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Abstract- In this paper, two robust fusion algorithms for a linear system with observation uncertainty 

are proposed. The first algorithm is based on the classical median function and the second one uses 

relative distances between local estimates and their median value. In the view of estimation accuracy, 

the proposed fusion algorithms can be robust against uncertainty measurements since median can 

avoid extremely big or small values. This fact is verified from comparative analysis using numerical 

examples.  

 

 

I. INTRODUCTION  

 

Recently, the interest of multisensory data fusion has been increased to improve the accuracy 

of estimation and system states. Related with a multisensory fusion, two basic fusion 

architectures are well known: centralized and decentralized (or distributed) fusion. The 

distributed fusion is considered more challenging, and thus has studied. Several distributed fusion 

architectures, and their corresponding techniques have been previously discussed and presented 

in [1-3]. Consequently, the optimal mean-square linear fusion formulas representing the weighted 

sums of local estimates with matrix and scalar weights and corresponding explicit and implicit 

formulas for the weights have been reported in [4-7].  

However, the above mean-square fusion formulas yield inaccurate fusion estimates when local 

estimates contain uncertainty, because the uncertainty affects statistical information such as local 
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estimation error covariance, measurement error variance, and so on. For this reason, the classical 

fusion formulas are not applicable to a real application on uncertainty measurements.   

Therefore, to overcome these problems, we propose two robust fusion algorithms; median 

fusion and weighted fusion using relative distances between the median and local estimates. 

Focusing on the robust fusion property, we suggest comparison examples with classical 

algorithm, equally weighted fusion. Since the proposed algorithms depend only on the values of 

local estimates, the fusion estimates using them can be little influenced by uncertainty.  

This paper is organized as follows. In Section II, the fusion estimation problem is setting and 

the main goal is presented. In Section III, two robust fusion algorithms are proposed with explicit 

formulas. Comparative analysis is given using numerical examples demonstrating the concrete 

accuracies of the proposed fusion algorithms in Section IV. Finally, a brief conclusion is given in 

Section V.  

 

II. PROBLEM SETTING 

 

Let us consider a discrete-time linear dynamic system with N  sensors having uncertainties, 

which is described by 

 
k 1 k k k k

(i) (i) (i)

k k k k

x F x G w , k 0,1,...,

y H x v , i 1,..., N,

   

  
 (1) 

where 
kx  n  and 

  i
i

ky 
m

 are unknown system state vector and observation (sensor) vector, 

 0 0 0x ~ x , P ,  k kw ~ 0,Q q
 and     i

i i

k kv ~ 0,R
m  are the zero-mean white Gaussian 

noises, and 
kF  n n , 

kG  n q , and 
  i
i

kH



m n

 are transition matrix, noise gain and observation 

matrix, respectively. In the observation noise 
(i)

kv , the corresponding error-variances (i)

kR  contains 

known value (i)

kR  and uncertainty (i)

kR , i.e., (i) (i) (i)

k k kR R R  . 

For individual (local) sensor 
 i
ky ,  the system (1) can be divided into N  subsystems with the 

common state kx . One subsystem is described as 

     (i) (i) (i)

k 1 k k k k k k k kx F x G w , y H x v ,                       (2) 

147

Inhea Beak, Seokhyoung Lee, and Vladimir Shin, Robust Fusion Algorithms 
 for Linear Dynamic System with Uncertainty



where the index “ i ” is fixed, and (i) (i)

k kv (0, R ). .  

Then using the subsystem (2), the local estimate 
 i
kx̂  and corresponding error-covariance 

 ii

kP  

can be described by the Kalman filter equations [8]: 

 

 

 

T T

(i) (i) (i) (i) (i) (i) (i)

k k k 1 k k k k k 1 0 0

(ii) (ii) T T (ii)

k k k 1 k k k k 0 0

1
(i) (ii) (i) (i) (ii) (i) (i)

k k k k k k k

(ii) (i) (i) (ii)

k n k k k

ˆ ˆ ˆ ˆx F x K y H F x , x x ,

M F P F G Q G , P P ,

K M H H M H R ,

P I K H M ,

 





   

  

  
 

 

 (3) 

where 
(i)

kK  is a local Kalman gain, the superscript T represents the matrix transpose, and nI  is 

an n n  identity matrix. 

After using (3) for i 1,..., N , we have N local estimates 
   1 N

k k
ˆ ˆx ,..., x  and corresponding local 

error-covariances 
 11

kP ,…, 
 NN

kP . The error-covariances 
 11

kP ,…, 
 NN

kP  are vital factors for the 

classical linear fusion algorithm [4-7]. In (3), local error-covariances 
 11

kP ,…, 
 NN

kP  are 

calculated using (i)

kR . However, practically, we calculate 
 11

kP ,…, 
 NN

kP  using (i)

kR  since (i)

kR  

is unknown, and thus 
 11

kP ,…, 
 NN

kP  are not accurate when (i)

kR 0  . For such reason, the 

classical fusion algorithm is not applicable to the uncertainty measurements.   

Therefore, in a multisensory environment with uncertainty measurements, we propose two 

robust fusion algorithms which do not use the local error-covariances 
 11

kP ,…,
 NN

kP . The details 

are given in the next section. 

 

III.  ROBUST FUSION ALGORITHMS 

 

A. Median Fusion  

Median fusion (MDF) algorithm is based on a median function. The median function  Xmed  

is defined as  

 

 
 

k

k k 1

X , if m 2k 1 ,
X

X X / 2, if m 2k ,

 
 

 
med  (4) 
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where  1 mX X ,...,X , m 2  . Then, the general function (4) is applied to MDF algorithm. 

Suppose that we have N  local estimates for an unknown vector kx ,  

  

 

T
(i) (i) (i)

k 1,k ,k
ˆ ˆ ˆx x ... x , i 1,..., N    

n

n
. (5) 

Next, we create sets of estimates 
j,kS , 

  (1) (N)

j,k j,k j,k
ˆ ˆS x ,..., x , j 1,...,  n . (6) 

Then, the fusion estimate MDF

kx̂  can be defined by using (4). We have 

 

 

 

1,k

MDF

k

S

x̂

Sn,k

 
 

  
 
  

med

med

. (7) 

Since MDF

kx̂  depends only on median values of local estimates
(1)

kx̂ ,…,
( N )

kx̂ , it can avoid 

extremely big or small values. This is the reason why MDF is robust against uncertainty 

measurements.  

 

B. Weighted Fusion using Distances  

Let us consider distances (1) (N)

k kd ,...,d  between the median (7) and all local estimates
(1)

kx̂ ,…, 

( N )

kx̂ , i.e., 

 
T

(i) (i) (i) (i) (i) MDF

k 1,k ,k m,k m,k m,k
ˆ ˆd d ... d , d x x , m 1,..., , i 1,..., N      n n . (8) 

Since the corresponding fusion weights are selected by the fact that they are inversely 

proportional to the distance (8), the specific weighted formula is given by 

    
2

N
2

(i) (i) (i) (i) (i) (s) (i)

k 1,k ,k m,k m,k m,k m,k

s 1

W diag w ,..., w , w d d , d 0, m 1,..., , i 1,..., N
 



    n n . (9) 

Then, the fusion formula is defined as 

 
N

WFD (i) (i)

k k k

i 1

ˆ ˆx W x


 . (10) 
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Note that if (i)

m,kd 0  in (8), then directly (i)

m,kw 1  in (9). Thus, when N  is odd and kx   

( 1n ) is scalar state, the fusion estimate WFD

kx̂  is fully identical to MDF

kx̂ . This fact is also verified 

in Section IV. 

 

IV. COMPARISON EXAMPLES 

 

Let us consider the following scalar signal model with N  sensors, i.e., 

 
k 1 k k k

(i) (i)

k k k

x 0.9x w , k 0,1,...,T ,

y x v , i 1,..., N,

   

  
 (11) 

where kT 20 ,  0x ~ 0,1 ,  kw ~ 0,1 ,  (i) (i)

kv ~ 0, r , and  (i) (i)r cos i  , (i)  is a constant 

uncertainty in an i-th sensors error. 

To compare two robust fusion algorithms, MDF and WFD, we consider the classical non-

robust algorithm known as average (AVR), i.e.,  

  AVR (1) (N)

k k k

1
ˆ ˆ ˆx x x

N
   . (12) 

Next, numerical simulations with 2000 Monte-Carlo runs are performed in five cases. All 

cases have restrict conditions respectively, such as the number of sensors N  and the values of 

uncertainties (i) . According to the conditions of each case, we compare the concrete mean 

square errors (MSEs) of fusion filters based on MDF, WFD and AVR, which are given by 

      
2 2 2

MDF MDF WFD WFD AVR AVR

k k k k k k k k k
ˆ ˆ ˆP E x x , P E x x , P E x x .       (13) 

 

Case A: 3 Sensors without uncertainty; N 3 , (i) 0  , i 1,2,3  

In this case, 3 sensors without uncertainties are considered. Figure 1 shows concrete MSEs of 

two robust fusion estimates MDF

kx̂ , WFD

kx̂  and non-robust estimation AVR

kx̂ .  
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Fig. 1:  MSEs in Case A 

 

As discussed in Section III, MDF

kP  is identical to WFD

kP  when N 3  is odd. This fact is shown in 

Figure 1. Moreover, we observe that the accuracy of AVR

kx̂  is better, because all sensors measure 

the signal kx  without uncertainty.  

 

Case B: 3 Sensors (Only 1 sensor with uncertainty); N 3 , (1) 50  , (i) 0  , i 2,3  

Differently from the Case A, one sensor transmits the measured data with uncertainty. Under 

this condition, Figure 2 shows the different result from that of Case A. 
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Fig. 2:  MSEs in Case B 

 

From Figure 2, we observe that MDF WFD

k kP P  , and AVR

kP  is bigger than MDF

kP and WFD

kP . This 

phenomenon is caused by uncertainty (1) .  

Therefore, we confirm that MDF

kx̂  and WFD

kx̂  are more robust and accurate than AVR

kx̂  on 

uncertainty measurements.   

 

Case C: 4 Sensors (Only 1 sensor with uncertainty); N 4 , (1) 50  , (i) 0  , i 2,3,4  

In this case, N 4  is even. Differently from Case A, B, two MSEs MDF

kP  and WFD

kP  are not 

identical as discussed in Section III. Figure 3 illustrates the MSEs MDF

kP , AVR

kP  and WFD

kP . 
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Fig. 3:  MSEs in Case C 

 

As shown in Figure 3, both AVR

kP   and MDF

kP  seem to represent same result, but WFD

kP  slightly 

more accurate than MDF

kP . This means, WFD

kx̂  is the most accurate on uncertainty measurements.   

 

Case D: 6 Sensors (2 sensors with uncertainty); N 6 , (2) (5) 50   , (i) 0  , i 1,3,4,6  
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Figure 4:  MSEs in Case D 

 

In this case, The simulation condition is extended from that of the Case C; N 6 , two 

uncertainties (2) (5),  . However, even if the condition is extended, we observe the same result 

that  AVR MDF WFD

k k kP P P   as shown in Figure 4.  

Therefore, we conclude that WFD is the best algorithm regardless of the number of sensors N  

for uncertainty measurements.   

 

V. CONCLUSION 

 

This paper focuses on two robust fusion algorithms WFD and MDF for a linear system with 

observation uncertainty. WFD and MDF Since these fusion algorithms do not consider system 

(signal) information affected by uncertainties, they can be robust than the classical fusion 

algorithm using average estimation.  

Also, among proposed algorithms, WFD turn out the robust fusion algorithm under 

measurements system with uncertainty. These facts are supported by numerical examples 

demonstrating the concrete accuracies. Therefore, WFD and MDF are useful and applicable when 

uncertainty measurements are considered in real application.  
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