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Abstract- The paper describes the development of an FPGA based fuzzy processing system for 

pulmonary spirometry applications predicting the approaching obstructive or restrictive 

pulmonary disorder of the patient before criticality actually occurs. The system employs a 

smart agent that accepts the Peak Expiratory Flow Rate (PEFR), Forced Expiratory Volume in 

1 second (FEV1) and Forced Vital Capacity (FVC) data of patients. In order to speed up the 

computation process, hybrid parallel data processing architectures with dynamic scheduling 

mechanism have been employed leading to a speed up of approximately 12 times. The 

processor implemented on the FPGA can perform fuzzy inferencing at a speed of 

approximately 5.0 MFLIPS. The whole system is realized on Altera Cyclone EP1K6Q240C8 

FPGA chip requiring 5,865 logic blocks. The system has been designed to be inexpensive, 

portable and user friendly for occupational health care applications in developing countries. 

Using the system, approaching pulmonary disorder of patients has been predicted with an 

accuracy of 95.83%. 

 

Index Terms: Spirometry, fuzzy processor, hybrid parallel data processing architectures, smart 

agent 
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I. INTRODUCTION 

 

Spirometry is a method of measuring various lung volumes and airflow rates in and out 

of lungs. It is a very effective method of detecting and following up various lung 

disorders. Spirometry started with very simple mechanical devices and gradually some 

very complicated and sophisticated equipment came into the market, which require 

specialized units as well as trained physicians. But, simple and inexpensive spirometers 

are not capable of computing long list of spirometric parameters. However, the usage of 

such spirometers can be boosted up even in absence of physicians, by making use of 

smart agent based diagnostic processing system, that uses approximate reasoning 

techniques to prognosticate the approaching critical pulmonary condition of a patient at 

an early stage.  

 

Occupational health hazards involving respiratory system is a grave concern in modern 

world. Pulmonary function studies [1-6] can show
 
restrictive, obstructive, or mixed 

patterns and range from normal
 
to severe impairment. Spirometry is becoming more and 

more relevant for the general population with rising threat of environmental pollution. 

Pulmonary function tests (PFTs) objectively quantify lung function
 
and impairment, and 

are used to evaluate persons with chronic
 
lung disease.

 
Spirometry is a mandatory 

procedure in these situations for early detection of various lung disorders and studying 

their prognoses.  

 

Wide usage of spirometry in periphery in the third world is prevented by introduction of 

highly sophisticated spirometers, which are not only costly, but also require special 

expertise in usage and interpretation of its complicated results. To promote wide usage of 

spirometry in a meaningful and effective way in the developing and underdeveloped 

countries, use of simple spirometers – specially the mechanical one may need be 

encouraged and spirometric interpretations should be made easier. Furthermore, the need 

of the hour, especially for prevention of occupational health hazards affecting respiratory 

system, is to design instrument which can help the physicians as well as any person, in 

interpreting the present and the future of a worker / patient. Early detection of respiratory 
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tract disorder in normal workers and of deterioration of functional status of their lungs in 

affected individual can prevent precipitation of catastrophic pulmonary disorder causing 

morbidity and, even mortality and thus can elevate the health status of the workers in 

hazardous industries of our country. 

 

The current work aims at developing an FPGA based smart processing system that can 

accept spirometric data and can indicate the current pulmonary status of the patient. The 

system accepts the Peak Expiratory Flow Rate (PEFR), Forced Expiratory Volume in 1 

second (FEV1) and Forced Vital Capacity (FVC) data of patients. The system employs a 

smart agent based on fuzzy logic that can predict the approaching obstructive or 

restrictive pulmonary disorder of the patient before criticality actually occurs. Fuzzy logic 

technology provides a simple way to arrive at a definite conclusion from vague, 

ambiguous, imprecise and noisy data (as found in medical data) using linguistic variables 

that are not necessarily precise. In order to achieve this, a study of a knowledge base 

system for the management of diseases was undertaken.  

 

A number of works have been carried out in the development for hardware for fuzzy 

systems. The pioneer in this investigation field was Togai and Watanabe [7], who 

proposed the first hardware for fuzzy logic. Lim and Takefuji first proposed of 

implementing fuzzy rule based systems on silicon [8]. A large number of contemporary 

fuzzy systems use general purpose processors to process fuzzy inferences [9, 10]. 

Although, the solution is a highly flexible one, it is only appropriate where the inference 

speeds required are not excessively high, i,e. in the order of a few KFLIPS. The 

performance can be improved by suitable algorithmic modification [11]. However, with 

very high values this approach is quite inadequate, especially in high performance 

applications. 

 

In high performance fuzzy systems, therefore, it is necessary to use hardware architecture 

capable of performing fuzzy computations [12, 13]. Manzoul and Tayal in [14], and 

Jaramillo-Botero and Miyake in [15] proposed the implementation of high speed fuzzy 

controllers using multiprocessor based parallel computing architectures. Multiple 
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processors entail for costly solution of the system. The cost of multiple chips can be 

minimized by using single chip multiprocessor architectures (MP SoC). Using a 

multiprocessor system-on-chip architecture is a crucial step to optimize performance, 

energy and memory constraints at the same time, as has been reported by Orsila et al in 

[16]. Aranguren proposed the implementation of a pipelined fuzzy processor with a 

single rule unit [17]. Samoladas and Petrou propose two parallel architectures in SIMD 

mode [18]. Salvador presents a systolic architecture of 4 antecedents and 70 rules for 

consequences [19]. Although such a design is not very flexible as in the case of general 

purpose processors, it gives better results in terms of performance. The benefit of 

hardware implementation of a processor is also explained in [20] by Raychev, Mtibaa and 

Abid. However, the design and implementation flexibility is considerably improved by 

mapping the design into reconfigurable architectures like FPGA. The authors in their 

previous works [21, 22, 23] have also developed efficient architectures for realizing fuzzy 

processors. 

 

In order to speed up the computation process, hybrid parallel data processing 

architectures have been employed leading to a speed up of approximately times. The 

current work comprises of VHDL modeling of the smart processing system and its FPGA 

based hardware realization. The present work aims at defining the architecture of a 

processor, which fully exploits the parallelism inherent in the fuzzy inferences. The 

processor also exploits the fact that only parts of the rules have a positive degree of 

validation, to reduce the number of rules processed which directly follows from the way 

the rules are stored. The method presented here considerably reduces the amount of 

memory required and simplifies the process of detection of active rules. The processor is 

implemented on an FPGA. The implementation of the processor on a reconfigurable 

architecture makes it suitable for further modification of functional logic of the processor 

with minimum programming effort. 

 

The paper is organized as follows. Section 2 focuses on the occupational health hazards 

affecting respiratory system. Section 3 discuses on the principle of pulmonary spirometry. 

Section 4 illustrates the methodology used for fuzzification, inferencing and 
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defuzzification of patients’ data. The architectural design of the smart processor which 

forms the core of the proposed computing equipment has been explained in section 5. 

Section 6 describes the FPGA based implementation of the system. The detailed analysis 

of results obtained has been given in section 7. 

 

II. OCCUPATIONAL HEALTH HAZARDS AFFECTING RESPIRATORY SYSTEM 

 

Occupational health (often termed occupational and environmental health) is a very 

important aspect of modern medicine. Awareness of physicians, employees, employers 

and general population about these conditions is an international issue in order to reduce 

morbidity and, even, mortality. Aerosols and gases / vapors are the offenders.   

 

Aerosols, which include both dusts and mists, are inhaled by subjects. They get deposited 

in respiratory tract – in airways and / or lung parenchyma by gravitational settlement (as 

in larger airways), and / or by inertial impaction (as by change of direction of flow in 

nose), and / or by interception (as for asbestos fibers which bypass larger airways, but are 

caught at bronchioles – specially at their bifurcations), and / or by diffusion (as for very 

small particles bombarded in atria or alveoli). Particles of the range of 20 microns and 

some of 5 microns are filtered in nose. Smaller particles, particularly in the range of 1 to 

7 microns are deposited in lungs, while bulk of those in the range of 0.5 to 1 micron is 

exhaled again. Dusts may be inert, without any effect causing health hazards. These are 

nuisance dusts.  

 

Many factors influence deposition of particles. The most important of them is respiratory 

minute volume, which is the product of tidal volume and rate of respiration per minute. 

This is increased, increasing the risk, during exertion. Heavier particles and insoluble 

ones are usually deposited in larger airways. As these airways are lined by ciliated 

columnar epithelial and mucus secreting cells, those particles are trapped by mucus and 

are swept upwards for being coughed up. Smaller particles, which are deposited beyond 

ciliated epithelium lined airways or in lung parenchyma, tend to deposit for long time or 
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permanently, unless they are trapped by macrophages and are drained to lymphatic 

system or to proximal airways.  

 

Vapors (gaseous state of matters below their boiling points) and gases can cause damage 

by asphyxiation (e.g., methane, nitrogen, carbon monoxide, carbon dioxide, hydrogen 

cyanide,hydrogen sulphide), and / or local irritation of airways and lungs (e.g., methylene 

chloride, various chloroethanes and chloroethylenes), and / or tissue injury after diffusion 

into blood through alveoli. 

 

Pneumoconiosis is the general term used for all such non-neoplastic conditions affecting 

pulmonic tissues.  Inflammatory conditions, viz., rhinitis, chronic bronchitis, bronchiolitis, 

etc. are effects on airways. Asthma is a group of condition, which requires special 

mention. It is caused by inflammation of lining mucosa of terminal airways and by 

intermittent spasm of smooth muscles encircling them. Hypersensitivity is main feature in 

these conditions, caused by local sensitization and degranulation of mast cells followed 

by release of triggering chemical. Malignancy, like bronchogenic carcinoma (of lungs), 

mesothelioma (of pleura) are other ominous examples of occupational airway diseases.  

Systemic effects are caused by ultrafine particles or toxic gases / vapours cause extra-

pulmonary effects.  

 

III. PRINCIPLE OF SPIROMETRY 

 

Only three parameters are taken out of the long list of spirometric parameters available in 

the sophisticated spirometers. Simple and inexpensive mechanical spirometers can be 

used for these parameters in field work in the periphery or in small scale hazardous 

industries. These three chosen parameters are :  

 

a) Forced Expiratory Volume in One Second : FEV1,  

b) Forced Vital Capacity : FVC, and  

c) Peak Expiratory Flow Rate : PEFR.  
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Standard equations are used to calculate the normal values of FEV1, FVC and PEFR from 

inputs of age, sex, weight and height of subjects. Lowest ranges are also computed by 

subtracting 2 Residual Standard Deviation.  

 

The equations used are :  

1. PEFR :   

 For 10 – 18 years : 

PEFR = - 617.5 + 9.7 x Age + 4.78 x Height + 2.66 x Weight……….…(1) 

 

 For 19 – 60 years :  

Males :  PEFR = 2.924 x Age + 3.38 x Height…………...………..(2) 

Females :  PEFR = 2.8 x Age + 3.05 x Height……………………….(3) 

 

2. FEV1 :  

Below 18 years :  

Males:   (0.812 x Height)
(2.77)

……………………...……………....(4) 

Females:  (0.788 x Height)
2.73

……………………………………….(5)
 

   
Height in meters. 

18 years and above :  

Males:  0.04071 x Height – 0.02147 x Age – 2.59946 …………...(6) 

Female:  0.04071 x Height – 0.02147 x Age – 2.56958………...….(7) 

   Height in centimeters.’ 

 

3. FVC :  

Below 18 years :  

Males:   (1.004 x Height)
2.72

……..………………………………..(8) 

Females:  (0.946 x Height)
2.61

……………………………………….(9) 

   Height in meters.  

18 years and above:  

Males:  0.06584 x Height – 0.02954 x Age – 5.12451…………(10) 

Female: 0.05557 x Height – 0.00793 x Age – 4.89036……….…(11) 
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   Height in centimeters.  

 

 4. Lowest Range of Normal=Normal Value – 2X Residual Standard 

Deviation…………………………………………………………………………………………(12) 

 

Each test value of a subject is compared to the normal values and their lowest limits to 

find out whether any of the three parameters is / are worse than the respective lowest 

range.  

 

It is to be noted that the reference value formulae used are mostly relevant to Indian 

population. Ethnicity is an important criterion in finding the reference values. This is 

largely dependant on the body shape, height, weight etc. European Respiratory Society 

has recommended a reduction of Caucasian reference values by 10% for North Indians 

and by 12 to 13% for South Indians.  

 

Computed normal values and the test values of the subjects are used to compute the 

percentage predicted values of FVC, PEFR and FEV1/FVC.  

  

Percentage Predicted Value =               Test Value                          . X  100………(13) 

  Predicted Normal Value 

The current lung condition of patients is inferred based on the percentage predicted 

values of the spirometric parameters. Table 1 shows the inferences based on the 

percentage predicted values. 

 

Table 1. Inferences on the current lung condition of patients is inferred based on the 

percentage predicted values of the spirometric parameters 

 

PEFR (% predicted) FEV1/FVC (% predicted) FVC (% predicted) Inference 

>70 >80 65 Normal 

<70 >85  Mild Obstruction 

<70 >65 but <85  Moderate 
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Obstruction 

>70 >90 >65 Mild Restriction 

>70 >90 >45 but <65 Moderate 

Restriction 

>70 >90 <45 Severe Restriction 

<70 <90 <80 Mixed Cases 

 

Combination of these values, give important inferences, viz., identify subjects with 

normal lung volumes; type of lung disorder – obstructive type or restrictive type; level / 

site of lung disorders – indicating outline of provisional diagnoses; and severity of lung 

disorder – mild, moderate or severe. An important group of chronic asthma patients, who, 

otherwise, fall within normal spirometric group, can be identified through the fuzzy logic 

used in the equipment under discussion.  

 

Over and above the aforesaid diagnostic functions, the equipment under discussion can 

store data of subjects and can compare subsequent data of the said subjects to assess their 

prognoses. It can alarm about deterioration of the subject(s) in question and also can alert 

about impending catastrophe. It goes beyond saying that this feature adds value to the 

designed system extending its usability not only to prevention of occupational health 

hazards, but also to the well-being of common people in the face of rising environmental 

pollution.  

 

In fact, for occupational health, follow up statistics of spirometric data are more 

important that a single set of test values. Most important aspect in occupational health is 

research. Unexposed workers of a particular industry / factory should be utilized for 

finding out an ‘internal control’ for the said industry / factory. This allows derivation of 

the risk factor involved in a particular department / section of the industry. A baseline of 

essential spirometric parameters should be set for each industry / factory before 

employment. Comparison of test values with this set of ‘internal’ reference as well as the 

calculated or published set of reference values is important to eliminate the possibility of 

extra-occupational effect on respiratory tract. 
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IV. FUZZIFICATION OF PATIENTS’ DATA 

 

Since doctors are more interested in knowing whether the pathophysiological risk 

parameters of patients are high, moderate or low, and also the trend of physiological 

parameters of patients, it would be more useful, to represent the pathophysiological risk 

parameters of patients as linguistic variable rather than ordinary variable and use fuzzy 

logic to build a predictive model, to predict the fuzzy set (low, moderate or high) in 

which the particular risk parameter of the patient is to lie in the next reading of patient 

data. For this purpose, triangular and trapezoidal fuzzy operators have been used.  

 

The fuzzy logic of the diagnosis of lung diseases involves fuzzification, inference and 

defuzzification. The basic flow of information of the fuzzy logic mechanism is illustrated 

in Figure 1.  

 

Figure 1. Empirical model of fuzzy logic of diagnosis of lung disease 

The physiological variables viz. PEFR, FEV1 and FVC that are computed from height, 

weight, age and sex data are fuzzified in cognitive frame of reference and the numerical 

values are transformed into linguistic values suitable for approximate reasoning.  

 

Figure 2 depicts the cognitive frames used for fuzzy modeling PEFR, FEV1/FVC and 

FVC data of patients. 
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(a) 

 

 

(b) 

 

 

(c) 

 

Figure 2. Plots of the membership functions: 

(a) PEFR  (b) FEV1/FVC  (c) FVC 

 

In figure 2 (a), the membership function plot of PEFR indicates two fuzzy sets, the left 

hand side trapezoid indicating the low fuzzy set and the right hand trapezoid indicating 
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the high fuzzy set. In figures 2(b) and (c), the membership function plots of FEV1/FVC 

and FVC indicates three fuzzy sets – low, moderate and high respectively. 

 

The algorithm for diagnosis computes the time- weighted mean of the membership 

functions of the patient’s pathophysiological data. The possibility that the next 

pathophysiological data will low or moderate or high (for PEFR only low and high) is 

computed as:  

PR(x) = 

∑

∑

=

=
n

i

n

i

i

xi

1

1

)(µ
………...……………………………………………………………...(14) 

where the summation is done from i=1 to n, and the value of n is the sequence number of 

the time instant at which the current pathological data of the patient is taken and R є {low, 

moderate, high}for FEV1/FVC and FVC and R є {low, high} for PEFR. )(xµ  is )(xlµ , 

)(xmµ  or )(xhµ accordingly as the membership function concerned refers to low, 

moderate or high fuzzy set respectively. For predicting the fuzzy set in which the next 

state input of a certain pathophysiological parameter is going to lie, the value of P(x) is 

considered for which P(x) ≥PR(x). 

 

The knowledge base of patients store information about pathophysiological state of 

patients at different instants of time. The inference engine infers about the current 

physiological condition of the patient and predicts whether the patient is approaching a 

critical condition or not. Inferencing involves giving a decision whether the patient is in 

normal condition or heading towards a moderately critical condition or a severely critical 

condition. Inferencing is done by taking the possible next state output of the diagnostic 

algorithm at different instants of time. Typical rules for inferencing are: 

R1: if ( PEFR  is high and 







FVC

FEV1  is high and FVC  is moderate) then condition is 

normal 
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R2: if (PEFR  is low and 







FVC

FEV1  is high) then condition is mild obstruction 

 

R3: if (PEFR  is low and 







FVC

FEV1  is moderate) then condition is moderate obstruction 

 

R4: if (PEFR  is low and 







FVC

FEV1  is low) then condition is severe obstruction 

 

R5: if ( PEFR  is high and 







FVC

FEV1  is high and FVC  is high) then condition is mild 

restriction 

 

R6: if ( PEFR  is high and 







FVC

FEV1  is high and FVC  is moderate) then condition is 

moderate restriction 

 

R7: if ( PEFR  is high and 







FVC

FEV1  is high and FVC  is low) then condition is severe 

restriction 

 

R8: if (PEFR  is low and 







FVC

FEV1  is high or 







FVC

FEV1  is moderate and FVC  is high) then 

condition is mixed cases 

 

and so on. 

 

V. ARCHITECTURAL DESIGN OF THE FUZZY PROCESSOR 

 

The architectural design of the processor is shown in figure 3.  
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Figure 3. Architectural design of the fuzzy processor 

 

It comprises of the following: an input interface, an output interface, 3 detection units 

(DU), 3 antecedent units (AU), 3 rule units (RU), a defuzzifier, a scheduling unit and a 

controller (CU). The input interface acquires the fuzzy sets of inputs. The DU have the 

task of detecting antecedents with a positive degree of truth. The AU calculates the 

degree of truth of positive antecedents. The RU calculates the degree of activation of 

active rules alone. The scheduling unit schedules the active rules to be used for 

defuzzification. The defuzzifier defuzzifies the output using Yager levels [24] methods. 

The CU issues control signals to coordinate the activities of other units.     

 

Information about the fuzzy sets with non null degree of truth is stored in the antecedent 

register file. The DU, AU, RU and the defuzzifier are pipelined. The proposed structure 

assumes that the maximum number of antecedents, nA is 16. Each rule is made up of one 

consequent. The maximum possible number of rules (nR) that can be stored is 256. The 

maximum number of elements in the variable term set, nT is 15. The universe of 

discourse is made up of dU=256 values. The number of membership degrees nL is 64. It is 

assumed that the fuzzy sets are convex. The following sub-sections focus on the 

architectural details of the different units. 
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A. The Detection Unit 

The task of the detection unit is to detect antecedents with a positive degree of truth. This 

can be achieved by checking whether each antecedent has an intersection with its input. 

A necessary and sufficient condition to check this intersection is to see whether the 

respective supports of the fuzzy sets intersect. Detection starts as soon as the support of 

an input variable has been acquired.  

 

Let Fik be the k
th
 element of the term set of variable Xi (i=1,2,….,nA), it has with it an 

associated bit aik, which indicates whether the k
th
  fuzzy set Fik of the term set of the input 

variable Xi has a non null intersection with the input fuzzy set Xi.  

 

Since the fuzzy sets are assumed to be convex, hence the support of each fuzzy set Fik is 

represented by a closed interval [Bik
L
, Bik

R
]. Thus aik is obtained as follows: 

[ ] [ ]
[ ] [ ]




≠∩

=∩
=

φ
φ

R

ik

L

ik

R

i

L

i

R

ik

L

ik

R

i

L

i
ik

BBBBIF

BBBBIF
a

,,,1

,,,0
**

**

……………………………………………(15) 

 

While the processor is detecting the antecedents with a positive degree of truth, it 

acquires the information concerning the fuzzy input. Figure 4 shows the block diagram of 

the detection unit (DU).  

 

Figure 4. Architectural design of the detection unit (DU) 
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As evident from figure 2, the detection unit consists of one pipe stage. It comprises of a 

term-set support memory (TSSM) and an input support memory (ISM). The TSSM stores 

information concerning the support of the fuzzy sets of the term sets of the variables. As 

the fuzzy sets are convex, it is sufficient to store the pair of end points which delimit 

them. The TSSM therefore contains nT*nA words of 2*log2du bits. In the proposed 

architecture, nT=15, nA=2 and du=256. Therefore, TSSM contains thirty 16 bit words. 

 

The ISM contains supports for the fuzzy inputs, so it contains nA words of 2*log2du bits. 

Under the assumptions made, these modules contain eight 16 bit words. The analyzer 

block computes aik and stores the value in the antecedent register file.  

 

B. The Antecedent Unit (AU) 

The task of the antecedent unit is to calculate the degree of truth of antecedents which 

have a non null intersection with the respective inputs. The membership functions have 

been represented by means of triangular or trapezoidal functions.  

 

Given any truth value α, if segment number ni which crosses this value and the abscissae 

xLni and xRni are known, the end points of the α cut are given by: 

αα *)( min LLL pxx += ……………..……………………...…………….……………(16) 

αα *)( max RRR pxx −= ………..………………………...……………………………(17) 

where minLx refers to the abscissa of the leftmost point of the fuzzy set in its universe of 

discourse and maxRx refers to the abscissa of the rightmost point of the fuzzy set. 

Lp  and Rp  are defined as follows: 

minmax LLL xxp −= …………………………………………………………..………(18) 

minmax RRR xxp −= ………………………………………………………………..…...(19) 

 

The degree of truth of an antecedent is obtained by calculating the maximum value for 

which the α cut of the antecedents and inputs have a non null intersection. The 

calculation of the degree of truth can be separated into two phases: identification of 
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segments of membership functions which have intersections and calculation of the 

intersection in the interval of the truth space containing these segments. These two phases 

are pipelined: while the segments which intersect for a given antecedent is found, the 

maximum of the intersection for a previous antecedent is calculated with the intention of 

doubling the throughput of the system. 

 

Figure 5 shows the architectural design of the antecedent unit. It consists of four pipe 

stages. It consists of a segment calculator (SC), whose task is to identify the segments 

which intersect. The antecedent calculator (AC) calculates the maximum value of α for 

which there is an intersection. The antecedent memory (AM) and the input memory (IM) 

respectively store the fuzzy sets of the antecedents and the inputs. The two memories 

store in each word, the lower end point of the segments which define a fuzzy set. The 

width of each memory word is 16 bits. The AM contains 32 words whereas the IM 

contains 8 words. 

 

Figure 5. Architectural design of the Antecedent Unit 

  

C. Rule Unit (RU) 

The rule unit calculates the degree of activation of the rules. A typical fuzzy application 

consists of groups of rules that share the common antecedent. This suggests not storing 

all the antecedents but only the terms which vary; the constant terms for each group are 

stored only once. In the actual implementation, two separate memories are used. One 

contains constant terms and the number of rules in the group. The other contains the other 

antecedents in each rule. This leads to a huge saving in memory space for rule storage. 
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The rule memory can store a maximum of 512 rules. The number of memory locations 

can be sufficiently increased to store much more than 512 rules. There can be more than 

512 rules in principle. However, for our particular application of medical of medical 

diagnosis, we do not require more than 512 locations in the rule memory. The proposed 

rule unit (RU) does not calculate the degree of activation for all the rules, but only for 

active ones. This is achieved in the following way: As a group features the presence of 

constant terms, if their degree of truth is null, it is useless processing the rules in this 

group. The unit can thus pass on to the rules in the next group. To calculate whether the 

constant terms of the rules in a group are active, it is sufficient to perform an AND 

operation between the associated aik bits. Only if the result is one, the group is processed. 

In this case, partial degree of activation obtained by calculating the minimum of the 

degrees of truth of the constant terms is only calculated once, stored in a register, and 

reused for all the rules in the group. Each rule is processed sequentially, so if there are 

terms with null degrees of truth among other antecedents, the RU suspends processing of 

the rule and goes on to another one. The architectural design of the rule unit is shown in 

figure 6. 

 

Figure 6. Architectural Design of the Rule Unit 

 

The rule unit (RU) acquires the information of each group of rules from the group 

memory (GM). The GM contains 16 words. Each word contains 4 bits to indicate the 

variable and 4 bits to indicate the element of the term set and 4 bits to indicate the 

number of rules in the group. Before processing of the group starts, the group analyzer 
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(GA) checks whether the constant terms are active. If they are no active rules, the next 

group is read. If the checking yields positive results, the Ψ calculator calculates the 

degree of activation for the rules in the group.  

 

D. Scheduling Unit: 

The scheduling stage is to discard the non-active rules and, then, schedule the active rules 

if necessary. Figure 7 gives the logic diagram of the scheduling unit, which scans the 

weights of the rules processed in the rule unit.   

 

Figure 7. Block diagram of the scheduling unit. 

 

For a rule iR , iweight is the degree of activation of the rule. An active rule Ri can be 

identified by an OR gate, whose inputs are the bits of iweight . We define the output bit of 

the OR gate as the active value iactiveindex _ . It is obvious that the rule iR is active if 

and only if the active value iactiveindex _  is 1. In each pipeline stage cycle, 255 active 

values are scanned sequentially by a 256-to-1 multiplexer. We design an active-rule-table 

to store four active rules. In the active-rule-table, each active rule iR is represented by 

iweight and ic , where ic is the index of consequent membership function. A two-bit 
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register registersynaddress __ points to the first available address of the active-rule-

table. In fact, this register also denotes the number of active rules. In every clock cycle of 

the clock signal clkx4, the rule Ri is stored into the first available address, and the register 

registersynaddress __ is added with the active value iactiveindex _ . When a carry-out 

of the addition occurs, the active-rule-table is full. If the active-rule-table is full but a new 

active rule is found, the dynamic scheduling mechanism is invoked. The basic idea of our 

dynamic scheduling mechanism is to stop both the Ψ calculator and new active rule 

insertion in the remaining time of the present pipeline stage cycle. Therefore, the stop 

signal is generated when one of the following two conditions occurs: (1) the active-rule-

table is full but a new active rule is found; or (2) the 8-bit counter counts up to 0 (i.e., 

from 11111111 to 00000000). The stop signal is cleared at the beginning of every 

pipeline stage cycle. 

 

E. Defuzzifier 

The defuzzifier performs the following computation: 

 

∑

∑

=

=

Ψ

Ψ
=

N

i

i

N

i

iiX

z

1

1
0 ………………………………………………………….…………(20),  

where z0 is the defuzzified output of the fuzzy processor. A multiplier performs the task 

of computing ΣiΨixi and ΣiΨi for each output variable. The Each unit receives the Ψi 

value from the Ψ calculator. The divider is implemented using the available dividers of 

the FPGA chip. The basic reason of using Yager’s defuzzification method instead of the 

more commonly used Mamdani’s method is evident from equation (20). For 

defuzzification using N active rules, we need 2N additions, N multiplications and one 

division.  

 

On the other hand, using Mamdani’s method with centre of area procedure, we have, 
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where z0 is the defuzzified output of the fuzzy processor, ∆z is the discretization value for 

universe Z, m is the number of discretization steps and U
N

i

iCC
1

'
=

= [24]. Therefore, using 

Mamdani’s method would require a total of 2m additions, 3m product operations and one 

division. It is reasonable to assume that m>N, and so it is easy to see that Yager’s method 

is more efficient as far as computational requirements are concerned. In particular if zi is 

the symmetric axis, then mi=zi for Yager’s method. 

 

F. The Control Unit 

The control unit is modeled as a hardwired control unit. The implementation of the 

control unit is done by considering the controller as a finite state machine. The state 

diagram of the control unit is shown in figure 8.  

 

Figure 8. State diagram of the controller 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 2008

1005



 

Initially the controller starts from state S0. At state S0, the fuzzy inputs from the input 

interface are received by the detection unit and aik values are stored in the antecedent 

register file. The controller then switches to state S1. In this state, the controller provides 

control inputs to the segment calculator to iteratively search the interval containing α. A 

new set of fuzzy inputs is also accepted from the input interface, since the entire 

architecture is pipelined. So long the search continues, a single bit output of the segment 

calculator viz. intersection tester I is zero and the pipelined is stalled. When I become 

equal to 1 at the end of the search process, the controller switches to state S2. In state S2, 

the maximum value of α is determined for which the sets of antecedents and inputs have 

a non-null intersection.  When the controller is in state S3, the output of the α register file 

is enabled and selected by the Ψ calculator block, which calculates the minimum between 

the truth value of the current antecedent and the current degree of activation. The Ψ 

calculator also checks whether the result of the minimum operation is null. If null, a 

control signal is sent to the control unit, which suspends the calculation and goes on to 

the next rule. The final degree of activation is stored in the Ψ register within the Ψ 

calculator.  In state S4, the mid point xM(Ψi) of the Ψi level set is calculated. Next the 

controller switches to state S5 in which the scheduler schedules the active rules. In state 

S6, the multiplier of the defuzzifier calculates ΨiXi. In state S7, summation ΣiΨiXi is 

performed by the adder block within the defuzzifier. In state S8, the divider is enabled by 

the controller. 

 

VI. FPGA BASED IMPLEMENTATION OF THE PROCESSOR 

 

The processor is implemented on a Altera Cyclone family EP1C6Q240C8 device. 

The whole system is realized by configuring the FPGA as a processor which handles 

the task of computing and interfacing the peripherals. The LED 7 segment displays 

are driven by BC 545 PNP transistors. The 7 segment displays indicate the 

possibilities of low, moderate and high values of the different pathological parameters 

at the next physiological state of the patient. Since, there are four seven segment 

displays for output in the final system, and there is only one port available for display, 
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hence a four bit output called SCAN (0 to 3) is used. Actually the different bit lines of 

the SCAN are connected to cathodes of different common cathode LED 7 segment 

displays so as to select the 7 segment LED in time shared mode. The display codes 

corresponding to the 7-segment display has been stored in a ROM. The system can be 

reset at any point in time by a reset input which has been implemented using a push 

button switch. The FPGA receives its configuration information from a EPCS1 

configuration PROM chip. The whole system receives its clock signals from a 

piezoelectric oscillator.  Figure 9 shows the picture of the instrument. 

 
Figure 9. Picture of the FPGA based system on board 

 

The technology schematic of the processor as realized on the FPGA is shown in figure 10. 
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Figure 10. Technology schematic of the processor 

 

The technology schematic shows how the different LABs in the FPGA have been 

occupied to realize the processor. The resource utilization summary of the processor on 

the FPGA chip is given in Table 2. 

 

Table 2. Resource Utilization Summary 
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Resource Usage 

Logic Cells 5,865 / 5,980 ( 98 % ) 

Registers 3,235 / 6,523 ( 50 % ) 

Total LABs 579 / 598 ( 97 % ) 

Logic elements in carry chains 2353 

User inserted logic cells 0 

I/O pins 27 / 185 ( 14 % ) 

Virtual pins 0 

Clock pins 1 / 2 (50 % ) 

Global signals 2 

M4Ks 15 / 20 ( 75 % ) 

Total memory bits 4,096 / 92,160 ( 4 % ) 

Total RAM block bits 46,084 / 92,160 ( 50 % ) 

Global clocks 2 / 8 ( 25 % ) 

Maximum fan-out node Clk 

Maximum fan-out 1047 

Total fan-out 17700 

Average fan-out 3.32 

 

The resource utilization summary indicates that there is a very small number of logic 

cells and logic array blocks (LABs) left unused during implementation of the processor 

on   the FPGA. This implies a minimum wastage of silicon area while implementing the 

processor on the FPGA. The floorplan of the processor as realized on the FPGA is shown 

in figure 11: 
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Figure 11. The floorplan of the processor 

 

The colored cells correspond to the logic array blocks on the FPGA chip that have been 

allocated to the processor.  

 

VII. RESULTS AND DISCUSSIONS 

The system has been applied to determine the current lung condition of the patient as well 

as predicting in advance, the approaching critical lung condition of the patient. The 

height, weight, age and sex information is given as input to the system, from which the 

system calculates the normal predicted values of PEFR,
FVC

FEV1
and FVC. The 

instantaneous values of PEFR, FEV1 and FVC are given as inputs to the system.  

 

7.1 Analysis of current lung condition of patients: 

The system has been tested with the data of 10 patients to test its applicability in 

determining the current lung condition of the patient. The analysis of data of 10 patients 

from Om Health-net Telemedicine Pvt. Ltd. is shown in Table 3. 

 

Table 3. Analysis of current lung data of patients  

 

Sl. 

No. 

Patient Name PEFR 

(%) 
µ(PEFR) (%)1

FVC

FEV

 

µ )( 1

FVC

FEV  FVC 

(%) 
µ(FVC) Instrumental 

Decision 

Physicians’ 

Decision 

µL 1.00 µL 0.00 µL 0.45 1. Chhaya Rani 

Ganguly (66) 

51 

µH 0.00 

95 

µM 0.00 

56 

µM 0.55 

Moderate 

Restriction 

Moderate 

Restriction 
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In the above table µL, µM and µH refers to the membership function values of the 

pathophysiological parameters in the low, moderate and high fuzzy sets. Since only the 

current pathophysiological state is analyzed, hence, the possibility values discussed in 

section 4 is same as the membership function values. Using the rules of inferencing 

discussed in section 4, the system indicates the current lung condition of the patient. The 

figures within the parentheses in the patients’ name column indicate the age. It is clear 

from table II that in all the ten cases the decision given by the smart computing system 

agrees with the diagnostic decision given by the physician. 

      µH 1.00  µH 0.00   

µL 1.00 µL 0.00 µL 0.35 

µM 0.00 µM 0.65 

2. Raniprava 

Chowdhury 

(65) 

46 

µH 0.00 

120.64 

µH 1.00 

58 

µH 0.00 

Moderate 

Restriction 

Moderate 

Restriction 

µL 0.54 µL 0.00 

 
µL 0.00 

µM 0.00 µM 0.61 

3. Bimal Chandra 

Majumdar (63) 

60.57 

µH 0.46 

94.36 

µH 1.00 

70.88 

µH 0.39 

Mixed Cases Mixed 

Cases 

µL 0.00 µL 0.00 µL 0.00 

µM 0.00 µM 0.00 

4. Rajat Narayan 

Saha (30) 

87.78 

µH 1.00 

98.79 

µH 1.00 

101.1

1 

µH 1.00 

Severe 

Restriction 

Severe 

Restriction 

µL 0.95 µL 0.00 µL 0.00 

µM 0.00 µM 0.00 

5.  Snigdha Pal 

(44) 

65.5 

µH 0.05 

119.79 

µH 1.00 

84.34 

µH 1.00 

Severe 

Restriction 

Severe 

Restriction 

µL 1.00 µL 0.00 µL 0.00 

µM 0.00 µM 0.05 

6. Sibu Das (25) 34.41 

µH 0.00 

94.86 

µH 1.00 

79.23 

µH 0.95 

Mixed Cases Mixed 

Cases 

µL 0.00 µL 0.00 µL 0.00 

µM 0.00 µM 0.19 

7. Bandana Sarkar 

(54) 

89.29 

µH 1.00 

112.32 

µH 1.00 

67.86 

µH 0.81 

Mixed Cases Mixed 

Cases 

µL 1.00 µL 0.60 µL 0.45 

µM 0.40 µM 0.55 

8. Arabindo 

Choudhury (16) 

51 

µH 0.00 

64 

µH 0.00 

56 

µH 0.00 

Severe 

Obstruction 

Severe 

Obstruction 

µL 1.00 µL 0.32 µL 0.81 

µM 0.68 µM 0.19 

9. Mannu Hela 

(40) 

1.84 

µH 0.00 

66.84 

µH 0.00 

48.74 

µH 0.00 

Mild 

Obstruction 

Mild 

Obstruction 

µL 1.00 µL 0.00 µL 0.00 

µM 0.00 µM 0.00 

10. Kaushik Singh 

(30) 

64.13 

µH 0.00 

175.91 

µH 1.00 

85.71 

µH 1.00 

Severe 

Restriction 

Severe 

Restriction 
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7.2 Analysis of sequence of patient data collected over time: 

Data of 120 patients of Aga Khan University, Karachi, Pakistan, has been analyzed to 

assess the accuracy of diagnosis by the smart agent in predicting the future pulmonary 

condition of the patient. The analysis of a patient of age 27 years, is shown in table 4. 

 

In table 4, data has been taken at 5 days interval of time. T1 refers to the 0
th
 day and T5 

refers to the 20
th
 day. PL, PM and PH refers to the possibility of low, moderate and high 

values of the pathophysiological parameters respectively. The essence of the system lies 

in that the system predicts a state of approaching pulmonary obstruction even when the 

lung condition of the patient is normal, which is later proved to be true. This also 

elucidates that such type of system when implemented in portable hardware can be 

deployed in telemedicine environments in rural areas, where the health care professionals 

often provide support services in absence of the physician. 

 

7.3 Performance analysis of the fuzzy processor: 

The advantage of having an FPGA based implementation of the smart diagnostic system 

has also been analyzed by comparing the performance of the implemented smart 

diagnostic system with a general purpose processor running the same algorithm. In order 

to compare the delay of computation by the hardware implementation with that of a 

software implementation, a sequential version of the algorithm is realized in C and 

studied on a general-purpose computer (Pentium IV processor 2.0 GHz running Fedora 

5.0). The actual running time of the sequential algorithm have been via clock ticks using 

times( ) function in C. The CPU time for running the sequential algorithm is found to be 

6 ms. On the other hand, with the FPGA based smart diagnostic system, the computing 

time using a single data set has been found to be equal to 0.2µs. This amounts to a speed 

up of 6000 using the smart system. The difference in delay of computation may stand out 

to be considerable when the system is redeployed for computationally intensive 

applications. Thus we have fast data processing architecture in the FPGA chip. 
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Table 4. Analysis of a typical patient data collected over five instants of time 

PEFR (Normal predicted) = 9.68 

FEV1 (Normal predicted) = 3.01L 

FVC (Normal predicted) = 3.68L 

 
Time PEFR PEFR 

(%) 

FEV1(L) FVC(L) 
(%)1

FVC

FEV  FVC 

(%) 
µ(PEFR) µ )( 1

FVC

FEV  µ(FVC) PPEFR P 
FVC

FEV1  PFVC Instrumental 

Decision 

Adhoc 

Decision by 

physician 

µL 0.00 µL 0.00 µL 0.00 PL 0.00 PL 0.00 PL 0.00 

µM 0.00 µM 1.00 PM 0.00 PM 1.00 

T1 7.92 81 1.84 2.39 95.06 65.00 

µH 1.00 

µH 1.00 µH 0.00 

PH 1.00 

PH 1.00 PH 0.00 

Normal Normal 

µL 0.00 µL 0.00 µL 0.11 PL 0.00 PL 0.00 PL 0.07 

µM 0.00 µM 0.89 PM 0.00 PM 0.93 

T2 7.98 82 1.81 2.31 96.29 62.77 

µH 1.00 

µH 1.00 µH 0.00 

PH 1.00 

PH 1.00 PH 0.00 

Normal Normal 

µL 0.00 µL 0.00 µL 0.00 PL 0.00 PL 0.00 PL 0.04 

µM 1.00 µM 0.65 PM 0.60 PM 0.79 

T3 8.32 85.95 1.59 2.59 75.79 70.31 

µH 1.00 

µH 0.00 µH 0.35 

PH 1.00 

PH 0.50 PH 0.06 

Mild 

Obstruction 

Normal 

µL 0.00 µL 0.00 µL 0.00 PL 0.00 PL 0.00 PL 0.02 

µM 1.00 µM 0.73 PM 0.70 PM 0.76 

T4 7.48 77.27 1.47 2.54 71.44 69.02 

µH 1.00 

µH 0.00 µH 0.27 

PH 1.00 

PH 0.30 PH 0.21 

Moderate 

Obstruction 

Mild 

Obstruction 

µL 0.23 µL 0.09 µL 0.00 PL 0.08 PL 0.03 PL 0.01 

µM 0.91 µM 0.71 PM 0.77 PM 0.75 

T5 7.04 72.72 1.51 2.55 69.13 69.29 

µH 0.77 

µH 0.00 µH 0.29 

PH 0.92 

PH 0.20 PH 0.24 

Moderate 

Obstruction 

Moderate 

Obstruction 
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Since the processor is arranged as a cascade of pipelined stages, the slowest stage 

determines performance. The processor operates at a clock frequency of 40 MHz. This 

clock frequency is determined by the logic synthesis of the processor, modeled in VHDL 

and synthesized using Altera Quartus II synthesis tool. A higher frequency would have 

been chosen but it will add to the power dissipated by the processor. With a clock 

frequency of 40 MHz, the number of inferences processed per second is given by: 

910*25*

1
−

=
cycles

INF
N

N  

 

If the number of active groups is 16 and the rules are uniformly distributed in the groups, 

the latency of the slowest stage (Ncycles) is 8 clock cycles. Therefore the performance 

obtained is 5.0 MFLIPs approximately. 

 

7.4 Determination of accuracy of diagnosis by Bayesian Analysis: 

Bayesian analysis has been carried out on the population of patients from Aga Khan 

University under study to estimate the reliability of the system. In order to estimate the 

reliability of diagnosis, the definitions of statistical terms used in [25] have been used. As 

follows from the application of Bayes’ theorem, the predictive value of any diagnostic 

test is influenced by the prevalence among the tested population, and by the sensitivity 

and specificity of the test [21, 22, 23]. In our particular case, the total population under 

study was 120.  

 

Let a be the number of patients where the diagnostic test yields a positive result and the 

patient really has a disease, b be the number of patients where the diagnostic test yields a 

positive result and the patient does not have a disease, c be the number of patients where 

the diagnostic test yields a negative result and the patient really has a disease and d be the 

number of patients where the diagnostic test yields a positive result and the patient does 

not have a disease. 

Hence, (a + b + c + d) = 40. 

In our particular population under study, a = 58, b = 2, c = 3, d = 57.  
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Therefore, Prevalence of disease, 5.0
d)cb(a

 c)  (a
=

+++

+
=P  

Sensitivity of diagnosis, 9508.0
)(
=

+
=

ca

a
Se  

Specificity of diagnosis, 9661.0
)(
=

+
=

db

d
Sp  

False positive rate = 1–Sp 0339.0
)(
=

+
=

db

b  

False negative rate = 1–Se 0492.0
)(
=

+
=

ca

c  

Accuracy of diagnosis %83.95%100
)(

)(
=×

+++

+
=

dcba

da . 

The figures testify to the accuracy of diagnosis by the smart instrument.  

 

VIII. CONCLUSION 

 

The paper proposes the development of an FPGA based fuzzy processing system for 

pulmonary spirometry applications predicting the approaching obstructive or restrictive 

pulmonary disorder of the patient before criticality actually occurs. Architectural design 

of the fuzzy processor has been realized based on pipelined parallel architectures. The 

system has been implemented on an FPGA. In order to speed up the computation process, 

hybrid parallel data processing architectures with dynamic scheduling mechanism have 

been employed leading to a speed up of approximately 12 times. The processor can 

process several fuzzy rules parallely, can detect only the positive antecedents, 

precomputes the degree of truths of the antecedents, computes the degree of truth of only 

the positive antecedents and uses a defuzzification technique which could be cost 

effectively implemented in hardware. The processor is modeled in VHDL, realized on an 

FPGA and reaches a inferencing speed of 5.0 MFLIPS. The system has been applied for 

medical diagnosis of patients in industrial areas and has been found to give results with 

an accuracy of 95.83%. Further works are going on in achieving an ASIC implementation 

of the processor that can be more optimized in terms of speed, power and area. 
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