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Abstract

With the availability of low-cost sensor nodes there have been many standards developed to integrate and network these nodes
to form a reliable network allowing many different types of hardware vendors to coexist. Most of these solutions howeverhave
aimed at industry-specific interoperability but not the size of the sensor network and the large amount of data which is collected
in course of its lifetime. In this paper we use well studied data compression algorithms which optimize on bringing down the
data redundancy which is related to correlated sensor readings and using a probability model to efficiently compress data at the
cluster heads. As in the case of sensor networks the data reliability goes down as the network resource depletes and thesetypes
of networks lacks any central synchronization making it even more a global problem to compare different reading at the central
coordinator. The complexity of calibrating each sensor andusing an adaptable measured threshold to correct the reading from
sensors is a severe drain in terms of network resources and energy consumption. In this paper we separate the task of comparative
global analysis to a central coordinator and use a referencePMax which is a normalized probability of individual source which
reflects the current lifetime reliability of the sensors calculated at the cluster heads which then is compared with the current global
reliability index based on all thePMax of cluster heads. As this implementation does not need any synchronization at the local
nodes it uses compress once and stamp locally without any threshold such as application specific calibration values (30

o
C) and

the summarization can be application independent making itmore a sensor network reliability index and using it independent of
the actual measured values.

I. I NTRODUCTION

The lifetime of sensor networks is typically factored into the resources it is deployed with, as by design it is unattended

(i.e. no replacement of batteries) it coexists for many months to some years. The numbers of sensor nodes are typically run

into hundreds to thousands in a large environmental monitoring application. As the number of nodes in such applicationsare

enormous than typical networks it uses a clustering algorithms in which typically 20%-30% [5] of the nodes aggregate the

data of the remaining 70%-80% [5] of the connected nodes. These cluster heads are data concentrators which can be modeled

as a device CODEC, compressor/decompressor. The sensors which are attached to the nodes typically sense temperature,

humidity and light. It is true, however, that the sensor measurements in the operation region are spatially correlated (since

many environmental phenomena are) they tend to be very similar. In a CODEC a probability model is used which gives

the highest probability to the most frequently occurred values reported by the sensors within the same cluster. This allows

transmitting peak values with least amount of bits as the underlying compression algorithm assigns least number of bit for

frequently occurring values. This probability distribution is send with the data values to the central coordinator. Soeach cluster

head has a uniquePMax [1] but not all cluster heads have the same measured value. Asin recent development of VLSI and

MEMS technologies have made it possible to package self-powered sensors and wireless radio components which together

is capable of collecting and processing new sensor data for aperiod of many months to few years without replacing the

internal batteries. The miniaturized sensors are sensitive to the available effective range to the energy consumed perbit. The

instantaneous drain on the internal batteries is evident and the study shows that
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Energy consumed per bit to transmit=
100pj

bit
m2

Energy consumed to receive a bit=
50nj

bit

Transmit Energy= Eamp + d2
i,j (1)

Whered is the distance to transmit between sensorsi to sensorj, from this we get the Power rule based on the distance d of

nearest sensor to the farthest away sensor, substituting inthe above equation (1) and summing up the total energy required for

all transmissions within one meter, two meters, three meters, four meters and extending up to (d-1) meters to a progressive

sequence in equation (1.1) (as shown in Figure 1(a)).

(a) (b)

(c)

Fig. 1. (a) Shows fixed energy overhead with distance in transmission, (b) Plot of the theoretical expected lifetime using Power Law, being used to demonstrate
ranking of popularity. To the right is the long tail, to the left are the few that dominate (also known as the 80-20 rule) and(c) Simulation results with sensor
nodes up to 100 using routing algorithms during lifetime calculation.

PowerLaw = 12 + 22 + 32 + 42 + ... + (d − 1)2 + d2 (1.1)

To sum up the total energy consumption we can write it in the form of Power Law equation (1.1)

PowerLaw = f(x) = ax2 + o(x)2 (1.2)

Substituting d-distance for x and k number of bits transmitted, we equate as in equation (1.2).

PowerLaw = f(d) = kd2 + o(d)2 (1.3)

Taking Log both sides of equation (1.2),

log(f(d)) = 2 log d + log k (1.4)

Notice that the expression in equation (1.4) has the form of alinear relationship with slope k, and scaling the argument induces

a linear shift of the function, and leaves both the form and slope k unchanged. Plotting to the log scale as shown in Figure 1(b)
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we get a long tail showing a few nodes dominate the transmission power compared to the majority, similar to the Wikipedia

reference 80-20 rule of Power Law [4].

A. Scale invariance property in clustering for energy dissipation in RF based applications.

As novel sensor applications are deployed to provide reliable data over the life-time [2] of the sensor network, with current

routing algorithms [5] which are dependent to communicate with a central coordinator the instantaneous drain on the sensors

are very demanding. A typical 9V battery communication for an RF sensor to transmit over 10 meters range will drain out

as per the capacity table [3]. As shown in the previous equation in logarithmic scale for point to point transmission, we can

extend this by clustering C nodes in the same range as shown inequation (1.6).

f(d) = kd2 + o(d2) (1.5)

f(cd) = k(cd2) = ckf(d)αf(d) (1.6)

From the equation (1.6) we can infer that the property is scale invariant even with clustering c nodes in a given radius k. This

is validated from the simulation results [5] obtained in Fig1 (c) which show optimal results(minimum loading per node[7])

when clustering is≤ 20% as expected in theory(80-20 rule) from Fig 1 (b). It is true, however, that the sensor measurements

in the operation region are spatially correlated, to be efficient in a large sensor network partitioning the network intospecial

clusters in done periodically and data needs to be aggregated locally by fusing all sensor reading at the cluster head. This data

is periodically routed to a central coordinator which is a collaborative effort of all the active nodes in the sensor network.

II. TRAINING DATA COMPRESSION ALGORITHMS

A. Probability Model

Most of the compression algorithms use a probability model based on the entropy of the source. Entropy of general source

is given by

H(S) = lim
n→∞

1

n
Gn, where (2)

Gn = −
∑∑

...
∑

P (X1 = i1, X2 = i2...Xn = in)

log P (X1 = i1, X2 = i2...Xn = in)

And is a sequence of length n from the source. In sensor each element in the sequence is independent and identically distributed

(i.i.d.), then we can modify the entropy to the first order to equation (2)

H(S) = −
∑

P (X1) log P (X1) (2.1)

B. Aggregation Model

If the cluster size in n, from the cluster equation (8) then the entropy of data aggregation [2.1] is

H(S) = −
n

∑

i=0

P (X1) log P (X1) (2.2)

In a lossless mode if there are no faults in the sensor networkthen we can show that the highest probability given byPMax

is ambiguous if its frequency is≤ n
2 otherwise it can be determined by a local function.

C. LocalPmax functions

|Pmax| =

{

local, for Pmax≥ n
2 (2.3a)

global, for Pmax< n
2 (2.3b)
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Where n is total number of sensors placed in a cluster head. Here the probability of sampling similar values are highly

correlated as in the case of environmental sensing thePmax ≥ 0.5 then the entropy can be re-calculated as

Hgood = −0.6 log2 0.6 − 0.4 log2 0.4 = 0.956 (2.4)

per cluster head. For a good distributed clustering algorithm it uses 20% cluster heads [5] then the total entropy of the network

will be 0.958 × 20 = 19.16 per round. To further calculate the algorithm efficiency themost popular being Huffman coding

[1] which has a lower and upper bound for a givenPmax. The Kraft-McMillan inequality there exist a uniquely decodable

code with code wordli. The average length of the code can be upper-bounded by usingthe right inequality.

lavg =

n
∑

i=0

P (ai)li ≤
∑

P (ai)

[

log2

1

P (ai)
+ 1

]

(2.5)

In fact it can be shown that ifPmax is the largest probability in the probability model then forPmax < 0.5, the upper bound

is

H(S) = Pmax (2.6)

While for Pmax < 0.5 then the upper bound is

H(S) = Pmax + 0.086 (2.7)

Now to calculate the average numbers needed for bothPmax using Huffman coding, whenPmax > 0.5 then using the above

equations we get

H(S) = Pmax + 0.086 = 0.958 + 0.4 + 0.086 = 1.44bps (2.8)

If the symbol distribution is highly skewed then it takes fewextra bits which are certainly the case in sensor networks with

no faults. To find the efficiency of the coding we use

Efficiency =
lavg

H(S)
=

1.6

0.78
× 100 = 45% (2.9)

more than the source entropy using Huffman coding. The data payload which is aggregated for each round with source entropy

which needs a minimum of 0.78 bits at the cluster heads, actually it represents 1.6 bits still reducing the total number ofbits

to be transmitted to the coordinator after coding.

III. PMAX , LOCAL VALUE -INDEPENDENT REDUNDANCY FILTER FOR DATA AGGREGATIONS AT THECLUSTER HEADS

Sensors networks when deployed has a predictable energy resource and uses a well distributed routing algorithm to aggregate

its data to periodically send the sensed data to a central coordinator for further processing by using minimum resources. The

goal of all the aggregation algorithms it to maximize the network reliability index which is a global threshold and reflects

the health of the network. In the central coordinator mode welike to implement a classifier which allows maximizing on the

redundancy of correlated data from each node as it learns during the lifetime of the network and maximizes on the fault by

uniformly distributing the load on the node. This extends the useful lifetime of the sensor network by decreasing the number

of energy holes in the network and corrupting good sensors readings.

A. Localized Classifier - Fault = 0

In the life-time of sensor networks when it has no faults thenthe case (fault=0) the classifier’s view will be as shown

in Figure 2. This given the training model of the classifier a good partition of the life-time of the sensor network. As this

information is needed latter when faults happen in specific areas the cluster head transmit this data periodically to thecentral

coordinator so it can send it to the host for latter comparisons.

B. Localized Classifier - Fault<= n

From the figure 3 it is clear that the localized aggregation functionPmax is effective and the classifier rule will be able to

differentiate the good and bad readings efficiently. As the fault rate increases (fault< n) then we have differentiation inside
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Fig. 2. Simple classification of faulty sensors. Fig. 3. Cluster level classification of faults.

one cluster as the sensor reading are correlated the clusterhead is able to differentiate within the cluster boundaries. The

classifier uses a local rule for this case.

C. Localized Classifier - Fault>= n

Now considering cases (fault> n) it uses sampled values from border nodes as well as some distributed nodes to compare

and obtains a new global fault function. It is a significant task as shown in figure 4 to compare and correct the values to an

expected value. The classifier uses aBayesian approachin which it has to maximize on the posterior probability withexisting

prior probability. The classifier usesPmax as a reference if it is not able to resolve then, it takes all the faulty nodes and uses

the highestPmax of the classified nodes and extracts the value as the best approximation for all the correlated sensors. We

will say that we are trying to find the correction c, out of all possible corrections, that maximizes the probability of c given

the original measurement M:

PMAX = P

(

C

M

)

(3)

By Bayes Theorem this is equivalent to equation below

PMAXC = P

(

M

C

)

P (C) (3.1)

P(c) the probability that a proposed correction c stands on its own. This is called the correlated cluster model.

PMAXC = P

(

M

C

)

P (C) (3.2)

This is called the correlated cluster model.P
(

M
C

)

P (C) the probability that M would be measured by itself when the network

meant c. This is the error model which is given by equation (3.2). Pmaxc,the control mechanism, which says to enumerate all

feasible values of c, and then choose the one that gives the best combined probability score.

Fig. 4. Classification boundary of Faulty sensors. Fig. 5. Simulation setup of K-neighborhood algorithms.
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IV. PMAX GLOBAL, FEATURE EXTRACTION USING PAST VALUE FILTER OF ALL THE DATA AGGREGATED BY THE

CLUSTER HEADS AT THE CENTRAL CO-ORDINATOR

The off-line process helps to train the model with the frequency of Pmax generated by the sensors as in equation (2.3a) and

(2.3b) which are in the fault mode but could have good readings. Below is the pseudo-code for the training the features.
Input: Measured Values from Sensors

Output: Weighted Measured Values in ’snapshot-sensor.db’

Model = collection.defaultTopologyID()foreach f in featuresdo
Model[f] += 1

end

Return model NSENSORS=train(Pmax(file(’snapshot-sensor.db’).read())

At this point, NSENSORS [M] holds a count of how many times themeasured value M has been seen. Now let’s look

at the problem of enumerating the possible correction c of a seen measured value M. It is common to talk of k-neighborhood

distance between two sensors, this is shown in figure 5, the number of comparisons it would take to confirm its relative

measurement. IfPmax does not get an instant match then it has to find it in K-neighborhood distance-2. In the expanded

search if found then it can approximate to measured value which closely matches with an existing sensor of the samePmax.

The process stops if there was no match for the seen frequencywhich is termed unrecoverable fault(unknown) as shown

in figure 5. The next section deals with such cases using training database. Here is the pseudo code to return all measured

corrections c that are K-neighbor distance away from sensorwith a measure M:
Input: Measured ValuePMAX from Sensors

Output: Corrected Value (C) using K-Neighborhood distance vectorN1,N2...

foreach i in range(n) for c in the sampled live measurementdo
KND1(Pmax) N+ (Pmax) return [Pmax [0:i] + c + Pmax [i+1]

end

With the implementation of this classifier we get an fault rate of ≤ 10%. The input and outputs corrections are shown in

TABLE I.

V. TRAIN CLUSTERING FEATURES

In simple cases the sensor network uses local cluster head functions to predict the best correction but as the fault rate

increases which is the case in large sensor network deployments. The central coordinator needs a way to cross validate the

measured data to accept it or to make possible corrections byusing the nearest correction found by using a global function. As

this performed at the coordinator is not limited to any energy constraints and can use sophisticated methods such as training

and feature classifiers. The main goal of the cross-validation logic as shown in figure 6 is to compare with live values as the

primary factor, the more connected the network the better isits reliability. This factor would correct most of the anomalies

which could occur due to bad calibration or external noise. Even the secondary factor which is to find an equivalent connected

path further away from the cluster head and use its measured value to correct the currently seen value at the faulty sensor.

This correction process is used even more as the sensor network becomes widely faulty [8] where the existing of full clusters

are minimum or none.

VI. MULTI-FEATURE TRAINING

We like to train the feature vectors in a way that it can handlemost of the aggregation locally and minimally globally. The

two features arePMAX which takes off the redundancy based on value locally equation (2.3a, 2.3b) andPMAXR which is

based on the relevance of the current measurement when exceeding a given threshold based on the trained data. Table II shows

example local temperature reading in this case thePMAX= 0.40, hence a high measured value of 75.0 can be safely ignored.

This can be adapted efficiently using a linear discriminate analysis (LDA) as shown in Figure 7, 8. As this needs a lot of

computing resources we differ such machine learning techniques to be implemented globally. In table III the trained values are

corrected and are shown in ’C’ and the new measured data set isshown as ’M’. Here again the sensor measures a high value
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TABLE I
CLASSIFIER PERFORMANCE COMPARISON

Sample K-Neighbor K-Neighbor Fault Rate
Distance- 1 Distance- 2

Sim Run-1 98% 1% 1%
Sim Run-1 91% 1% 8%

TABLE II
CLASSIFIER PERFORMANCE USINGPMAX LOCAL

Classification Temperature Value PMAX PMAXC

M 40.00 0.10
M 32.00 0.20
M 44.00 0.30 0.40

(M) 75.00 0.10
Aggregated 35.00 0.40

at 75.0 with a corresponding ofPMAX= 0.10 the classifier’s other feature vector is matching similar readings reported earlier

or newly available fused values from boarder nodes, in this case there is a such high relevant values in the training data set

so comparing the measured data set the training data set we have equation (24). SubstitutingP (B) = 0.30 andP (A) = 0.1,

the conditional probability ofP
(

A
B

)

= 0.30 which is relevant to being a reportable event with high probability.

PMAXC = 0.04, PMAXR = 0.30 (6)

P

(

A

B

)

= P

(

A ∩ B

P (B)

)

(6.1)

The global classifier updates the new measured value overPmaxc, as it is highly a probable event to be reported at the central

coordinator. In the faulty case which is given in table IV we similarly shown as before.Pmaxc = 0.40, Pmaxr = 0.30.

Substituting the values of P(A)= 0.30 and P(B)=0.0 in equation (6. 1) we get a faulty case asPmaxr = not effected. The high

value measured is treated as faulty as in this case the training data set it cannot find any matching value. Figure 10, shows

LDA based classifier using dot product.

Fig. 6. Learning and training during correction as a global function. Fig. 7. Measured values using localPMAX local LDA, with ω1, ω2.

VII. SORTING OUT FAULTY EVENTS

The above methods allow dividing good measured value and thefaulty values measured data locally and globally. As the

network becomes large there is a lot of redundant data and it hard to scale which makes it harder to provide a good solution.

One of the alternate methods [7] used to have a better scale isusing fuzzy logic. But here we like to define an event. An

event can be defined in terms of entropy or self information orsurprisal of message m. Wherep(m) = Pr(M = m) is the

probability that message m is chosen from all possible choices in the message space M. From equation (7) we can define an
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Fig. 8. Classification aggregated values usingPMAXLDA ω1, ω2. Fig. 9. Measured data set across sensor clusters.

Fig. 10. Classifying local measured data withPMAXR global thresholds at the central coordinator which is basedon feature extraction and has unlimited
processing power.

event as the lowest probability reported by a sensor in a clustered environment. In our data aggregation process we usePmax

which typically has a higher probability of0.3. If the sensor measured probability has a lower probabilitysuch as 0.1 then

it is a highly probable event from equation (7). Now that we can have such events reported across many clusters we need to

determine if it is a faulty event or an actual true event. To make it fault-tolerant we extend the same Bayesian learning method

such as equations (3.1,3.2) to come with a fault scoring rule. This allows the algorithm to more fault-tolerant in a distributed

network. So for this we assume that the sensors have fixed register based accuracy(8-16 bits) and we can assign a weighted

score based on a probability that a expected bit is set or not set for an measurement to be accurate compared toPmax mask

(measured value) bits. From equation (7.1) we have that given an event has been reported in a cluster, i.e. P(B).

I(m) = log2

1

p(m)
= − log2(p(m)) (7)

Then we can rewrite this as

P

(

A

B

)

= P

(

AggrV alue

Event

)

= P

(

V alueAggr ∩ Event

Event

)

(7.1)

From the previous definition of an event we knowPevent = 0.1,so we need to find out the numeratorPV alueaggr ∩ Event.

As the measured values are internally stored in bits, let us assume for a register with m bits, then it is equiprobable for any

bit to set giving a probability of 1
m1

for every position of the bits in the register. Let us say the pattern of expected bits

from a measurement has a probability p, and also an event has been reported then the fault probability of the event can be

calculated by⊕ each bit with the faulty bit at the positions1
m1

, 1
m2

, ... 1
m3

the mismatched bits have a (1-p) probability. This

is the intermediate fault score for each and every mis-matched bit present in the current set of measured value. Then the fault

conditional probability given the expected pattern is calculated by summing up the score of the faulty bits as shown in equation
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(7.2) which is then ranked to get a final fault score.

Fault Score = 1
m1

(1 − p)faultybit(m1)+

1
m1

(1 − p)faultybit(m2)+

1
m1

(1 − p)faultybit(m3)+

... 1
m1

(1 − p)faultybit(mn)

(7.2)

In a clustering environmentPmax = p, P(event−local) = 0.1, also the average self-information that is an event is equiprobable

in the whole network configured into c clusters is given byP(event−global) = 1
c

This allows to evenly scoring fault bits which have high significance such as MSB compared to least significant bits which

have least significance. If a fault score is> 0.5 then the event is ignored otherwise it is reported even though is carries a

self-information of as low as 0.1. This event detection and reporting algorithm is adaptive as it is based on, if the number of

clusters in the sensor network is large then an event detected is more precise at the central coordinator as shown in equation

(7) by substituting theP(event−global)value.

TABLE III
CLASSIFIER PERFORMANCE USINGPMAX - PMAXR-RELEVANT

Classification Temperature Value PMAX PMAXC PMAXR

C 57.20 0.10
C 53.60 0.10
C 55.60 0.20 0.30 75.00
C 75.00 0.30 0.30 75.00
C 55.40 0.20
M 40.00 0.10
M 32.00 0.20
M 44.00 0.30
M 35.00 0.40 0.40

(M) 75.00← 0.10
Relevant 75.00 0.10 0.30

TABLE IV
CLASSIFIER PERFORMANCE USINGPMAX - PMAXR -FAULTY

Classification Temperature Value PMAX PMAXC PMAXR

C 57.20 0.10
C 53.60 0.10
C 55.40 0.20
C 58.40 0.30 0.30 58.00
C 55.00 0.20
M 40.00 0.10
M 32.00 0.20
M 44.00 0.30
M 35.00 0.40 0.40

(M) 75.00← 0.10
Fault 35.00 0.40 0.0

VIII. SUMMARY

Theoretically we show that study of wireless sensor networkenergy management is a significant part of solving the reliability

issue. Also we show that the energy constraint is network size invariant and converges to an optimal cluster size. To achieve a
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balance we use compression algorithms to bring down the transmitted bits to known entropy at the cluster head as in equation

(2.9). The same model serves as the reliability index for a central classifier which uses multi-feature and brings down the fault

rate to a minimum in our case around10%. This technique can also be shown that in training data, as the data is measured

with respect to a given source entropy at each cluster head then the training data set over time for a large sensor network has

the self mutual-information of all the nodes in the network with respect to the new measured values. This helps to further

classify the current data set by reducing any faults due to measurements locally by using conditional probability of thenew

measured value given a similar measured value is reported byadjacent cluster heads. To scale a machine learning system

to adapt to faulty sensors we have designed a rank based faultscoring system to classify good and bad events in a widely

faulty environment and also has a precession factor calculated by the number of clusters. The classifier’s design is based on

the probability model and is independent of the actual measured value, some of the future work [7] extends this work into a

fault-tolerant classifier for the class of distributed WSN clustering algorithms.
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