length 360mm and a cross-sectional area of 2.4mm thickness x 120mm width with an induced 

delamination which is considered for the experimental study. The delamination dimensions were 

chosen to be 20mm in length and 40mm in width. The delamination was simulated by inserting a 

release film between sixth and seventh layer in the beam. The center of delamination is kept at a  
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Figure 22.  SFEM modeling of composite beam with delamination: Normalized amplitude of 

transverse velocity at node 2 under narrowband excitation. 

 

 

 

 

 

 

 

 

 

 

Figure 23.  Composite beam with delamination: Continuous wavelet transform of the 

experimental signal under narrowband excitation. 

distance of 210mm from the left end of the beam. The toneburst signal centered at 50KHz was 

used to excite the PWAS actuator. The sensor was bonded at a distance of 100mm from the 

PWAS actuator and the signal picked up by the sensor in Fig. 21 shows the reflection of waves 

from the delamination.  

In order to validate the results of the above experiment, numerical simulation was carried out 

using Spectral finite element method. A unidirectional glass-epoxy composite beam of same 

dimensions as used in experimental study is considered for the numerical study. For a uni-

directional glass/epoxy composite the material properties used for calculations are: E1=30GPa, 
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E2=E3=10GPa, G12=G13=4.7GPa, G23=3.2GPa, 12 13γ γ= = 0.254, 23γ = 0.428, ρ = 2100kg/m3. A 

single frequency five cycle toneburst sinusoidal pulse modulated at 50KHz is applied 

transversely at the left end of the beam to generate the first anti-symmetric mode (A0) in the 

beam. The delamination in the beam is modeled using four spectral finite elements (Fig. 1). The 

delamination dimensions were chosen to be 20mm in length and 40mm in width. The transverse 

velocity is picked up at a distance of 100mm from the left end of the beam and is shown in Fig. 

22. Under narrowband excitation, the dispersion of the A0 mode is minimal and the reflection of 

waves from the delamination is closer to the experimental results.  

 

 

 

 

 

 

 

 

 

 

 

Figure 24.  Composite beam with delamination: Empirical mode decomposition of the 

experimental signal under narrowband excitation. 

 

WT is applied to the signal and the contour plot of the wavelet coefficients is shown in Fig. 23. 

The contour plot shows the spread of the elastic wave in the time-frequency plane and shows the 

dispersive nature of the reflected waves from the delamination. The contour plot also shows 

clearly the reflection of waves from both the ends of the delamination, thereby providing us with 

the information about its size. HHT is then applied to the signal and the first three intrinsic mode 

functions (IMF) computed using empirical mode function is shown in Fig. 24. In the first IMF, 

unwanted oscillations are removed and the envelope of the IMF shows the reflection of waves 

from delamination and edge of the beam. The amplitude of the second and third IMF is very 

small and does not provide any useful information about damage in the beam. 
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Figure 25.  Schematic diagram of the glass-epoxy composite beam with multiple delamination. 

 

 

 

 

 

 

 

 

 

 

 

Figure 26.  Quasi-isotropic composite beam with delaminations: Time signal picked up by sensor 

S1 bonded on top surface of the beam. 

 

a. Multi-layer delamination 

Further experiments were conducted on a glass-epoxy composite [0/90/45/-45/0/90]S beams of 

length 360mm and having a cross-sectional area of 2.4mm thickness x 120mm width. Three 

different cases of delamination were studied by actuation of the A0 mode with central frequency 

of 50KHz in the beam. In the first case, a delamination of size 40mm x 40mm was simulated by 

inserting the release film between the third and fourth layers from the top surface of the beam. In 

the second case, two release films of size 40mm x 40mm and 30mm x 30mm were inserted  
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Figure 27.  Quasi-isotropic composite beam with delaminations: Time signal picked up by sensor 

S2 surface bonded on bottom surface of the beam. 

 

 

 

 

 

 

 

 

 

(a)              (b) 

Figure 28.  Wavelet transform coefficients at 50KHz (a) Sensor S1 (b) Sensor S2. 

 

between the third and fourth, fourth and fifth layers of the beam respectively. In the third case, 

three release films of size 40mm x 40mm, 30mm x 30mm, 20mm x 20mm were inserted between 

the third and fourth, fourth and fifth, fifth and sixth layers of the composite beam respectively. 

The schematic diagram of the composite beam is shown in Fig. 25. The sensors S1 and S2 were 

bonded on the top and bottom surfaces of the beam at a distance of 100mm from the actuator, 

respectively. The sensor S1 bonded on the top surface was closer to the delamination than sensor  
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(a)              (b) 

Figure 29.  Unwrapped phase of IMF1 (a) Sensor S1 (b) Sensor S2. 

 

S2. The signals picked up by sensor S1, S2 are shown in Figs. 26, 27 respectively. From the Fig. 

26, it can be seen that the amplitude of reflection of waves from the delamination picked up by 

the sensor S1 showed less variation. This can be attributed to a weak interaction of the A0 mode 

with the delamination. In the case of sensor S2, the amplitude of reflection of waves increased 

with the number of delamination (Fig. 27) and this is due to more interaction of the A0 mode with 

the delamination. WT is applied to the sensor signals S1 and S2. The wavelet coefficients at 

50KHz is computed and plotted in Fig. 28. The variation of the wavelet coefficients for S1 with 

the number of delamination layers was not significant. In the case of S2, the variation of the 

wavelet coefficients increased with the number of delamination layers. HHT is then applied to the 

signals picked up by S1, S2 and the IMFs of the signals are computed. The unwrapped phase is 

computed only for IMF1 and the variation of phase with time for sensors S1, S2 is shown in Fig. 

29. The local changes of slope of the unwrapped phase of signals indicate the presence of 

delamination in the beam. The unwrapped phase slope is initially constant across the incident 

signal, then a jump occurs showing the presence of damage and again the slope is constant across 

the reflected waves from delaminations. In the case of HHT, the reflection of waves from 

delamination picked up by sensors S1, S2 is clearly observed in the unwrapped phase plot 

compared to the WT.      
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VI. CONCLUSIONS 

 

Lamb wave propagation methods were employed along with time-frequency signal processing 

techniques for damage detection in metallic as well as composite structure with realistic damage 

situations. Experiments were conducted on aluminum plates with different crack configurations 

and the signals analyzed in the time-frequency plane were able to differentiate them. In the case 

of WT, the wavelet coefficients computed at 200KHz showed that wave scattering is more for 0o, 

45o crack orientation than 90o. In the case of HHT, the unwrapped phase of the first intrinsic 

mode functions also showed that wave scattering is more for 0o, 45o crack orientation than 90o. 

Further in the experiments conducted on a titanium turbine blade with complex geometry, Lamb 

waves were able to detect a fine surface crack.  

The existing geodesic approach is improved by using FMM to compute accurately the discrete 

geodesics on the triangular mesh. The relation of geodesics to damage location problem was 

established by proving that location of damage is the first intersection point of multiple geodesics 

from the sensors. The approach was experimentally validated in an aluminum plate to identify the 

crack location.  

Experiments were then conducted on glass-epoxy composite beam specimens with delaminations 

of different sizes and at different locations. SFEM was used to simulate the Lamb wave 

propagation in composite beam with delamination and the result is in close agreement with the 

experimental result. Furthermore, the interactions of A0 mode with multiple layer delaminations 

in composite beams were studied. WT and HHT were used to analyze the experimental signals 

and were able to identify the damage location and the size of the delamination in the structure. 

Thus, Lamb waves generated by PWAS with time-frequency analysis technique could be used 

effectively for damage detection in metallic and composite structures. 
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