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Abstract- This paper presents a non-invasive measurement method to detect and characterize failures 

and material imperfections in total joint prostheses based on acceleration measurement. Therefore, a 

prototype sensor has been developed to fulfill the requirements of a medical-technical sensor. This 

sensor has been tested on patients with total hip arthroplasty. Special emphasis is put on the real-time 

processing of measurement data by means of intelligent signal processing as well as reliable and 

repeatable measurement procedures, including standardized positions for the sensor front-end and a 

standardized motion-sequence the patient is performing.  

 

Index terms: Total hip arthroplasty, Non-invasive measurement, Failure characterization, Acceleration 

measurement, wear detection 

 

I. INTRODUCTION 

 

The implantation of a total hip arthroplasty (THA) has become a standard medical operation in 

the western society. Early limitations, such as fixation in the bone and fatigue of material, were 

overcome due to permanent enhancements of the material and operating techniques. Today, the 
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limiting factor of durability of THA is wear caused by friction between head and cup of the 

artificial hip joint. In a chain reaction, debris from wear particles leads to chronic inflammation, 

resorption of bone, loosening of the endoprosthesis, and full breakdown of the endoprosthesis, 

requiring a revision operation and the replacement of the endoprosthesis. It is hence important to 

be able to diagnose wear of an endoprosthesis in a very early stage to avoid loosening. 

Especially for hip endoprostheses, only a small number of approaches to investigate failures, 

imperfections, and wear are known since the prosthesis is surrounded by comparably large 

amount of soft tissue. The state of the art methods to detect wear phenomena in endoprostheses 

are conventional diagnostic imaging techniques such as X-ray, magnetic resonance tomography, 

or nuclear medicine (isotopes) [1]. All these methods have limited resolution and allow wear 

detection in a later, more significant stage only. 

An experimental method using radioactive marker particles placed on the boundary layers of the 

endoprosthesis is presented in [2]. When the surface layer of the endoprosthesis is subject of 

wear, these particles are found in metabolites and wear can be diagnosed. Up to now operative 

revision is the only way to detect early wear in THA. 

A promising, non-invasive technique to investigate and characterize the state of THA is vibration 

analysis. Mechanical sine wave vibrations are applied to the region of the human body to be 

examined by means of an electromagnetic shaker. The response signal is acquired using an 

accelerometer and spectral analysis is then applied to detect loosening effects [1, 3, 4]. Devices 

and methods have been used that are fabricated as an implantable system (i.e. a sensor system 

that is directly connected with the endoprosthesis and data is transferred through the tissue by 

means of radio frequency data transfer) [1]. 

Different sound types caused by THA, such as knocking, crunching, grating, cracking, squeaking, 

have been investigated in [5] by means of vibration analysis and fluoroscopic spectroscopy. 

Certain bearing couples, such as ceramic-on-ceramic, have a strong influence on the sound 

emission behavior of the endoprosthesis. 
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II. SENSOR PRINCIPLE 

 

In preliminary investigations carried out in close cooperation with the Department of 

Orthopaedics, Medical University Graz, Austria, it could be observed that for certain hip 

endoprostheses (i.e. for certain bearing couples) an audible sound is emitted when the patient 

makes a well-defined motion sequence (e.g. climbing the stairs). Depending on the angle of the 

patient’s thigh in an upright position and the stress, squeaking and other sound can be detected. 

The presence of the sound due to friction between the mechanical components of a prosthesis - 

regardless if it is audible (i.e. suitable frequency and level of intensity to hear the sound) or not - 

is an indicator for an imperfection of the endoprosthesis. Determining the angle of the thigh and 

the load while the sound is emitted allows for characterizing the type of imperfection and the 

location on the endoprosthesis. 

The sensor principle hence comprises the mounting of acceleration sensors directly on the 

patient’s skin. Since solid-borne sound can be reliably detected close to the surface of the femur, 

certain “standardized” points to place the acceleration sensors are preferred. Fig. 1 shows 

possible positions to determine solid-borne sound originating from THA. 

 

Fig. 1: Positions to place the acceleration sensors to determine solid-borne sound originating 

from total hip arthroplasty. The position of the sound source is the imperfect endoprosthesis 
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To standardize the motion sequence for the patient and to determine the trend of the load/stress in 

the hip endoprosthesis, a podium has been equipped with a load cell. The patient steps onto the 

podium, remains there for a given time and then steps back down onto the floor. This procedure 

is repeated while the load cell signal as well as the acceleration sensor data are recorded. 

 

III. SENSOR FRONT-END AND TEST SETUP 

 

A sensor to be used in medical application requires high standards in terms of safety and reliable 

operation. A laboratory prototype comprising a fully functional hip endoprosthesis, which is 

connecting two pieces of wood, has been used to test several acceleration sensors. This laboratory 

setup is used to find out, which of the acceleration sensors features sufficient accuracy and 

sensitivity. For the final sensor design, three MEMS-based accelerometers of type LIS2L02AL 

from ST Microelectronics are used. This sensor type is an analog accelerometer with two 

orthogonal sensitive axes. Acceleration is determined by means of two capacitive half-bridges. 

Therefore, it is possible to obtain both the oscillation caused by the endoprosthesis and also the 

position of the sensor with reference to the gravity field with the same sensor. The actual angle 

between the thigh and the vertical direction can hence be derived by means of signal processing. 

The sensor can be operated in a range between –2 g and +2 g and has a minimal resonance 

frequency of 2 kHz. One of the main advantages for the use in a medical application are the small 

dimensions (5 mm x 5 mm x 1.6 mm). The sensor front-end is fully sealed in synthetic resin to 

avoid any contact between the patient and an electrically conductive part. 

All further functional components of the sensor system including signal conditioning, analog to 

digital conversion, digital filtering, isolation, and communication have been designed and 

developed at the Virtual Vehicle Competence Center. The block diagram in Fig. 2 shows the 

main functional components of the sensor system. 

To ensure a reliable reference and enable to calibrate the three acceleration sensors once they are 

fixed at the patient at the positions shown in Fig. 1, a vibration motor is used. The patient stands 

still and hence the endoprosthesis does not emit sound. The motor is operated at a frequency of 

9.000 rpm (i.e. 150 Hz) and excites a solid-borne sound when pressed against the patient’s hip. 

This sound signal (acceleration) is acquired at the three sensor front-ends and their readout is 

observed on the control desktop on the PC using the software tool LabView 2009 from National 
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Instruments. Time-critical routines were implemented in Microsoft Visual C++ 2008 Express 

Edition and have been included as Dynamic Linked Library (DLL) in LabView. Amplification 

for the signal conditioning block can be adjusted and the positions of the sensors and their 

physical contact can be checked with real-time impact analysis. 

 

 

 

Fig. 2: Block diagram of the functional components of the sensor system and communication to 

the PC/Data Acquisition Card 

 

A low pass filter (fg=2 kHz) and an impedance converter to allow for measurement with low-

impedance input are included in the measurement PCB board. Due to the small amplitude of the 

load cell in the podium, an instrumentation amplifier with fixed amplification is used.  

Data acquisition is done using an SCXI 1000 DAQ system from National Instruments with the 

modules SCXI 1520 and SCXI 1600. Sampling rate has been chosen to be 25 kHz. 

 

IV. MEASUEMENT RESULTS 

 

a) Measurement Results - Laboratory Test Setup 

 

To test the sensor under realistic but highly reproducible conditions, a laboratory setup has been 

designed. Two pieces of wood are mounted on either end of a ceramic-on-ceramic hip prosthesis 

with well known imperfection so that one piece of wood represents the femur and the other the 
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hip of a patient. The laboratory setup allows investigating the influence of different parameters 

such as variation of load (i.e. different weight on the endoprosthesis) or the adding of fine 

ceramic and metal particles in-between the two components of the endoprosthesis (i.e. to simulate 

wear). Fig. 3 shows the laboratory test setup with the ceramic-on-ceramic hip prosthesis. 

 

  

(a) (b) 

Fig. 3: Laboratory test setup to investigate a ceramic-on-ceramic hip prosthesis (a): Setup 

prepared to be operated under a certain load and (b): Detail photo of the hip prosthesis. 

 

With this laboratory test setup various experiments have been conducted, testing the impact of 

load as well as the impact of wear onto the recorded acceleration. 

Fig. 4 shows the time signal of the LIS2L02AL acceleration sensor under a load of 30 kg (i.e. a 

weight of 30 kg has been placed on the vertical “femur” of the setup shown in Fig. 3a. While the 

“hip” was kept stationary, the “femur” was moved using a pecking motor. 

Fig. 5 shows the frequency spectrum of this signal, indicating that major frequency components 

between 200 Hz and 300 Hz can be found in the signal. 
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Fig. 4: Time signal of the recorded acceleration caused by a a ceramic-on-ceramic hip prosthesis 

under a load of 30 kg. 
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Fig. 5: Frequency spectrum of the recorded acceleration caused by a ceramic-on-ceramic hip 

prosthesis under a load of 30 kg. 

 

The method of principal component analysis (PCA) has been chosen to evaluate and analyze 

measurement results obtained in experiments with the laboratory setup. The PCA is a frequently 

applied method to classify data and can be found in various applications and publications [6, 7]. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS 
                                         VOL. 3, NO. 1, MARCH 2010

81



An m x n data matrix X is split into sub-matrices Mi, i=1 ... n, with M1 containing the most 

information, M2 containing the second most information and Mn as the sub-matrix with the least 

information. To fully characterize the measurement data, all m sub matrices are required. It can 

be assumed that all sub-matrices with an index p and higher will only contain noise (i.e. data 

without an evaluable contribution). In most cases, the consideration of two sub-matrices, M1 and 

M2, is sufficient to describe the most important properties of the data matrix. 

Each sub-matrix Mi can be given as the product of two vectors 

 

iii ptM ′=          (1) 

 

With ti as the score vector and pi as the loading vector (pi are orthogonal and can hence be seen as 

n-dimensional coordinate system). The score vector ti represents the information content of data 

matrix X in the coordinate system pi. The PCA in this work was carried out with the NIPALS-

algorithm. 

A classification can be done by building the scalar product of the data matrix columns and the 

first two principle components and plot it in the coordinate system of the first two principle 

components. Data sets with similar information content are hence clustered in similar regions of 

the coordinate system. The classification has been done using the correlation matrix Cij of the 

Fourier components. 
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with i=1 … n and j=1 … n, xi as the i-th column and 
ix  the mean of i-th column in the data 

matrix. 

 

Fig. 6 shows the PCA results for a ceramic-on-ceramic hip prosthesis under a load of 30 kg for 

experiments carried out at the laboratory setup. Ceramic and metal powdery particles are used to 

simulate wear. It can be seen that the features can be distinguished since a clustering of 

experimental data can be done in the PCA results. 
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Fig. 6: PCA of measurement results from laboratory test setup for features load / no load, wear 

simulation (powder) / no wear simulation (no powder) for a ceramic-on-ceramic endoprosthesis 

 

b) Measurement Results – Medical Study with Patients 

 

For the medical study, the sensor system shown in Fig. 2 has been used to be tested with a total 

amount of 17 patients. For each patient, the three acceleration sensors have been mounted 

according to the positions in Fig. 1 (tibia, left hip, right hip) and a sensor calibration is performed 

using the vibration motor. The patient then carries out a predefined motion sequence by standing 

still before the podium, stepping onto the podium with the right and then left leg, standing still on 

the podium, and stepping down onto the ground with the left and then right leg. 

The patient’s positions during this motion sequence are shown in Fig. 7. 
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(a) (b) 

Fig. 7: Position during the motion sequence (a): Standing still on the podium and (b): Stepping 

down onto the ground from the podium. 

 

Fig. 8 to 10 show measurement results during the motion sequence of a patient with a hip 

endoprosthesis. The load characteristic of the load cell over time is plotted in the diagrams as 

well as the acceleration signal recorded with the sensor system. 
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Fig. 8: Acceleration measurement results during motion sequence for the sensor placed at the 

patient’s tibia. 
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Fig. 9: Acceleration measurement results during motion sequence for the sensor placed at the 

patient’s hip (endoprosthesis side). The weak amplitude is mainly due to scar tissue. 

 

 

Fig. 10: Acceleration measurement results during motion sequence for the sensor placed at the 

patient’s hip (side without endoprosthesis). 

 

Comparing Fig. 9 and Fig. 10, both sensors are placed on soft and dampening tissue. 

Surprisingly, the signal amplitudes at the patient’s hip without endoprosthesis exceeds the signal 
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amplitudes at the patient’s other hip by an order of magnitude during the upward movement. We 

assume that this is mainly due to scar tissue. 

Fig. 11 shows the power spectral density [8] plot over time. The brighter regions in the diagram 

indicate higher power spectral density, it can be seen that according to the motion sequence 

(about 2.5 s step onto the podium with the right leg, 6 s step onto the podium with the left leg, 10 

s step down from the podium with the left leg) a significant frequency contribution of about 

1.500 Hz is dominant in the spectral plot. These vibrations are clearly audible as a whistling 

noise. Evaluating the angle information of the thigh during the time steps when significant 

frequency contributions are dominant, spatial information about the imperfection of the 

endoprosthesis can be derived, allowing a non-invasive characterization of the prosthesis. 

A vibration in the range of 500 Hz to 1.000 Hz precedes the whistling noise at 1.500 Hz. Both 

vibrations occur at the same angle – the first one during the upward and the latter one during the 

downward movement. 

 

 

Fig. 11: Power spectral density plot over time acquired during the motion sequence. 

 

VI. CONCLUSIONS 

 

This paper presents a non-invasive, acceleration based method to characterize failures in an 

endoprosthesis. The design and development of a suitable sensor system are described in the 
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paper. Measurement results for experiments carried out with a laboratory test setup and during a 

medical study with patients are presented. Both, method and sensor system are the basis for a 

reliable characterization of failure types for endoprostheses. 
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