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Abstract - The accelerometers used for Inertial Navigation in satellite launch vehicles demand excellent 

performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over time and 

environmental changes. Detailed and in-depth design of the microstructure by computer simulation is 

required to ensure structural integrity and reliability of the microstructure. The microstructure of the 

accelerometer consists of a proof mass suspended from the mounting frame by beam springs. Extensive 

Finite Element simulation of the silicon microstructure has been carried out to obtain application 

specific optimum design parameters. Based on the deflection, frequency and stress analyses the optimum 

geometry and dimensions of the accelerometer have been determined. Noise analysis has been carried 

out, the performance of the accelerometer has been predicted and its compliance to the expected 

performance is ensured. 
 

Index terms : Microstructure, Microelectromechanical Systems, Accelerometer 

 
 

1. INTRODUCTION 
 
The accelerometers used for Inertial Navigation in launch vehicles demand excellent 

performance in terms of sensitivity, noise immunity, linearity, bias and scale factor stability over 

time and environmental changes.  Typical specifications of an accelerometer for launch vehicle 

applications are given in table 1. Reliable engineering design is called for to configure optimum 

geometry and dimensions of the microstructure of the accelerometer. Detailed and in-depth design 

of the microstructure by computer simulation is required to ensure structural integrity and 

reliability when it is subjected to specified loading at both normal operating and overload 
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conditions. In our present work, extensive Finite Element Simulation of silicon microstructure has 

been carried out to obtain specific design parameters and to predict the accelerometer performance. 

ANSYS as well as COVENTOR Finite Element tools have been used to design, model and 

characterize the mechanical microstructure. Noise analysis has been carried out for the designed 

accelerometer and the total noise figure has been computed including electronic circuit noise. 
 
 

II. PRINCIPLE OF OPERATION 
 
MEMS accelerometer consists of a proof mass which is suspended to a reference frame by 

spring elements as shown in figure  1. It consists of three bulk micromachined silicon parts (figure  

1(a)) – Two silicon caps with shallow cavity for over-range/handling protection at bottom and top 

respectively and actual silicon micro-machined MEMS structure with proof mass suspended from a 

silicon frame via four beam springs at the middle. The bottom and top surfaces of the proof mass 

and shallow cavity surfaces of the silicon caps are metallised and electrical connections brought 

out. The three silicon parts are bonded together using silicon-to-silicon bonding technique. 

Acceleration causes displacement of the proof mass which is proportional to the acceleration. The 

displacement of the proof mass is determined by measuring the difference in capacitances between 

the proof mass and additional electrodes. 

Table 1: Typical Specifications Of A Launch Vehicle Accelerometer 
 

 
 
 

 
 
 
 

 
 
 
 
 
 

S.No. Parameter Value Unit 
1. Range ±20 g 
2. Resolution 30 µg 
3. Output noise 2 µg/√Hz 
4. Linearity <0.1 % 
5. Bias Stability <300 µg 
6. Scale Factor Stability <500 ppm 
7. Frequency Response 200 Hz 
8. Cross Axis Sensitivity <1 % 

9. Temperature Range  
-10 to +70 Operating 

 Storage 
 
 

-55 to +125 

 
Deg C 
Deg C 

10. Shock Survivability 1500 g 
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Figure 2 

 
Figure 1(a & b): Basic Structure Of A Bulk-Micromachined Capacitive Accelerometer 
Figure 2: Lumped Model Of A Capacitive Accelerometer 

 

Figure 2 shows the lumped element model of such an accelerometer. When acceleration is 

applied, the displacement of the proof mass is detected as the change in capacitance between the 

fixed electrodes and movable proof-mass. Using D’Alembert’s Principle, following equation of 

motion can be written from stationary observer point of view: 
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where 

‘y’ is the movement of body of interest  

‘x’ is the movement of the proof mass 

‘m’ is the proof mass 

‘b’ is the damping between the movable and fixed parts 

‘k’ is the spring constant of the beam 

With the help of Laplace Transform, its transfer function can be written as 
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Q = Quality Factor 
b
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A = Acceleration 
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rω = Resonance frequency =
m
k  

At low frequency (ω<<ωr): 
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It is clear from the equation (3) that sensitivity is inversely proportional to the square of the 

resonant frequency. To obtain higher sensitivity with less noise, a large proof mass is needed which 

suggests the use of bulk micromachining technique. For optimal performance, hybrid solution has 

been chosen where sensor and electronics are realized on separate silicon chips but mounted in the 

same package. Here sensor and electronics can be optimized independently. Also the complexity of 

fabrication of sensor can be avoided. Z-axis accelerometers where sensitivity is normal to the proof 

mass plane are typically better than in-plane accelerometers. 

 
III. DESIGN 

 
Two components of the microstructure which dominantly characterize the accelerometer are 

proof mass and spring element. For better reproducibility and simplicity of fabricating, open loop 

architecture of the accelerometer is chosen. Also open loop architecture requires less die area 

compared to closed loop counterpart [2]. Open loop schemes tend to be relatively immune to small 

production variation in the transducer element and are inherently stable systems relying on no 

feedback signals. However the undesirable effects such as nonlinearity can be improved by 

software compensation [3]. 

 

Design objectives 

 The aim is to design a microstrucutre with the following objectives: 

• Area of the silicon die to be minimum 

• Area of the proof mass to be maximum/length of the beam to be minimum 

• Maximum deflection to be ±0.6 microns for ± 20 g input 

• Axial mode of frequency to be > 1000 Hz  

• Cross axis sensitivity to be minimum 

• Sufficient design margins with respect to operating loads. 
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Proof mass 

 Sensitivity of the capacitive sensing accelerometer is directly proportional to the area of the 

parallel plates (area of the proof mass). The design constraint is that the silicon die area has to be 

minimum. A trade off has to be made between the proof mass area and sensitivity. A square 

geometry is selected for the proof mass to keep the effects of thermal expansion to a minimum so 

that accelerometers do not require any active temperature compensation. From the manufacturing 

point of view, a typical 3 mm square proof mass with 250-micron thickness has been chosen. 

 

Beam springs  

 A multiple beam symmetrical suspension structure employing four beam springs as shown 

in fig.1(b) is chosen. Here the acceleration in the sensitive axis causes a translational motion of the 

proof mass while acceleration in other two axes causes rotation of the proof mass reducing cross 

axis sensitivity. 

The nomenclatures used in this analysis are as follows: 

 The beam thickness is denoted as   Tb

 The beam width is denoted as   Wb

 The beam length is denoted as   Lb 

 
IV. ANAYLYSIS 

 
 

MESH CONVERGENCE  

 ANSYS shell element SHELL63 is taken for the Finite Element (FE) modeling of the 

microstructure. SHELL63 has both bending and membrane capabilities. Both in-plane and normal 

load are permitted. The element has six degrees of freedom at each node: translations in the nodal x, 

y and z directions and rotations about the nodal x, y and z-axes. Stress stiffening and large 

deflection capabilities are included. Typical dimensions of the beam and proof mass are assumed. 

Maximum deflection for the same input and same location is studied to arrive at the optimum 

number of elements. The results of the mesh convergence study are given in table 2. The results are 

more or less converging at Sl.No.3 of table 2, hence the total number of elements taken for all 

analyses is 7541. 

 

  

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 2008INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 2008

1023



Table 2: Results Of Mesh Convergence Study 

 Sl 
No. 

No. of nodes No. of 
elements 

Deflection 
(µm) 

1 3638 3475 0.5371 
2 5390 5191 0.5491 
3 7776 7541 0.5503 
4 10203 9932 0.5506 

 
 
 
 
 
 
 
STRUCTURAL OPTIMIZATION ON THE BEAM SPRINGS 

 Initial gap:  For capacitance transduction circuit, sensitivity is inversely proportional to the 

square of initial gap between movable and fixed capacitor plates. It is better to select a gap as small 

as possible considering the bulk micromachining capability. An initial gap of 2 micron is easily 

feasible for fabrication. 

 Deflection: Having fixed initial gap for the capacitive sensing as 2um, due to stiction the 

maximum full-scale deflection allowed is limited to 30% of the initial gap i.e.0.6µm [4]. To 

achieve maximum sensitivity (1.31 pF/g) beam spring dimensions are designed in such a way that 

the proof mass is deflected ±0.6 micron for full scale input of ±20g. The non-linearity of delta C 

versus deflection corresponding to 0.6µm has been computed as 2.83%. This figure can be 

improved by software compensation. Using the third order polynomial, the linearity improves to 

0.036% [3]. 

 To start with, initial dimensions of the beam springs (fig.1) are taken as Lb = 300 micron, 

Wb = 150 µm & Tb = 10 µm. 

 

DEFLECTION ANALYSIS 

 Parametric analysis is performed to fix the beam dimensions so as to achieve deflection 

around 0.6 micron for full scale input of 20g. The deflection of the proof mass for 20 g input is 

studied by varying beam length for different values of  beam thickness keeping beam width 

constant and also for different values of beam width keeping beam thickness constant. The plots are 

given in figure-3 and 4 respectively. 

Feasible options: A set of beam dimensions resulting in around 0.6 micron deflection for 20g input 

was selected as feasible options in the first iteration. Thus the feasible options are given in table-3. 

Considering the beam length alone, sl.no. 4 having least beam length is the best option. 

Table 3: Feasible Options After Deflection Analysis 
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Sl. No Beam Thickness 

Tb (µm)  

Beam width 

Wb (µm)  

Beam length 

 Lb (µm)  

Deflection (µm) 

1 7 150 250 0.55 

2 9 150 333 0.60 

3 11 150 415 0.60 

4 7 100 225 0.60 

5 7 200 282 0.60 

 
 
 
 
 
 
 
 
 
 

Figure 3: Deflection Versus Beam Length For  
20g Input; Wb=150 µm And Varying Tb (Axial 
Mode) 

Figure 4: Deflection Versus Beam Length For 
20g Input; Tb=7 µm And Varying Wb  (Axial 
Mode) 

 
 
FREQUENCY ANALYSIS 

 The microstructure will have three basic modes of vibration (x, y, z) with fundamental 

resonant frequency determined mainly by the dimensions of the beam. Engineering design of the 

microstructure is to avoid resonant vibration by raising the natural frequency of the structure so that 

all conceivable frequencies of all modes of induced vibration by the applied excitation force will 

not reach even the lowest of all modes of natural frequency. To study the natural frequency of the 

structure, a normal mode analysis is performed on all feasible options in table 3 by varying the 

beam length for different values of beam thickness keeping beam width constant and as well as 

different values of beam width keeping the beam thickness constant. The natural frequency versus 

beam length in first mode is plotted in figure 5 and 6 respectively. 

 From the dynamic analysis, it is observed that though the beam length in sl.no. 4 is the 
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lowest, its natural frequency is over 4000Hz, whereas sl.no. 1 is having a natural frequency of 

3003Hz. A trade off has to be made between beam length and natural frequency. For better 

sensitivity, natural frequency has to be smaller and hence sl.no. 1(table-3) is the preferred option 

from now on. 

 

 
 

Figure 5: Natural Frequency Versus Beam 
Length. For Wb=150 µm And Varying Tb (Axial 
Mode) 

Figure 6: Natural Frequency Versus Beam 
Length.  For  Tb=7 µm And Varying Wb (Axial 
Mode) 

 
STRESS ANALYSIS 

 A quasi static load of 20g is applied along the sensing axis to find the maximum von-mises 

stress for all the options in table 3.Stress versus length plots for varying Tb keeping Wb constant 

and for varying Wb keeping Tb constant are given in figure 7&8 respectively. From the stress 

analysis it is found that sl.no.1 in table 3 has sufficiently high factor of safety (FS) of 230. Based on 

the analysis, sl.no 1 is the best among all options studied till now and is designated as option-1. The 

analysis results of optimized microstructure (option-1) are given in table 4. 

 

Table 4: Analysis Results Of Option – 1 

 

Lb 

(µm) 

Wb 

(µm) 

Tb 

(µm) 

Deflection 

(µm) 

Frequency 

(Hz) 

FS 

250 150 7 0.55 3003 230 
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Figure 7: Stress Versus Beam Length  For Wb=150 µm And Varying Tb (Axial Mode) 

 

 
 

Figure 8: Stress versus Beam Length For Tb=7 µm And Varying Wb (Axial Mode) 

 

GEOMETRY OPTIMIZATION 

In the structural analysis, one typical symmetrical suspension structure (Fig.1) was chosen. For 

optimizing the geometry of the microstructure, several other suspension structures that can be used 

in bulk micromachined accelerometers given in table 5 were also analyzed. The beams were 

assumed to be rigidly fixed. The same number of elements was assumed in all cases. The first two 

modes of frequency are taken for comparative study. Table 5 gives the comparison of sensitivity, 

cross-axis sensitivity and modal frequencies for various structures. 

It is observed that there is no significant difference in the Wet Etching options A.1 and A.2 as 

far as the defection for 20 g and first mode of natural frequency is concerned. But when the Dry 

Etching options (B & C) are explored, it is found that option-C.2 is giving the least cross-axis 

sensitivity with considerable margin in resonance frequency. Also from process point of view this 
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structure is simple to fabricate. 

 

Table 5: Analysis Results Of Geometry Optimization Study 

 

 
 

NOISE ANALYSIS 

Mechanical Noise: The performance of accelerometers is limited by the thermal motion of the 

proof mass. Lesser proof mass of the micromachined accelerometers results in rather large 

movements. An equivalent acceleration spectral density, the so-called Total Noise Equivalent 

Acceleration (TNEA) is given by [1] 

Qm
TkTNEA rB ω4

=  

 where kB   is Boltzman constant, B

 T    is temperature in Kelvin 
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 ωr    is resonant frequency of the microstructure 

 m    is mass of the proof mass 

 Q     is quality factor 

By packaging at reduced pressure, damping factor can be tuned to a value as low as 2e-3 

corresponding to Q factor of 50. 

Assuming Q value of 50, TNEA = 1.1 µg/√Hz 

Electronic Circuit Noise: Electronic circuit noise can also limit the overall noise figure. By 

selecting special low noise devices for the capacitance readout circuit, it is possible to reduce the 

circuit noise to as low as 0.04µg /√Hz. [5] 

Resolution: Resolution is limited by the overall noise figure. The estimated overall noise figure is 

1.14 µg /√Hz. Noise equivalent acceleration for 200 Hz bandwidth is 16.07 µg. 

 
V. RESULTS 

 
 The designed and optimized dimensions (C.2) of the application specific ±20g, 200 Hz 

MEMS accelerometer for launch vehicle applications are given below: 

Proof-mass area (A)   :  3000x3000 µm2

Proof-mass thickness (Tm)  :  250 µm 

Beam length (Lb)             : 250 µm 

Beam width (Wb)   : 150 µm 

Beam Thickness (Tb)   : 7 µm 

Predicted performance of the designed accelerometer: 

Range      :  ±20g 

Bandwidth    :  200 Hz 

Linearity    :  0.036 %( after software compensation) 

Modal frequency 

Axial    :  2995 Hz 

Modes2&3   :  4891Hz 

Factor of safety   :  230 

Sensitivity     :  1.31 pF/g 

Noise     :  1.14 µg /√Hz. 

Resolution    :  better than 20 ug 
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VI. CONCLUSION 
 

 Microstructure of an application specific MEMS accelerometer for ± 20g, 200 Hz for 

launch vehicle applications has been designed, optimized and its performance predicted. 
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