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Abstract-In this work we demonstrate the advantages of conformal mapping methods for the design 

of capacitive sensor setups. If the setups are modeled appropriately, the respective Laplace equa-

tions can be solved utilizing conformal mapping methods. These methods yield the equations de-

scribing the electric field of the sensor setups. The field equations contain the distinct geometric 

properties of the sensor setups. An in depth analysis of these equations permits the optimization of 

the sensor setups with respect to their sensitivities. This approach also facilitates the application of 

efficient signal processing methods. In addition, we propose a method which expands the applica-

tion range of conformal maps produced by the Schwarz-Christoffel transform. This method permits 

the analysis of more complex sensor setups. 

 
Index terms: Conformal mapping, Schwarz-Christoffel transform, Joukowski tranform, capacitance sen-

sor, electric field, blade geometry, edge geometry, sensitivity analysis. 
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I. INTRODUCTION 

 

An important aspect during the development of a sensor consists in considering the relevant 

properties of the quantity which is to be measured. As soon as these properties have been 

identified, the sensor setup can be designed appropriately. The quality of the developed sensor 

setup can be determined utilizing different approaches, e.g. by finite element methods (FEM), 

physical modeling, or test measurements with sensor prototypes. Sensor prototypes can be 

costly and are therefore rarely utilized. FEM often provide useful results for complex setups 

when analytical methods cannot be utilized. Nevertheless, analytical methods have ad-

vantages, e.g. when the influence of varying geometries on the measurement result is of inter-

est.  

In this work we analyze two different capacitive sensor setups, one for measuring the angle of 

an edge, one for measuring the quality of a blade. For each setup the Laplace equation is 

solved utilizing conformal mapping methods. Conformal maps provide an uncommon yet 

elegant way of constructing the field equations for certain types of problems which occur in 

diverse technical fields. Some current applications of conformal mapping methods are pre-

sented e.g. in [1], [2], [3], [4], and [5]. 

Conformal mapping methods map a simple reference setup to complex electrode setups. The 

respective conformal mapping functions connect the known electric field distribution of the 

simple setup to the complex one. This approach yields the analytic expression for the electric 

field of the complex setup which describes the electric field of the complex electrode setup in 

terms of the position and the geometric parameters. The main disadvantage of conformal 

mapping methods consists in their restriction to two dimensional problems. However, many 

real world problems can be approximated by two dimensional models. 

The basics of conformal mapping are given in [6] and [7]. A particularly useful method for 

obtaining conformal maps, the Schwarz-Christoffel Transform (SCT), is presented in detail in 

[8]. The SCT has been developed to map structures which form polygons, which is often the 

case in technical applications. In order to obtain a conformal mapping function through the 

SCT its parameters need to be computed. If the polygon consists of more than three corners, 

the SCT parameters cannot be computed analytically which constitutes the so-called SCT 

parameter problem [7]. We propose an approximation method based on a series expansion 

which permits the computation of an approximate analytic solution for the SCT parameter 

problem for polygons consisting of four corners or more. Thus, this method permits an in 

depth analysis of such sensor setups with respect to their geometric parameters. 
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This article is organized in three parts. The first part presents a method for constructing con-

formal maps for capacitive sensor setups containing an air gap by combining different meth-

ods. In addition the connection between conformal mapping functions and the corresponding 

electric field equations is presented. The second part illustrates the construction of conformal 

maps and the corresponding field equations for two example setups. For the analysis of the 

edge measurement setup an exact solution is obtained, while for the blade measurement setup 

the proposed approximation method is employed. The third part illustrates the advantage of 

the obtained analytical field equations by performing sensitivity analyses with respect to the 

geometric parameters of the sensor setups. 

 

II. CONFORMAL MAPPING 

 

In this section a method for the construction of a conformal mapping function for sensor set-

ups consisting of polygonal electrodes separated by an air gap is developed. In general it is 

difficult to obtain a conformal mapping function except for simple problems. There exists no 

generally applicable method for the construction of conformal maps, even though the Rie-

mann mapping theorem guarantees the existence of conformal maps [6]. Instead there exist 

various methods for constructing conformal maps for different types of problems. The most 

commonly utilized methods are presented in [6], and [9], along with the fundamentals of con-

formal mapping theory. 

Figure 1 illustrates the idea of conformal mapping. The ideal plate capacitor is positioned in 

the w-plane where lines parallel to the u-axis represent equipotentials, and lines parallel to the 

v-axis represent the lines of electrical force. The coordinates are interpreted as components of 

a complex number w = u + j v which are mapped to the z-plane with z = x + j y via a complex 

valued function z = f(w). The function z = f(w) represents the desired conformal map which 

leads to the solution of the Laplace equation. 

The proposed method combines three different conformal transforms in order to obtain a con-

formal mapping function for polygonal electrodes separated by an air gap: 

1) Schwarz-Christoffel transform (SCT), 

2) Joukowski transform, 

3) Polar transform. 
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Figure 1. The idea of conformal mapping. The region between the electrodes of the infinite 

plate capacitor in the w-plane is mapped conformally to the region between the polygon and 

the plane in the z-plane by a mapping function f(z). 

 

Each transform models a different property of a sensor setup. Linking these transforms to-

gether yields a function which conformally maps an ideal infinite plate capacitor to the meas-

urement setup. The ideal infinite plate capacitor is utilized as the reference setup due to its 

simple field structure. 

 

a. Schwarz-Christoffel Transform 

The SCT has been developed to map structures which are bounded by polygons. There are 

two variants of the SCT. One maps the upper half of a complex plane to the interior of poly-

gons and the real axis to the polygon boundary. The other maps the unit circle to the polygons 

and the circle boundary to the polygon boundary. In this paper the former SCT variant is uti-

lized which maps the upper half of the w-plane (image plane) to the polygons in the complex 

z-plane (object plane). The general equation for this SCT variant is defined by (1).  

 
(1) 

In (1) z and w represent the complex variables of the z- and w-planes respectively, the αi rep-

resent the interior angles of the polygon corners, the wi represent the so called prevertices, 

which denote the position of the images of the edges of the polygons in the image plane w. 

The prevertices and their corresponding angles define the general shape of the polygon 

whereas the parameters A and B define scaling, rotation, and translation of the polygon. In 

order to be able to compute the unknown parameters A, B and wi of the SCT it is necessary to 

construct an appropriate model of the problem. This can be achieved, e.g. by taking advantage 

of the symmetry of the original problem and using the method of images. The SCT parame-

ters are then computed by comparing the positions of the polygon corners in the z- and w-

plane.  
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b. Joukowski Transform 

The Joukowski transform introduces gaps into closed contours. Alternatively, it can also be 

utilized to model the potential of a closed contour with two corners. Its general form is de-

fined by (2). 

 
(2) 

In (2) z and w represent the complex variables of the z- and w-planes, and the parameter d 

represents the gap length. The gap is centered at the origin of the w-plane and can be posi-

tioned by adding a complex valued constant to (2). The Joukowski transform is utilized to 

introduce an air gap into the mapping function. 

 

c. Polar Transform 

The polar transform introduces two different potentials into the mapping function. Its general 

form is defined by (3). 

 (3) 

In (3) z and w again represent the complex variables of the z- and w-planes. 

 

These three transforms represent the elements which comprise the conformal mapping func-

tion which maps the ideal plate capacitor to a sensor setup. The transforms are actually ap-

plied in reverse order. First, the conformal mapping function applies the polar transform to the 

ideal plate capacitor. This maps the capacitor electrodes in the w-plane to the real axis of an 

intermediate complex plane where the electrodes touch at the origin and form an uninter-

rupted line. Next, the Joukowski transform maps the line to another intermediate complex 

plane where the electrodes are separated by a gap centred at the origin. Finally, the SCT maps 

the broken line from the real axis to the electrodes of the sensor setup model in the z-plane.  

Several intermediate complex planes are utilized during the construction of the mapping. Dif-

ferent coordinate sets describe the different intermediate complex planes. In order to simplify 

the notation during the construction of the conformal mapping function z=f(w), the variable w 

is repeatedly substituted for the right sides of (3) and (2) instead of introducing different com-

plex variables. However, the illustrations of the intermediate planes are labelled utilizing dif-

ferent variables in order to distinguish them properly. 

Equation (4) connects the field equation describing the electric field to the conformal mapping 

function. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 5, NO. 1, MARCH 2012 

40



 
(4) 

In (11) E(z) and φ(z) respectively represent the electric field and the potential distribution in 

the z-plane, ψ(w) represents the potential distribution in the w-plane, and f(w) represents the 

conformal mapping function. The derivation of this relation can be found in [6] or [10]. 

The potential distribution ψ(w) depends on the choice for the reference setup. In this case the 

ideal infinite plate capacitor is utilized, for which ψ(w) is well known. If the potential of the 

electrode at v=0 is set to zero and the potential of the electrode at v=d is set to V then (5) de-

fines ψ(w) where d represents the distance between the electrodes of the ideal plate capacitor. 

 
(5) 

The illustration in figure 1 implies that ψ(w)=ψ(u,v). Therefore, lines of constant u represent 

the lines of electric force, and lines of constant v represent equipotentials. These lines are 

mapped to curves in the z-plane. 

 

III. APPLICATION EXAMPLES 

 

In this section two measurement setups are analyzed utilizing conformal mapping methods. 

The conformal mapping function for the edge measurement setup is obtained by utilizing the 

standard methods whereas for the blade measurement setup the proposed approximation 

method needs to be employed. 

 

a. Edge measurement setup 

The first example consists of the capacitive measurement setup illustrated in figure 2. The 

setup consists of an edge which is positioned at a height h above a sensor array. The edge an-

gle is defined as 2α. Conformal mapping will be utilized to obtain the field equation for the 

electric field between the edge and the sensor array in terms of the geometric parameters of 

the measurement setup. The mapping function will be constructed according the approach 

presented in chapter II. The presented approach improves and extends previous work which 

has been presented in [11]. 
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Figure 2. Illustration of the edge measurement setup. 

 

a.i  Schwarz-Christoffel transform 

 

In order to be able to construct the SCT an appropriate model of the measurement setup is 

required. Instead of utilizing a 2D version of the setup model illustrated in figure 2 a different 

but electrically equivalent model is created. The new model is constructed by taking advan-

tage of the symmetry in the proposed setup and applying the method of images. Figure 3 illus-

trates the final model including its geometric parameters h and αi. 

 
Figure 3. Illustration of the appropriate symmetric model of the measurement setup which is 

utilized to construct the SCT.  

 

The model illustrated in figure 3 contains only three corners, therefore the SCT parameters 

can be computed analytically. The SCT maps the auxiliary t1-plane illustrated in figure 4 to 

the model in figure 3. The base form of the SCT for the modeled setup is obtained by insert-
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ing the prevertices and the corresponding angles into (1). The position of the prevertices is 

selected with w1=-1, w2=1, and w3=∞. For the prevertice at infinity no angle needs to be de-

fined [6]. The remaining angles are α1=α2=απ. Inserting these parameters into (1) yields (6).  

 
(6) 

 

 
Figure 4. The auxiliary plane for the SCT illustrates the position wi of the prevertices. 

 

In the next step, the remaining SCT parameters A and B need to be determined. Computing 

the integral in (6) results in a function which contains singularities at w=1 and w=-1. These 

singularities prohibit the computation of the SCT parameters. In order to avoid these singular-

ities (6) is multiplied by the constant factor (-1)-α which yields (7). This factor is absorbed by 

the generic parameter A and does not influence the final SCT. 

 
(7) 

The evaluation of the integral in (7) yields (8) which contains the hypergeometric function 

2F1(a,b;c;x), a so-called special function. Details about special functions can be found in [12] 

or at [13]. 

 
(8) 

The remaining unknown parameters A and B are now computed by comparing the positions 

of the corners in the different planes illustrated in figure 3 and 4 utilizing (8). The solution for 

the system of equations is given in (9) and (10). 

 
(9) 

 (10) 

The solutions for the SCT parameters only depend on the geometric parameters of the meas-

urement setup. This is important for the subsequent analysis of the setup. Parameter A also 
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contains the Euler gamma function Γ(x). Inserting A and B into (8) yields the SCT (11) which 

maps the upper half of a complex plane to the contour in figure 3. 

 
(11) 

 

 
Figure 5. The auxiliary plane for the Joukowski transform illustrates the position of the intro-

duced air gap. 

 

a.ii  Joukowski transform 

 

Following the construction of the SCT, the Joukowski transform introduces the air gap to the 

mapping function by replacing the complex variable w in (11) by the right hand side of (2) 

which yields (12). Figure 5 illustrates the position of the air gap in the auxiliary t2-plane.  

 
(12) 

 

a.iii  Polar transform 

 

The last step in the construction of the conformal mapping function consists in introducing the 

polar transform to (12). Replacing w in (12) by the right hand side of (3) yields the desired 

mapping function (13) which conformally maps the ideal plate capacitor to the edge meas-

urement setup. The function (13) depends on the position as well as on the geometric parame-

ters of the measurement setup. The domain of definition consists of u=[0,∞[; v=[-π/2,0] 

which maps only one half of the measurement setup. Due to the setup symmetry the result just 

needs to by mirrored about the y-axis in order to obtain the result for the whole measurement 

setup. 
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Figure 6. Visualization of (13) for an example setup with h=1 m and α=π/4 rad. Solid lines 

represent equipotential lines, dashed lines represent lines of electrical force. 

 

 
(13) 

The mapping function (13) is visualized in figure 6 for an example geometry. There the bold 

solid lines represent the electrodes, the solid lines represent equipotentials, and the dashed 

lines represent the lines of electrical force. 

 

a.iv  Field equation 

 

According to relation (4) the field equation depends on the conformal mapping function (13) 

and the gradient of the potential distribution grad(ψ(w)) of the reference setup. According to 

(5) and considering the domain of definition for (13), grad(ψ(w))=-2jV/π. Inserting this rela-

tion and the conformal mapping function (13) into (5) yields the field equation (14), which 

describes the electric field between the electrodes of the measurement setup where V repre-

sents the potential of the edge and the potential of the sensor array is set to zero. 

 
(14) 

Figure 7 illustrates the electric field in the measurement setup. The field equation (14) can be 

utilized to analyse the measurement setup.  
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Figure 7. Visualization of (14) for an example setup with h=1 m and a=π/4 rad. 

 

b. Blade Measurement Setup 

The second example consists of the capacitive measurement setup illustrated in figure 8. The 

setup consists of a blade which is positioned at a height h above a sensor array. The blade is 

defined by two parameters, which consist of the blade angle α and the height of the blade b. 

Again conformal mapping will be utilized to obtain the field equation describing this meas-

urement setup. Because of the larger number of electrode corners, an approximation method 

needs to be employed in order to be able to construct the SCT. The presented approach im-

proves and extends previous work which has been presented in [14]. 
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Figure 8. Illustration of the blade measurement setup. 

 

b.i  Schwarz-Christoffel transform 

 

In order to be able to construct the SCT an appropriate model of the measurement setup is 

required. Instead of utilizing a 2D version of the setup model illustrated in figure 8 a different 

but electrically equivalent model is created. The new model is constructed by taking advan-

tage of the symmetry in the proposed setup and applying the method of images. Figure 9 illus-

trates the final model including its geometric parameters h, b, and αi. 

 

 
Figure 9. Illustration of the appropriate symmetric model of the measurement setup which is 

utilized to construct the SCT.  

 

The model illustrated in figure 9 contains four corners. This means that the SCT parameters 

cannot be computed analytically. The SCT maps the auxiliary t1-plane illustrated in figure 10 

to the model in figure 9. The base form of the SCT for the modeled setup is obtained by in-
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serting the prevertices and the corresponding angles into (1). The position of the prevertices is 

selected with w1=-k, w2=-1, w3=1, and w4=k. The corresponding angles are  α1=π+α π, 

α2=π-α, α3=π-α, and α4=π+α. Inserting these parameters into (1) yields (15). 

 
(15) 

 

 
Figure 10. The auxiliary plane for the SCT illustrates the position wi of the prevertices. 

 

Computing the integral in (15) results in (16) which contains the Appell function 

F1(α;β,β’;γ’;x,y). Details about this special function can be found in [12] or at [15]. Next, the 

remaining SCT parameters need to be determined. 

 
(16) 

The SCT parameters A, B, and k are computed by comparing the positions of the corners in 

the different planes which are illustrated in figure 9 and 10. This yields three equations with 

three unknown parameters. In order to solve this system of equations the inverse of the Appell 

function is required. Unfortunately, no inverse of the Appell function exists. This means that 

the solution cannot be computed analytically. It is of course possible to use numerical meth-

ods to solve the system of equations. However, this would render it impossible to formulate a 

mapping function which explicitly contains the geometric parameters. In order to solve the 

problem analytically a linear approximation (17) of the Appell function (16) is utilized. 

 (17) 

Utilizing the approximation permits the computation of the SCT parameters. The results are 

given in (18), (19) and (20). 

 
(18) 

 (19) 

 
(20) 
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Inserting the SCT parameters yields the result for the SCT (21) which maps between the up-

per half plane in figure 10 and the contour in figure 9. Due to the linearization an approxima-

tion error has been introduced to the conformal mapping function. 

 
(21) 

 

 
Figure 11. The auxiliary plane for the Joukowski transform illustrates the position of the in-

troduced air gap. 

 

b.ii  Joukowski transform 

 

Following the construction of the SCT, the Joukowski transform introduces the air gap to the 

mapping function by replacing the complex variable w in (21) by the right hand side of (2) 

which yields (22). Figure 11 illustrates the position of the air gap in the auxiliary t2-plane. 

 
(22) 

 

b.iii  Polar transform 

 

The last step in the construction of the conformal mapping function consists in introducing the 

polar transform to (22). Replacing w in (22) by the right hand side of (3) yields the desired 

mapping function (23) which maps the ideal plate capacitor conformally to the blade meas-

urement setup. The function depends on the position as well as on the geometric parameters 

of the measurement setup. The domain of definition consists of u=[-∞,0[; v=[π/2,π] which 

maps only one half of the measurement setup. Due to the setup symmetry the result just needs 

to by mirrored about the y-axis in order to obtain the result for the whole measurement setup.  

N. Eidenberger, B. G. Zagar, Capacitive Sensor Design Utilizing Conformal Mapping Methods

49



 
Figure 12. Visualization of (23) for an example setup with h=1 m, b=0.5 m and α=π/3 rad. 

Solid lines represent equipotential lines, dashed lines represent lines of electrical force. 

 

 
(23) 

The mapping function (23) is visualized in figure 12 for an example geometry. There the bold 

solid lines represent the electrodes, the solid lines represent equipotentials, and the dashed 

lines represent the lines of electrical force. The effect of the approximation error on the map-

ping result is visible at the corners of the blade contour. The positions of the blade tip and the 

blade corner deviate from the desired position. Note that the blade angle is mapped correctly 

because the approximation only influences the mapping of lengths. 

 

b.iv  Field equation 

 

Considering the domain of definition for (23) the gradient of the potential distribution 

grad(ψ(w))=2jV/π. Inserting this relation and the conformal mapping function (23) into (5) 

yields the field equation (24), which describes the electric field between the electrodes of the 

measurement setup where V represents the potential of the edge and the potential of the sensor 

array is assumed to be zero. 

 
(24) 
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Figure 13. Visualization of (24) for an example setup with h=1 m, b=0.5 m and α=π/3 rad. 

 

Figure 13 illustrates the electric field in the measurement setup which contains an approxima-

tion error. However, a verification of (24) by FEM showed that although the field equation 

(24) produces a result for a version of the measurement setup with warped lengths, the field is 

nevertheless correct for the warped setup. This means that the electric field for the desired 

measurement setup can be obtained by simply adjusting the lengths of the measurement setup 

accordingly prior to the mapping. Thus, the field equation (24) can be utilized to analyse the 

measurement setup. 

 

IV. SETUP ANALYSES 

 

The field equations permit simple and fast analyses of the measurement setups. The sensitivi-

ties of the different setups with respect to variations of the setup geometry can easily be com-

puted. This simplifies the determination of the placement and the optimal shape of the single 

sensor elements of the sensor array. In this section the sensitivities for the measurement setups 

are computed and illustrated by evaluating the resulting equations at the position of the re-

spective sensor array. 
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a. Sensitivity of the Edge Measurement Setup 

 

The sensitivities at the position of the sensor array are computed by deriving (14) with respect 

to the geometric parameters. This approach yields equations which contain the edge angle α 

and the air gap length h and can be evaluated at arbitrary coordinates w. 

The sensitivity of the measurement setup with respect to the air gap length h is given by (25). 

Figure 14 illustrates the sensitivity at the position of the sensor array for an example setup 

geometry. As expected, the sensitivity is inverse proportional to variations of h and the maxi-

mum sensitivity occurs at the point which is closest to the edge. 

 
(25) 

 

 
Figure 14. Visualization the sensitivity with respect to the air gap length h along the x-axis of 

the edge measurement setup for h=1 m, α=π/4 rad and V=1 V. 

 

The sensitivity of the measurement setup with respect to the edge angle α is given by (26) 

where Hn represents the nth harmonic number. Figure 15 illustrates the sensitivity at the posi-

tion of the sensor array for an example setup geometry. It shows that the sensitivity is inverse 

proportional to variations of α and the sensitivity peaks at some distance from the point of 

symmetry. 

 
(26) 
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Figure 15. Visualization the sensitivity with respect to the edge angle α along the x-axis of the 

edge measurement setup for h=1 m, α=π/4 rad and V=1 V. 

 

b. Sensitivity of the Blade Measurement Setup 

 

The sensitivities at the position of the sensor array are computed by deriving (24) with respect 

to the geometric parameters. This approach yields equations which contain the blade angle α, 

the blade height b, and the air gap length h and can be evaluated at arbitrary coordinates w. 

The sensitivity of the measurement setup with respect to the air gap length h is given by (27). 

Figure 16 illustrates the sensitivity at the position of the sensor array for an example setup. As 

expected, the sensitivity is inverse proportional to variations in h, and the maximum sensitivi-

ty occurs at the point which is closest to the blade tip. 

 
 (27) 

 

 
Figure 16. Visualization the sensitivity with respect to the air gap length h along the x-axis of 

the edge measurement setup for h=1 m, b=0.5 m, α=π/6 rad and V=1 V. 
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The sensitivity of the measurement setup with respect to the blade angle α is given by (28). 

Figure 17 illustrates the sensitivity at the position of the sensor array for an example setup. It 

shows that the sensitivity is proportional to variations of α and the sensitivity peaks at some 

distance from the point of symmetry. 

 
 (28) 

 

 
Figure 17. Visualization the sensitivity with respect to the blade angle α along the x-axis of 

the edge measurement setup for h=1 m, b=0.5 m, α=π/6 rad and V=1 V. 

 

The sensitivity of the measurement setup with respect to the blade height b is given by (29). 

Figure 18 illustrates the sensitivity at the position of the sensor array for an example setup. It 

shows that the sensitivity is proportional to variations of b and the sensitivity peaks at some 

distance from the point of symmetry. 

 
(29) 
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Figure 18. Visualization the sensitivity with respect to the blade height b along the x-axis of 

the edge measurement setup for h=1 m, b=0.5 m, α=π/6 rad and V=1 V. 

 

V. CONCLUSION 

 

In this paper the application of conformal mapping methods for constructing field equations 

for two different capacitive measurement setups has been presented. An approximation 

method for solving the SCT parameter problem has been introduced, which permits the analy-

sis of more complex setups. The obtained field equations vastly simplify all further analyses 

concerning sensor design, measurement setup analysis, and sensor signal processing. In par-

ticular, this permits solving the inverse problem which consists in reconstructing the three 

dimensional shape of the objects which cause the two dimensional electric field distribution 

measured by the sensor array.  
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