View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Exeley Inc.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 4, DECEMBER 2008

Training Data Compression Algorithms and
Reliability in Large Wireless Sensor Networks

Vasanth lyer, Garimella Ram Murthy, M.B. Srinivas
Computer Science and Engineering, International Instiaftinformation Technology,
Gachibowli, Hyderabad, India 500032
Email: vasanth@research.iiit.ac.in, rammurthy @iiiiracsrinivas @iiit.net

Abstract

With the availability of low-cost sensor nodes there havenbmany standards developed to integrate and network tlgss n
to form a reliable network allowing many different types afrtiware vendors to coexist. Most of these solutions howksage
aimed at industry-specific interoperability but not theesid the sensor network and the large amount of data whichlliscted
in course of its lifetime. In this paper we use well studiedadeompression algorithms which optimize on bringing doWwe t
data redundancy which is related to correlated sensormgadind using a probability model to efficiently compress astthe
cluster heads. As in the case of sensor networks the dasditiyi goes down as the network resource depletes and thipes
of networks lacks any central synchronization making itnewgore a global problem to compare different reading at thirak
coordinator. The complexity of calibrating each sensor asiig an adaptable measured threshold to correct the geddim
sensors is a severe drain in terms of network resources angyeconsumption. In this paper we separate the task of catipa
global analysis to a central coordinator and use a referéhgg. which is a normalized probability of individual source whic
reflects the current lifetime reliability of the sensorscoddited at the cluster heads which then is compared withuhrernt global
reliability index based on all th&,,,, of cluster heads. As this implementation does not need anghsgnization at the local
nodes it uses compress once and stamp locally without aeghtbld such as application specific calibration valu®s ) and
the summarization can be application independent makingpie a sensor network reliability index and using it indegfeer of
the actual measured values.

I. INTRODUCTION

The lifetime of sensor networks is typically factored inteetresources it is deployed with, as by design it is unattnde
(i.e. no replacement of batteries) it coexists for many msrb some years. The numbers of sensor nodes are typically ru
into hundreds to thousands in a large environmental mangapplication. As the number of nodes in such applicatanes
enormous than typical networks it uses a clustering algmstin which typically 20%-30% [5] of the nodes aggregate the
data of the remaining 70%-80% [5] of the connected nodessd kkister heads are data concentrators which can be modeled
as a device CODEC, compressor/decompressor. The sensans afe attached to the nodes typically sense temperature,
humidity and light. It is true, however, that the sensor measents in the operation region are spatially correlasicé
many environmental phenomena are) they tend to be veryasimiit a CODEC a probability model is used which gives
the highest probability to the most frequently occurredugal reported by the sensors within the same cluster. Thisvsll
transmitting peak values with least amount of bits as theetdyithg compression algorithm assigns least number of doit f
frequently occurring values. This probability distritaniis send with the data values to the central coordinatoegst cluster
head has a uniqufy.. [1] but not all cluster heads have the same measured valua fecent development of VLSI and
MEMS technologies have made it possible to package selepaivsensors and wireless radio components which together
is capable of collecting and processing new sensor data foerimd of many months to few years without replacing the
internal batteries. The miniaturized sensors are seaditithe available effective range to the energy consumedbipefhe
instantaneous drain on the internal batteries is evident and the study shows that
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Whered is the distance to transmit between sensdrs sensolj, from this we get the Power rule based on the distance d of
nearest sensor to the farthest away sensor, substitutitig iabove equation (1) and summing up the total energy red)fiar

all transmissions within one meter, two meters, three msefelur meters and extending up to (d-1) meters to a progeessi
seguence in equation (1.1) (as shown in Figure 1(a)).
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Fig. 1. (a) Shows fixed energy overhead with distance in ingsson, (b) Plot of the theoretical expected lifetime gsfower Law, being used to demonstrate
ranking of popularity. To the right is the long tail, to thdtlare the few that dominate (also known as the 80-20 rule)(@h&imulation results with sensor
nodes up to 100 using routing algorithms during lifetimecakdtion.

PowerLaw =12+ 2> + 32 +4* + ..+ (d - 1)* + d* (1.1)
To sum up the total energy consumption we can write it in thenfof Power Law equation (1.1)
PowerLaw = f(x) = ax® + o(z)? (1.2)
Substituting d-distance for x and k number of bits transditwe equate as in equation (1.2).
PowerLaw = f(d) = kd* + o(d)? (1.3)

Taking Log both sides of equation (1.2),
log(f(d)) = 2logd + log k (1.4)

Notice that the expression in equation (1.4) has the formlifear relationship with slope k, and scaling the argumedtices
a linear shift of the function, and leaves both the form amg’%lk unchanged. Plotting to the log scale as shown in Figiime 1
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we get a long tail showing a few nodes dominate the transomgsower compared to the majority, similar to the Wikipedia
reference 80-20 rule of Power Law [4].

A. Scale invariance property in clustering for energy dission in RF based applications.

As novel sensor applications are deployed to provide riglidata over the life-time [2] of the sensor network, withreumt
routing algorithms [5] which are dependent to communicaith & central coordinator the instantaneous drain on theasn
are very demanding. A typical 9V battery communication farRF sensor to transmit over 10 meters range will drain out
as per the capacity table [3]. As shown in the previous egnati logarithmic scale for point to point transmission, wanc
extend this by clustering C nodes in the same range as shoequiation (1.6).

f(d) = kd® + o(d?) (1.5)
fled) = k(cd®) = * f(d)af(d) (1.6)

From the equation (1.6) we can infer that the property isestalariant even with clustering ¢ nodes in a given radiustks T

is validated from the simulation results [5] obtained in Rigc) which show optimal results(minimum loading per node[7
when clustering i< 20% as expected in theory(80-20 rule) from Fig 1 (b). It is truewhver, that the sensor measurements
in the operation region are spatially correlated, to be iefficin a large sensor network partitioning the network ispecial
clusters in done periodically and data needs to be aggdmtally by fusing all sensor reading at the cluster heads thata

is periodically routed to a central coordinator which is dlafmrative effort of all the active nodes in the sensor ek

II. TRAINING DATA COMPRESSION ALGORITHMS
A. Probability Model

Most of the compression algorithms use a probability modeskel on the entropy of the source. Entropy of general source
is given by )
H(S)= lim —G,,where 2

n—oo n

Gn=—_> .Y P(X1=i1, X =iz.. X, = i)

IOgP(Xl = il,XQ = ZQXn = Zn)

And is a sequence of length n from the source. In sensor eaaieet in the sequence is independent and identically lolisérd
(i.i.d.), then we can modify the entropy to the first order tuation (2)

H(S) == P(X1)log P(X1) (2.1)

B. Aggregation Model

If the cluster size in n, from the cluster equation (8) thea é&mtropy of data aggregation [2.1] is

n

H(S) =) P(X1)log P(X1) (2.2)

=0
In a lossless mode if there are no faults in the sensor netthenk we can show that the highest probability givenmy,.
is ambiguous if its frequency is 5 otherwise it can be determined by a local function.

C. Local P,,,. functions

(2.3a)

local, for Pmax>
|Pmazx| =
(2.3b)

w3 I3

global, for Pmax<
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Where n is total number of sensors placed in a cluster heak the probability of sampling similar values are highly
correlated as in the case of environmental sensing?he. > 0.5 then the entropy can be re-calculated as

Hgyooa = —0.610g, 0.6 — 0.41log, 0.4 = 0.956 (2.4)

per cluster head. For a good distributed clustering allgariit uses 20% cluster heads [5] then the total entropy of #teark
will be 0.958 x 20 = 19.16 per round. To further calculate the algorithm efficiency thest popular being Huffman coding
[1] which has a lower and upper bound for a givEp... The Kraft-McMillan inequality there exist a uniquely detadble
code with code word;. The average length of the code can be upper-bounded by thengght inequality.

lavg = ;P(ai)li < Z P(a;) {logz PL) + 1} (2.5)

(ai

In fact it can be shown that iP,,,, is the largest probability in the probability model then f8y,,. < 0.5, the upper bound
is
H(S) = Phnax (2.6)

While for P,,,, < 0.5 then the upper bound is
H(S) = Ppas + 0.086 (2.7)

Now to calculate the average numbers needed for Bhth. using Huffman coding, whei®,,... > 0.5 then using the above
equations we get
H(S) = Ppas +0.086 = 0.958 + 0.4 + 0.086 = 1.44bps (2.8)

If the symbol distribution is highly skewed then it takes fewtra bits which are certainly the case in sensor networkis wi
no faults. To find the efficiency of the coding we use

lavg 1.6
H(S) 078 "
more than the source entropy using Huffman coding. The datbopd which is aggregated for each round with source entrop
which needs a minimum of 0.78 bits at the cluster heads, Btuaepresents 1.6 bits still reducing the total numberbds

to be transmitted to the coordinator after coding.

Ef ficiency = 100 = 45% (2.9)

Ill. Pprax, LOCAL VALUE-INDEPENDENT REDUNDANCY FILTER FOR DATA AGGREGATIONS AT THECLUSTER HEADS

Sensors networks when deployed has a predictable enemyrcesand uses a well distributed routing algorithm to agapie
its data to periodically send the sensed data to a centratiz@dor for further processing by using minimum resourddse
goal of all the aggregation algorithms it to maximize thewwek reliability index which is a global threshold and refiec
the health of the network. In the central coordinator moddikesto implement a classifier which allows maximizing on the
redundancy of correlated data from each node as it learneddtire lifetime of the network and maximizes on the fault by
uniformly distributing the load on the node. This extends tiseful lifetime of the sensor network by decreasing the rarm
of energy holes in the network and corrupting good sens@dimgs.

A. Localized Classifier - Fault = 0

In the life-time of sensor networks when it has no faults thies case (fault=0) the classifier's view will be as shown
in Figure 2. This given the training model of the classifier ad partition of the life-time of the sensor network. As this
information is needed latter when faults happen in speciBasthe cluster head transmit this data periodically tocdreral
coordinator so it can send it to the host for latter compasso

B. Localized Classifier - Faulk= n

From the figure 3 it is clear that the localized aggregatiarcfion P,,,,.. is effective and the classifier rule will be able to
differentiate the good and bad readings efficiently. As ﬁbqtbfrate increases (fault n) then we have differentiation inside
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Sensors < n and no errors E=0 Cluster level classification of faults
Fig. 2. Simple classification of faulty sensors. Fig. 3. Cluster level classification of faults.

one cluster as the sensor reading are correlated the clustet is able to differentiate within the cluster boundaridse
classifier uses a local rule for this case.

C. Localized Classifier - Fault-= n

Now considering cases (fault n) it uses sampled values from border nodes as well as somiéudist nodes to compare
and obtains a new global fault function. It is a significargktas shown in figure 4 to compare and correct the values to an
expected value. The classifier useBayesian approacin which it has to maximize on the posterior probability wékisting
prior probability. The classifier us€s,,... as a reference if it is not able to resolve then, it takes @lféulty nodes and uses
the highestP,,,, of the classified nodes and extracts the value as the beshamation for all the correlated sensors. We
will say that we are trying to find the correction c, out of atigsible corrections, that maximizes the probability of wegi
the original measurement M:

Pyax =P <%) (3
By Bayes Theorem this is equivalent to equation below
Puaxe =P (% ) PO 6.
P(c) the probability that a proposed correction ¢ standsown. This is called the correlated cluster model.
Puaxe =P (% ) PO (32)

This is called the correlated cluster modél(%) P(C) the probability that M would be measured by itself when thevoek
meant c. This is the error model which is given by equatioB)(3,,...,the control mechanism, which says to enumerate all
feasible values of ¢, and then choose the one that gives gtecbmbined probability score.

Sensors > n within the whole cluster, Error =Widely faulty

Sensors > n within the whole cluster, Error =Widely faulty

Fig. 4. Classification boundary of Faulty sensors. Fig. 5. Simulation setup of K-neighborhood algorithms.
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IV. Pyax GLOBAL, FEATURE EXTRACTION USING PAST VALUE FILTER OF ALL THE DATA AGAQREGATED BY THE
CLUSTER HEADS AT THE CENTRAL CGORDINATOR

The off-line process helps to train the model with the fregpyeof P, generated by the sensors as in equation (2.3a) and

(2.3b) which are in the fault mode but could have good realiBglow is the pseudo-code for the training the features.
Input: Measured Values from Sensors

Output: Weighted Measured Values in 'snapshot-sensor.db’

Model = collection.defaultTopologyID(foreach f in featuresdo
Model[f] += 1

end
Return model NSENSORS=train(Pmax(file('snapshot-sedisdiread())

At this point, NSENSORS [M] holds a count of how many times theasured value M has been seen. Now let’s look
at the problem of enumerating the possible correction ¢ afean sneasured value M. It is common to talk of k-neighborhood
distance between two sensors, this is shown in figure 5, tmebau of comparisons it would take to confirm its relative
measurement. 1f5,,,,, does not get an instant match then it has to find it in K-neighbod distance-2. In the expanded
search if found then it can approximate to measured valuetwtibsely matches with an existing sensor of the sding,.

The process stops if there was no match for the seen frequehioh is termed unrecoverable fault(unknown) as shown
in figure 5. The next section deals with such cases usinginidatabase. Here is the pseudo code to return all measured

corrections c that are K-neighbor distance away from sewithra measure M:
Input: Measured ValueP,; 4 x from Sensors

Output: Corrected Value (C) using K-Neighborhood distance vebtb/N2...

foreach i in range(n) for c in the sampled live measuremdaot
KND1(Pmax) N+ (Pmax) return [Pmax [0:i] + ¢ + Pmax [i+1]

end

With the implementation of this classifier we get an faulieraf < 10%. The input and outputs corrections are shown in
TABLE 1.

V. TRAIN CLUSTERING FEATURES

In simple cases the sensor network uses local cluster headidas to predict the best correction but as the fault rate
increases which is the case in large sensor network deplagm&he central coordinator needs a way to cross validate th
measured data to accept it or to make possible correctionsibg the nearest correction found by using a global functés
this performed at the coordinator is not limited to any egargnstraints and can use sophisticated methods such amgrai
and feature classifiers. The main goal of the cross-vatiddtigic as shown in figure 6 is to compare with live values a&s th
primary factor, the more connected the network the bettésiseliability. This factor would correct most of the andima
which could occur due to bad calibration or external noiseerEthe secondary factor which is to find an equivalent cogec
path further away from the cluster head and use its measwie@ Yo correct the currently seen value at the faulty sensor
This correction process is used even more as the sensormdt@comes widely faulty [8] where the existing of full clast
are minimum or none.

VI. MULTI-FEATURE TRAINING

We like to train the feature vectors in a way that it can hamdtest of the aggregation locally and minimally globally. The
two features arePy; 4 x which takes off the redundancy based on value locally equda®.3a, 2.3b) and’y; 4 x g Which is
based on the relevance of the current measurement whendaxgeegiven threshold based on the trained data. Table Wsho
example local temperature reading in this case®hgey x= 0.40, hence a high measured value of 75.0 can be safelyadnor
This can be adapted efficiently using a linear discriminatelysis (LDA) as shown in Figure 7, 8. As this needs a lot of
computing resources we differ such machine learning tegles to be implemented globally. In table Il the trainecuesl are

corrected and are shown in 'C’ and the new measured data shoign as 'M’. Here again the sensor measures a high value
917
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TABLE |
CLASSIFIER PERFORMANCE COMPARISON

Sample K-Neighbor || K-Neighbor || Fault Rate
Distance- 1|| Distance- 2
Sim Run-1 98% 1% 1%
Sim Run-1 91% 1% 8%

TABLE Il
CLASSIFIERPERFORMANCE USING’y ;4 x LOCAL

Classification|| Temperature Value| Pyax || Puaxc
M 40.00 0.10
M 32.00 0.20
M 44.00 0.30 0.40
(M) 75.00 0.10
Aggregated 35.00 0.40

at 75.0 with a corresponding d®; 4 x= 0.10 the classifier's other feature vector is matchinglsinreadings reported earlier
or newly available fused values from boarder nodes, in tasecdhere is a such high relevant values in the training ddta s
so comparing the measured data set the training data setweeehaation (24). Substituting(B) = 0.30 and P(A4) = 0.1,

the conditional probability of? (g) = 0.30 which is relevant to being a reportable event with high phbilits.

Pyraxc = 0.04, Pyaxr = 0.30 (6)

() (33)

The global classifier updates the new measured value Bygr., as it is highly a probable event to be reported at the central
coordinator. In the faulty case which is given in table IV wmitarly shown as beforeP,, ... = 0.40, P,,axr = 0.30.
Substituting the values of P(A)= 0.30 and P(B)=0.0 in equefb. 1) we get a faulty case @%,,.,» = not effected. The high
value measured is treated as faulty as in this case thergatata set it cannot find any matching value. Figure 10, shows
LDA based classifier using dot product.

originaldata
Validation 0.680 i
0.50
------------- Training 0.40 o +d3ia1
......................................... n ¥
£~ - " mad a2
0.20 L
0.10 e 7k
sl |
Amount of training & parameters adjusted 0.00 20.00 £0 .;‘: 50.00 30.00
Fig. 6. Learning and training during correction as a glohaiction. Fig. 7. Measured values using locBh; 4 x local LDA, with w1, w2.

VII. SORTING OUT FAULTY EVENTS

The above methods allow dividing good measured value andathiey values measured data locally and globally. As the
network becomes large there is a lot of redundant data arafdt to scale which makes it harder to provide a good solution.
One of the alternate methods [7] used to have a better scaisirig fuzzy logic. But here we like to define an event. An
event can be defined in terms of entropy or self informatioswprisal of message m. Whepém) = Pr(M = m) is the
probability that message m is chosen from all possible (g?gin the message space M. From equation (7) we can define an
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Fig. 8. Classification aggregated values usiig 4 x LD A w1, w?2. Fig. 9. Measured data set across sensor clusters.
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Fig. 10. Classifying local measured data with; 4 x g global thresholds at the central coordinator which is basedeature extraction and has unlimited
processing power.

event as the lowest probability reported by a sensor in dered environment. In our data aggregation process wePse

which typically has a higher probability df.3. If the sensor measured probability has a lower probakslitgh as 0.1 then

it is a highly probable event from equation (7). Now that we tave such events reported across many clusters we need to
determine if it is a faulty event or an actual true event. Tkenid fault-tolerant we extend the same Bayesian learninthate
such as equations (3.1,3.2) to come with a fault scoring fiés allows the algorithm to more fault-tolerant in a disited
network. So for this we assume that the sensors have fixedteediased accuracy(8-16 bits) and we can assign a weighted
score based on a probability that a expected bit is set oretdbs an measurement to be accurate compared,tp. mask
(measured value) bits. From equation (7.1) we have thahgiweevent has been reported in a cluster, i.e. P(B).

1
I(m) =log, —— = —log,(p(m 7
(m) = logy —s = ~Toga (p(m)) ™
Then we can rewrite this as
AN AggrValue\ Valueaggr N Event
P (E) =r ( Fvent ) =r ( Fvent (7.1)

From the previous definition of an event we knd®,.,: = 0.1,50 we need to find out the numeraiB¥ alue,qq- N Event.

As the measured values are internally stored in bits, letsssirae for a register with m bits, then it is equiprobable foy a
bit to set giving a probability ofmi1 for every position of the bits in the register. Let us say tlatgrn of expected bits
from a measurement has a probability p, and also an eventdws leported then the fault probability of the event can be
calculated byd each bit with the faulty bit at the posmoné—, e m% the mismatched bits have a (1-p) probability. This
is the intermediate fault score for each and every mis-negtdiit present in the current set of measured value. Theratlle f
conditional probability given the expected pattern is glted by summing up the score of the faulty bits as shown iratgn
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(7.2) which is then ranked to get a final fault score.

Fault Score =_-(1 — p) faultybit(m:)+
%(1 — p) faultybit(ms)+
mil(l — p) faultybit(ms)+
mil (1 — p) faultybit(my,)

(7.2)

In a clustering environmen®,,,.. = p, Pevent—iocary = 0.1, also the average self-information that is an event is eqbgble
in the whole network configured into c clusters is givenRY,c,:—giobar) = %

This allows to evenly scoring fault bits which have high $iigance such as MSB compared to least significant bits which
have least significance. If a fault score>is0.5 then the event is ignored otherwise it is reported even thdsgarries a
self-information of as low as 0.1. This event detection agbrting algorithm is adaptive as it is based on, if the nunadbe
clusters in the sensor network is large then an event detéstmore precise at the central coordinator as shown in eguat
(7) by substituting theP.en— giobar) value.

TABLE Il
CLASSIFIER PERFORMANCE USIN®y; 4 x - Paraxr-RELEVANT

Classification|| Temperature Value| Pyax || Puaxc || Puaxr
C 57.20 0.10
C 53.60 0.10
C 55.60 0.20 0.30 75.00
C 75.00 0.30 0.30 75.00
C 55.40 0.20
M 40.00 0.10
M 32.00 0.20
M 44.00 0.30
M 35.00 0.40 0.40
(M) 75.00_ 0.10
Relevant 75.00 0.10 0.30
TABLE IV

CLASSIFIER PERFORMANCE USIN®y; 4 x- Paraxr -FAULTY

Classification|| Temperature Value| Pyax || Puaxc || Puaxr

C 57.20 0.10
C 53.60 0.10
C 55.40 0.20
C 58.40 0.30 0.30 58.00
C 55.00 0.20
M 40.00 0.10
M 32.00 0.20
M 44.00 0.30
M 35.00 0.40 0.40

(M) 75.00 _ 0.10

Fault 35.00 0.40 0.0

VIIl. SUMMARY

Theoretically we show that study of wireless sensor netveoikrgy management is a significant part of solving the réityab

issue. Also we show that the energy constraint is netwok isizariant and converges to an optimal cluster size. Toeaeha
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balance we use compression algorithms to bring down therirdited bits to known entropy at the cluster head as in eguati
(2.9). The same model serves as the reliability index forraraéclassifier which uses multi-feature and brings dovenftult

rate to a minimum in our case arouf%. This technique can also be shown that in training data, @sléta is measured
with respect to a given source entropy at each cluster headttte training data set over time for a large sensor netwask h
the self mutual-information of all the nodes in the networikhwespect to the new measured values. This helps to further
classify the current data set by reducing any faults due tasomements locally by using conditional probability of thew
measured value given a similar measured value is reporteadfacent cluster heads. To scale a machine learning system
to adapt to faulty sensors we have designed a rank basedsfauring system to classify good and bad events in a widely
faulty environment and also has a precession factor catmlilay the number of clusters. The classifier’s design is dbase

the probability model and is independent of the actual nreaksualue, some of the future work [7] extends this work into a
fault-tolerant classifier for the class of distributed WSINstering algorithms.

ACKNOWLEDGMENT

The authors would like to thank for the tools made availablghie area of Data Compression and Pattern Recognition
at International Institute of Information Technology, Hydbad, India. We like to thanks Prof. Subash Mukhopadhga@y f
University of Massey, New Zealand for this constructive coamts [9] in time that improved the quality of the paper for
submission to the new sensor journal.

REFERENCES

[1] Introduction to Data compression. Khalid Sayood. 2ndti&d, Morgan Kaufmann Series in Multimedia InformationdaBystems (Hardcover)

[2] Software Stack Architecture for Self-Organizing Senbletworks, Vasanth lyer, G.Rama Murthy and M.B. SrinivaSST 2007, Palmerston North
New Zealand.

[3] Battery drain(http : //www.techlib.com/reference/batteries.html)

[4] Power Law math(http : //en.wikipedia.org/wiki/ Power_law).

[5] Environmental measurement OS for a Tiny CRF-STACK UsedMireless Network.  Vasanth lyer, G.Rama Murthy and M.Bn8as- Sensors &
Transducers Journal-April 2008, ISSN 1726-5479 2006 byAIFS

[6] Distributed Wireless Sensor Network Architecture: By ogic based Sensor Fusion, G.Rama Murthy, Vasanth I$8NI 978-80-7368-387-0 pages
71-78 VOL Il, Proceedings of the 5th EUSFLAT Conference,r®st, Czech Republic, 2007.

[7] Min Loading Max Reusability Fusion Classifiers for Sen&mta Model, Vasanth lyer, G.Rama Murthy and M.B. Sriniv2808 IEEE SENSORCOMM,
August 25, 2008 - Cap Esterel, France.

[8] B.Krishnamachari, S.S. lyengar, IEEE.,DistributedyBsian Algorithms for Fault-Tolerant Event Region Detetin WSN, MARCH 2004.

[9] Vasanth lyer, Garimella Rammurthy and M.B. Srinivagaiiiing Data Compression Algorithms and Reliability in g@aMWireless Sensor Networks. IEEE
International Workshop on Embedded Processors, Sensaisictuators (EPSA-2008) to be held in Taichung, TaiwangJuf+-13, 2008.

921



