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Abstract—This paper presents a novel on-line trajectory planning method for the autonomous 

robotic interception of moving targets in the presence of dynamic obstacles, i.e., position and 

velocity matching (also referred to as rendezvous).  The novelty of the proposed time-optimal 

interception method is that it directly considers the dynamics of the obstacles as well as the target 

in its interception maneuver:  the velocities and accelerations of the obstacles and the target are 

predicted in real-time for potential collisions. The method is designed to deal with highly-

maneuvering obstacles and targets. The interception maneuver is computed using an Advanced 

Predictive Guidance Law.  

Extensive simulation and experimental analyses, some of which are reported in this paper, 

have clearly demonstrated the time efficiency of the proposed rendezvous method. 

 
 
 
 

Index Terms— Target interception, on-line trajectory planning, rendezvous guidance. 
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I. INTRODUCTION 

Real world mobile robotic environments have, typically, time-varying topologies, with numerous 

objects moving with respect to each other.  Furthermore, such environments are subject to 

uncertainties as complete information and future trajectories of objects cannot be assumed to be 

known a priori. Thus, there rises a need for autonomous routing decisions – on-line motion 

planning and execution of robotic vehicle trajectories. A preferred solution to this problem would 

be one that takes into consideration the kinematic constraints of the vehicle, explicitly copes with 

dynamically moving objects, and is analytical. Furthermore, high-level autonomy and time 

optimality would be desirable during motion planning via real-time sensory-data collection about 

the objects. In this context, the focus of this paper is the development of a generic guidance-

based methodology that would provide an autonomous robotic vehicle with the capability to 

time-optimally rendezvous with a moving target (matching position and velocity) in the presence 

of mobile obstacles. 

The problem of robotic-vehicle interception in obstacle-cluttered environments using a 

Rendezvous-Guidance (RG) method augmented with a Modified Exact Cell Decomposition 

method for rendezvous was first addressed in [1]. The time optimality of this method was further 

improved in [2] through the use of a Velocity Obstacle (VO) approach. The modified method, 

however, still only ensured near-optimal performance for rendezvous with non-maneuvering 

targets. Therefore, herein, a new guidance law that can yield optimal rendezvous with targets 

having high degree of maneuverability is proposed:  This novel guidance law utilizes an 

Extended Kalman Filter (EKF) to estimate the target’s state, as well as directly makes use of the 

dynamic characteristics of the obstacles to estimate their future states. These estimates are used 

to predict potential collisions between the pursuer and the obstacles by using the Collision Cone 

(CC) method. A brief overview of the pertinent literature is provided below. 

A.  Guidance-Based Interception 

Missile-guidance techniques have been classified into five main categories: Line-Of-Sight (LOS) 

guidance; Pure Pursuit (PP); Proportional Navigation Guidance (PNG); Optimal Guidance (OG); 

and, other guidance methods including the use of differential game theory [3, 4]. Missile-

guidance laws assume that the future trajectory of the target is completely defined either 

analytically or by a probabilistic model [5-7]. However, the problem of velocity matching, as 
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dealt in this paper, is not typically addressed in missile-guidance applications. 

The PNG law uses the homing triangle for computing the acceleration of an interceptor 

pursuing an evading target. The homing triangle is defined by the pursuer, the target, and the 

point of interception. This control law makes the pursuer’s acceleration normal to its path and 

proportional to the rate of change of the LOS vector to the target. Due to its low computational 

requirements, simplicity of on-board implementation, and time optimality characteristics, PNG 

has been the most widely used guidance technique [8]. The need for velocity matching has 

resulted in a new class of guidance methods, commonly referred to as Rendezvous-Guidance 

(RG) methods.  A PNG-based RG method for the docking problem of two space vehicles was 

proposed in [9]. In [10], the use of exponential-type guidance was suggested for asteroid 

rendezvous. The problem of rendezvous with an object capable of performing evasive maneuvers 

in order to avoid rendezvous was addressed in [11]. 

The utilization of a guidance-based technique in robot-motion planning, with the purpose of 

improving upon the interception time achievable by visual-servoing techniques, was first 

reported in [12-14]. Although, these works showed that guidance-based methods could yield 

shorter interception times compared to other available techniques, all were limited to 

environments with no obstacles. Further work carried out in our laboratory augmented guidance-

based methods with the capability to avoid mobile obstacles [1-2, 15]. These are based on the PN 

technique, which basically deals with first-order derivatives of target/obstacle velocity, though, 

they are not very effective in the presence of highly maneuvering target/obstacles.  

In present day applications, the maneuverability of the target as well as the obstacles is 

increasingly becoming more complex. Especially in cases that involve human-machine 

interactions, for example, in public places like museums, hospitals, or factory floors. Such 

applications necessitate better tracking of the obstacles as well as of the target than is achievable 

by models based on PN techniques. The reason for the inadequate tracking performance of such 

models is that the higher-order derivatives in the case of very highly maneuvering targets are 

significant. Therefore, in this paper, we present a novel method that can deal with highly-

maneuvering targets by inherently considering the higher-order terms of the target/obstacle 

model.  
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B.  Obstacle Avoidance 

Motion-planning problems for mobile robots have been classified as static or dynamic.  For the 

former, the obstacle information is assumed to be known to the planner in its entirety prior to 

planning.  For the latter, information about the environment becomes known to the planner only 

during run-time and often during the execution of a partially-constructed plan.  

Static motion-planning approaches, such as potential field and vector field histogram, 

calculate the desired motion direction and steering commands in two separate steps [16-18]. In 

the first step, the obstacle-avoidance method provides intermediate destination points that 

connect a collision-free path from the robot to the target.  In the second step, acceleration 

commands are derived for the path generated for the motion of the robot. Such a methodology 

would not be acceptable for a dynamic environment with fast moving obstacles, where the 

uncertainty about the environment prevents the computation of a solution that is guaranteed to 

succeed. Furthermore, static obstacle-avoidance methods have been developed to deal with 

geometric constraints, more specifically, holonomic systems. For non-holonomic systems such as 

mobile robots, kinematic constraints make time derivatives of some configuration variables non-

integrable and, hence, a collision-free path in the configuration space is not necessarily feasible 

(i.e., it may not be achievable by steering controls) [19-20].  

In dynamic obstacle avoidance methods, information about the environment becomes known 

to the planner only during runtime and often during the execution of a partially constructed plan. 

The Curvature-Velocity (CV) [21] and the Dynamic Window (DW) [22] methods are based on 

the steer-angle-field approach [23]. The CV method chooses a location in translational and 

rotational velocity space which satisfies constraints placed on the robot and maximizes an 

objective function [24]. The Lane Curvature Method [25] improves upon the CV method by 

using a directional-lane method. The DW method considers the kinematic and dynamic 

constraints of a mobile robot [26]. Kinematic constraints are taken into account by directly 

searching the velocity space of the robot. The search space is reduced to a dynamic window 

representing the velocities achievable by the robot in a given interval of time. In spite of the good 

results for obstacle avoidance at high velocities achieved by both CV and DW methods, local-

minima problem persists. In order to overcome this shortcoming, the DW Method was integrated 

with a gross-motion planner in [27] and extended to use a map in conjunction with sensory 

information in [28] to generate collision-free motions.  
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The above approaches require a priori information about the environment. The Velocity 

Obstacle (VO) approach proposed in [29], on the other hand, determines potential collisions and 

computes collision-free paths for robots moving in dynamic environments. The VO method was 

extended in [30] to include objects moving along non-linear trajectories.  

The work presented in this paper uses concepts that are rooted in missile guidance/aerospace 

literature for obstacle avoidance so that the method provides an elegant integration with the 

navigation algorithm used for interception. Our objective is, thus, developing a novel obstacle-

avoidance navigation law based on proven navigation-guidance principles. 

Up to now, most of the existing methods have dealt with obstacle avoidance by non-

holonomic systems in one of two ways. The first is to exclusively focus upon motion planning 

under non-holonomic constraints without considering obstacles – differential geometry [31], 

differential flatness [32], input parameterization [33-35], and optimal control [36]. In particular, 

the non-holonomic motion-planning problem is recast as an optimal control problem, where 

Pontryagin’s Maximum Principle is applied.  As first shown in [37] and later improved in [38], 

the feasible shortest path for a point robot under two boundary conditions is a concatenation of 

simple pieces (such as an arc and a straight line segment) that belong to three-parameter families 

of controls.  

The second way in dealing with obstacle avoidance by non-holonomic systems is to modify 

the resultant solution from a holonomic planner so that the resulting path is feasible. For 

example, the online sub-optimal obstacle avoidance algorithm in [39] is based on the Hamilton–

Jacobi–Bellman equation ([40], [41]), deals only with stationary obstacles, and the planned path 

is holonomic, whose feasibility has to be verified in case of a non-holonomic mobile robot. 

Similarly, the non-holonomic path planner in [42] generates a path by ignoring non-holonomic 

constraints and it is, then, made feasible via approximation by using a sequence of optimal path 

segments such as those in [43].  

In this paper, we consider the non-holonomic constraints of the pursuer directly within the 

navigation algorithm. It is ensured that all acceleration commands generated by the 

navigation/obstacle-avoidance algorithm are within the acceleration capabilities of the pursuer 

and can be executed at the next time instant. Although the algorithm presented in this paper is 

primarily designed for vehicular robots yet it can also be applied to humanoid robots, e.g., the 
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control system for a biped presented in [44] can easily be integrated with the proposed algorithm 

to enable the robot to avoid static and dynamic obstacles while moving in the desired direction. 

 

II.  PROPOSED SYSTEM 

A schematic diagram of the proposed rendezvous system is shown in Figure 1: First, the states of 

the pursuer, obstacles, and target are estimated and sent to the path planner; The path planner, 

then, generates a single acceleration command for the pursuer, for time-optimal rendezvous 

while avoiding obstacles (as detailed in Section III) – if obstacle avoidance is not needed, the 

pursuer obtains its acceleration command directly from the navigation algorithm.  

In the following sub-sections, first the methodology for obtaining a model of the pursuer is 

detailed and, subsequently, the proposed novel guidance and obstacle-avoidance methods are 

presented.  

 

 
 

Figure 1: Proposed Rendezvous System. 
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A.  The Kinematic Model of the Mobile Robot 

The kinematic model for a differentially-driven wheeled mobile robot (as the ones used in our 

experiments) is selected as the basis for this work: 
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where y is the system state; the robot is located at (xc, yc) turning to the right;  λ  is the robot 

heading angle with respect to the X-axis; and, the control u consists of the linear velocity 

v and the angular velocity ω. Although in (1) the controls of the mobile robot are its 

linear and angular velocities, the actual commands provided to the vehicle are the right 

and left wheel velocities, Figure 2.  

Let vl, vr, and vR represent the velocities of the left wheel, the right wheel, and the robot, 

respectively. Also, let d be the distance between the two wheels and D be the distance between 

the right wheel and the Instantaneous Center of Curvature, ICC.  The commands generated by 

the navigation-guidance/obstacle-avoidance algorithm set the linear velocity, vP, and the angular 

velocity, ωP, of the pursuer: 

2
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Figure 2: Wheel Velocities. 

 
The motion commands are executed by specifying vl, and vr. With d known, it is possible to 

determine R, the turning radius of curvature of the robot, as the distance between the centre of 
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the robot and ICC.  The wheel velocities are determined using the kinematics Equations (3) to 

(5) given below,  

2
+

= l r
P

v vv ,           (3) 

dDD +
= lr vv

,   and             (4) 

whr=l lv ω , whr=rv rω ,        (5) 

 
where rwh is the radius of the wheel, and ωl and ωr  are the angular velocities of the left and right 

wheel, respectively. 

The final velocity for the next time instant, as computed by the proposed algorithm, must be 
one that is achievable by the robot. Therefore, we define herein a Feasible Velocity Region 
(FVR) representing all the velocities achievable by the robot within Δt, taking into account the 
kinematic and dynamic constraints on the robot [2], Figure 3: 

 
{ }( ) | ( ) (i iFV t t t t FA t+ Δ = = ⊕ Δ •Pv v v )i ,     (6) 

 
where FA(ti) represents the set of feasible accelerations of the robot at time ti. The FVR polygon 
is computed by scaling FA(ti) by Δt and adding it to the current velocity of the pursuer vP. Thus, 
by ensuring that the algorithm only generates accelerations that are within the FVR for each time 
instant, we ensure that the non-holonomic constraints of the mobile robot are satisfied. 

 

Set of feasible 
accelerations 

vP(ti) 
FVR

P̂  vP (ti + Δt) 

a .Δt 

  
 

Figure 3: Feasible Accelerations. 
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B.  Interception Using the Advanced Predictive Guidance Law 

This section describes the new Advanced Predictive Guidance Law (APGL) based target-

interception method proposed in this paper. The Proportional Navigation Law (PNL) is reviewed 

first to provide the mathematical basis for the APGL.  

Theoretically, the PNL issues commands perpendicular to the instantaneous pursuer-target 

line-of-sight, which are proportional to the line of sight rate and closing velocity:  

 
PNL

N λ=cn cv ,         (7) 
 

where nc is the acceleration  command, N is a unit-less gain (usually in the range of 3-5) known 

as the effective navigation ratio [3], vc is the pursuer-target closing velocity, and λ is the LOS 

angle or the LOS rate. The two-dimensional, point-mass target-engagement geometry for PNL is 

shown in Figure 4: the pursuer with the velocity vP,  the pursuer is heading at an angle of 

(L+HE) with respect to the LOS; the angle L is known as the pursuer Lead Angle, which is the 

theoretically correct angle for the pursuer to be on a collision triangle with the target; the angle 

HE is known as the Heading Error, which represents the initial deviation of the pursuer from the 

collision triangle; and, the imaginary line connecting the pursuer and the target is known as the 

LOS. The LOS makes an angle λ with respect to the fixed reference frame and the length of the 

LOS (instantaneous separation between pursuer and target) is a range denoted by RTP.  

 

Pursuer 

Target 

X 

Y 

RTP

nT

vT

vP

nc

β 

λ 

L+HE 

 
Figure 4: Two-dimensional Pursuer-Target Engagement Geometry. 

 

From a guidance point of view, it is desirable that RTP, at the expected time of intercept, is as 

small as possible (ideally, zero). The point of closest approach of the pursuer and target is known 
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as the miss distance. The closing velocity, vc, is defined as the negative rate of change of the 

distance from the pursuer to the target: 

 
TPR= − &

cv .        (8) 
 

Therefore, at the end of the interception, when the pursuer and the target are in closest proximity, 

the sign of vc would change. The desired acceleration command nc is perpendicular to the 

instantaneous line of sight.   

As shown in Figure 4, the target can maneuver evasively with an acceleration nT. The 

angular velocity of the target is, thus, expressed as: 

β =& T
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n
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where vT is the is the magnitude of the target velocity. Since the acceleration command is 

perpendicular to the instantaneous LOS, the pursuer acceleration command in the fixed reference 

frame has the following components: 
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A pursuer employing PNL does not move directly toward the target, but, in a direction to 

lead the target. The theoretical pursuer Lead angle, L, can be found by application of the law of 

sines, yielding: 

 
1 sin( )
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The LOS angle is, then, expressed in terms of the relative separation components: 

 
1tan TPyR

λ −=
TPxv

 .        (12) 

 
The LOS rate is expressed: 
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Any initial angular deviation of the pursuer from the collision triangle is defined by the angle 

HE. The initial pursuer velocity components are, therefore, expressed in terms of the theoretical 

lead angle, L, and actual heading error, HE, as 
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Let us define a Zero-Effort Miss (ZEM, the bracketed term in Equation (15) below) as a 

prediction of by how much the pursuer would miss the target, if the target were to continue as it 

has done in the past and the pursuer was issued no further acceleration commands (i.e., zero 

effort). As shown in [3], PNL can also be considered as a guidance law in which the acceleration 

command is proportional to the ZEM and inversely proportional to the square of the time 

remaining to intercept: 

 

2 [ ]goPNL
go

N y yt
t

′
= + &cn ,        (15) 

 
where y is the relative distance between the pursuer and the target, is the relative target rate and 

t

y&

go is the time to go before the intercept occurs ( go TPt R= cv ). Thus, for PNL, ZEM assumes that 

the target is not maneuvering. This does not imply that the PNL cannot intercept maneuvering 

targets, but rather that it is not optimal in their interception. 

Advanced Predictive Guidance Law 

In order to overcome the limitations of PNL, an Advanced Predictive Guidance Law, APGL, is 

proposed in this paper to improve the performance of a pursuer for fast-maneuvering targets. In 

this guidance law, the predicted intercept with the target is calculated on-line by integrating the 

non-linear pursuer and target equations forward in time at each guidance update. This proposed 

law overcomes the limitations of PN to improve the performance of an interceptor especially 

against a maneuvering target. As with PN, the APG tries to yield zero miss distance while 

minimizing the following: 
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0
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The proposed APG law can be expressed in state-space form as  
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where ω is the target maneuver frequency, y is the relative position between the pursuer and the 

target, is the relative velocity between the pursuer and the target, &y &&Ty is the target acceleration 

and &&&Ty is the target jerk. The final state of the system at any time can also be expressed as  
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Substituting  and G matrices into (18) and simplifying yields the proposed APGL for 

maneuvering targets which is expressed as 

Φ
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The above Equation (21) shows that in essence the APG is similar to the PN and APN 

wherein, the guidance commands are still proportional to the ZEM and inversely proportional to 

the square of tgo. However, the new guidance law consists of three terms: one proportional to the 

LOS rate, another proportional to the target acceleration, and a third proportional to the target 

jerk. 

 In order to better understand the relationship between the new guidance law and its 

predecessors, let us consider the case in which the target is not maneuvering, i.e., the target 

maneuvering frequency is zero. By using Taylor series approximation, the APG law is simplified 

to: 

2 3

20

3lim .
2 6
go go

goAPG
go

t t
y yt

tω→

⎡ ⎤
= + + +⎢

⎢ ⎥⎣ ⎦
&& &&&ca y ⎥T Ty       (22) 

The above is simply an Augmented Proportional Navigation Law (APNL) with an effective 

navigation ratio of 3 plus an extra term to account for target jerk, which implies that APGL 

requires, in addition to the LOS rate, an estimate of the target maneuver frequency, target jerk, 

and tgo. These terms can be estimated in a number of ways for example, by using external sensors 

or by implementing an Extended Kalman Filter (EKF). In this thesis, a five-state EKF is used to 

predict target characteristics. Details on how to implement a suitable EKF for this problem are 

given in [7]. A general method for the development of an EKF is given in Appendix A.  

Thus, after the estimation all the information necessary to calculate
APGca , using (21), is 

now available. The acceleration for the next time instant using APGL is, finally, obtained by 

using the value obtained from (21) in (10). 

sin ,  and

cos .
APG

APG

λ

λ

= −

=
APGx c

APGy c

a a

a a
         (23) 

Generating the Rendezvous Command 

If the pursuer were to follow the acceleration commands generated in (23), it would intercept the 

target at an optimal time in the future. However, in order to rendezvous with the target, the 

velocity of the pursuer must also match the velocity of the maneuvering target at the time of 

interception.  
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Let us assume that the deceleration capability of the robot in the direction of motion is given 

by A. This acceleration would be used to bring the closing velocity down to zero. In deciding on 

the rendezvous maneuver, there are two primary issues that need to be resolved: First, the 

magnitude of the maximum closing velocity needs to be determined and, second, the time instant 

to switch between target-interception and target-rendezvous strategies needs to be carefully 

chosen (the former would lead to a collision with the target).  

Let us denote  as the magnitude of the maximum allowable closing/rendezvous velocity 

(hence, the superscript rend), 

&rend
maxr

got  as the time remaining to intercept the target from the current 

instant, and RTP as the relative distance between the pursuer and the target. In order to 

simultaneously reduce the relative velocity and the relative distance to zero, the following 

expressions need to be implemented: 
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The maximum instantaneous allowable closing velocity is obtained by solving (24) and (25): 

 
Arr rend

max 2=& .         (26) 
 
The maximum closing velocity as imposed by the frequency of velocity command generation 

by the trajectory planner for a fast asymptotic interception is given by: 

 

Δn t=&cr
max

rr .           (27) 
 

The value of  above is determined experimentally. The final allowable closing velocity 

component of the velocity command is, then, obtained by considering (26) and (27) 

simultaneously: 

n
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rend 
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rel 
max r,rv &&min= .         (28) 
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The next algorithmic step is to determine the instant to switch between interception and 

rendezvous strategies. This is obtained by finding the instant at which the velocity represented by 

 can be achieved by the pursuer within the sampling period Δt, namely, the instant at which 

the velocity lies within the Feasible Velocity Region (FVR) as defined in (6).  

rel
maxv

rel
maxv

C.  Predictive Obstacle Avoidance 

In this work, for the purpose of obstacle avoidance, we have used concepts that are rooted in the 

missile-guidance/aerospace literature [44]. The motivation behind using such an approach stems 

from the fact that collision avoidance and collision achievement are, in principle, two aspects of 

the same problem. Since the proposed obstacle-avoidance method is based on the principles of 

missile guidance, it allows for an elegant integration with the proposed navigation guidance law 

used herein (i.e., APGL). 

Majority of existing dynamic obstacle-avoidance algorithms (e.g., [25]-[30]) attempt to avoid 

all obstacles which are in the vicinity of the vehicle by evaluating a time-based or distance-based 

criterion. This may lead to a significant increase in computational complexity in evaluating 

obstacles which are not on a direct collision course with the vehicle. Thus, the two important 

decisions in our proposed algorithm are to decide (i) whether avoidance is necessary with an 

obstacle and, if necessary, (ii) whether the APGL commanded acceleration is sufficient to avoid 

it. 

Obstacle-Avoidance Navigation Law (OANL)  

The key objective to collision avoidance is to maintain a predefined safe distance between the 

pursuer and the obstacle. Let us consider the collision-avoidance problem shown in Figure 5. The 

pursuer is moving on a 2D plane in the presence of another mobile robot that is designated as an 

obstacle. 

Since for the purpose of the APGL, the pursuer is considered to be a point mass, the OANL 

must be based on a similar principle. This is achieved by reducing the pursuer to a point mass 

and increasing the size of the obstacle by the size of the pursuer. For simplicity, the obstacle is 

approximated by a circle that envelops the obstacle. Therefore, when increasing the size of the 

obstacle by the size of the pursuer, one simply increases the radius of the bounding circle of the 

obstacle by the radius of the pursuer. 
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The CC is defined as a region formed by APB. In order to apply the OAN acceleration 

command, a collision-avoidance vector needs to be defined. This vector may either be 

represented by PA or PB. Subsequently, acceleration commands are provided to the pursuer to 

steer the relative velocity vector between the pursuer and the obstacle towards the collision-

avoidance vector.  

 

vO

vP

RPO

rO

 ψ
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Figure 5. Schematic of the OANL. 

Based on the geometry in Figure 5, the OAN acceleration command is expressed as: 

OAN
N ψ= &c Pa v O ,         (29) 

where 
OANca  is the desired acceleration, vPO= vP – vPO is the relative velocity, ψ is the direction 

of the collision-avoidance vector, in this case PA, and N is the navigation constant. From the 

geometry in Figure 3.2, it can also be concluded that  

sin ,     cos
PO PO

y x
R R

ε ε= = ,        (30) 

sin O

PO

r
R
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sinPO Py v Oθ= −& , and         (32) 

POψ θ= +&& ε& .          (33) 

Differentiatin Equations (31) and (32) with respect to time t and substituting into (33) yields, 

(sin
tan tan

cos
PO PO PO

PO PO

v R
R R

θ )ψ ε δ
ε

⎛ ⎞
= − + +⎜

⎝ ⎠

&
& ⎟ .      (34) 

The acceleration for the next time instant using OANL is obtained by substituting the above value 

of 
OANca  into an equation similar to (10): 

sin

cos

λ

λ

= −

=
OANx c OAN

OANy c OAN

a a

a a
 .        (35) 

Prediction of Obstacle Parameters 

In this thesis, it is assumed that dynamic obstacles may have different types of motions. 

Furthermore, as shown in the previous section, the OANL depends on an accurate interpretation 

of the relative velocity between the pursuer and the obstacle. Therefore, in order to predict the 

movements of highly maneuverable obstacles one needs to accurately track the obstacles. This 

may be achieved by means of a KF that also considers higher order derivatives in the tracking 

model for the obstacles. The higher order derivatives in the KF tracking model include obstacle 

acceleration and jerk. This can be written in a state-space framework as  
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where denote the position, velocity, acceleration, and jerk of the target, 

respectively, and w(t) is the system noise. The measurement vector at the (k + 1)

 ,  ,  ,  and   y y y y& && &&&

th instant can be 

expressed in the general form as shown in Equation (37) where v(t) is the measurement noise. 
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Since measurements are not taken continuously but, every, Ts, seconds, the system model 

needs to be discretized. The fundamental matrix in discrete form is approximated by Equation 

(38) which is basically a two term Taylor Series expansion: 

2 3

2

1 2
0 1 2
0 0 1
0 0 0 1

K

T T T
T T

T
ϕ
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6
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The discrete order process noise matrix is obtained from the continuous process noise matrix 

according to: 
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In order for the KF to operate, the KF gains Kk need to be calculated. These gains are 

obtained from a set of recursive Ricatti equations, which are used to yield the KF equations for 

position, velocity, acceleration and jerk. The process is explained in complete detail in Appendix 

A. 

Collision Prediction 

In order for the pursuer robot to make an intelligent decision about when to perform collision 

avoidance, a four-step procedure that automatically predicts the likelihood of a collision was 

developed, Figure 6: 

 

Step 1: Check whether the range between the pursuer and the obstacle (RPO) is less than the 

safe distance (RTh), which is a function of a specified Time Horizon, Th, and the 

velocity. If the answer is yes, proceed to Step 2; otherwise, obstacle avoidance is not 

required. 

Step 2:  Check if the direction of the relative velocity φPO is inside the collision cone. If the 

answer is yes, proceed to Step 3; otherwise, obstacle avoidance is not required. 

Step 3:  Check whether the obstacle is not already behind the direction of the relative velocity 

vector φPO,, which would imply that the obstacle has been already avoided. Namely, 
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check whether 1 1tan      tan
2 2

O P O P
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y y y yor
x x x

π πϕ ϕ− ⎛ ⎞ ⎛− −
≤ − ≥⎜ ⎟ ⎜− −⎝ ⎠ ⎝ x

− ⎞
⎟
⎠

. If the answer is 

yes, proceed to Step 4; otherwise, obstacle avoidance is not required. 

Step 4:  Proceed to the obstacle- avoidance algorithm. 

 

  

Is Range b/w 
pursuer and 

obs RPO < RTh

Obstacle 
Avoidance 

Reqd 
Is vPO inside 

the CC? 
Is Obs in front 

of pursuer?

Obstacle 
Avoidance 
Not Reqd 

Yes Yes Yes 

No No 

No 

Figure 6: Rules for Collision Prediction. 

 

III. IMPLEMENTATION 

In the proposed implementation strategy, for rendezvous with a moving target, the pursuer robot 

receives its velocity command for the next time instant only from the APGL algorithm if obstacle 

avoidance is not required, Figure 1. The pursuer proceeds in the direction generated by the 

APGL, via aAPGL, which is only limited by the vehicle’s dynamic and kinematic characteristics. 

Once in the vicinity of obstacles, however, the accelerations generated by the APGL algorithm 

may need to be modified. Collision avoidance takes place based on evaluating the movement of 

the pursuer and the obstacle. The procedure for generating the acceleration commands for the 

next discrete time instance is discussed below.  

Let us, for example, consider a dynamic environment shown in Figure 7a at a certain instant 

in time ti. The pursuer has to rendezvous with a maneuvering target while avoiding a number of 

dynamic obstacles. It is assumed that the obstacles have similar dynamic characteristics, in terms 

of speed and maneuverability, as do the pursuer and the target. The procedure for generating the 

desired acceleration commands for the pursuer is outlined below: 
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(i) Identify and consider only the obstacles within the safety range, RTh, associated with the 

specified time horizon shown in Figure 7a, this would correspond to considering only 

Obstacle 1 and Obstacle 2 (Figure 7b). 

(ii)  Generate the required acceleration to rendezvous with the target using the APGL along 

the guidance line, Figure 7b. 

(iii) Determine whether the pursuer can directly move toward the target by using the 

acceleration command generated in (ii) above or whether obstacle avoidance is required. 

This is achieved by determining the relative velocity between the pursuer and the 

obstacle(s) and noting whether it is inside the collision cone between the pursuer and the 

respective obstacle. In Figure 7b, one can note that avoidance is required for both 

obstacles. 

(iv) Determine the accelerations required to avoid the “designated” obstacles individually. In 

Figure 7b, this corresponds to determining two different accelerations for each obstacle. 

For example, for Obstacle 1, the first acceleration would steer the relative velocity 

towards OA1 that would cause the pursuer to pass in front of the obstacle, whereas the 

second acceleration steers the relative velocity towards OB1 that would cause the pursuer 

to pass behind Obstacle 1. Similarly, two accelerations are determined for avoiding 

Obstacle 2. The accelerations can be executed by the pursuer by ensuring that the 

velocities are within the FVR parallelogram, Figure 7c. 

(v) Select an acceleration from (iv) such that the pursuer can simultaneously avoid all the 

obstacles as well as have a minimum deviation form the direction defined by APGL. In 

Figure 7c, for both obstacles, the shortest path to the target would be to pass in front of 

the obstacles: for Obstacle 1 this would require that the pursuer accelerates to the velocity 

of vP1 whereas for Obstacle 2 it would accelerate to velocity vP2.  
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Figure 7: (a) Initial Configuration at Time ti; (b) Collision Prediction; 

(c) Avoidance Maneuver; and, (d) Final Configuration at Time ti+dt. 

 
 (vi) Determine whether accelerating to avoid one obstacle in Step (v) above would 

subsequently lead to a collision with another obstacle. In Figure 7c, for example, in 

accelerating to velocity vP1, one must ensure that a collision with Obstacle 2 does not 

result. This check is carried out by determining the relative velocity between vP1 and vO2 

and noting whether it is outside the collision cone. In this example, the relative velocity is 

within the collision cone, thus, indicating that accelerating to vP1 is not suitable for the 

next time instant since it will cause the pursuer to collide with Obstacle 2. On the other 

hand, it is similarly determined that accelerating to vP2 is a suitable candidate for obstacle 

avoidance. By accelerating to a velocity that lies outside the combined avoidance cone, it 

is assured that all obstacles are avoided. Furthermore, by choosing a candidate 

acceleration which changes the velocity of the pursuer to a velocity outside the avoidance 
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cone closest to the rendezvous velocity obtained from APGL provides the desired optimal 

velocity for the next time instant. In this example, it is vP2, which would cause the robot 

to pass in front of Obstacle 2, but, behind Obstacle 1, Figure 7d. 

 A primary advantage of using the above procedure is the consideration of only the obstacles 

that would potentially collide with the pursuer while obtaining a time-optimal trajectory. Thus, 

the acceleration of the pursuer aP for the next time instant (ti+dt) is given by: 

 
  

( )
  i

if  obstacle avoidance is not required

if  obstacle avoidance is required.
t dt

⎧
+ = ⎨

⎩
APGL

P
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a
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a    
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IV. SIMULATIONS 

A number of simulations were carried out using the proposed APGL-based algorithm, Table 1:  

the maximum velocity and lateral acceleration of the pursuer robot was limited to 200 mm/s and 

2000 mm/s2, respectively, in all the examples, and the criterion for successful rendezvous was set 

to <10 mm relative distance in both X and Y directions and a relative velocity of <10 mm/s. 

Furthermore, in order to examine the effect of noise on the performance of the proposed 

algorithm, simulated noise (up to 5%) was added to the target’s “measured” position: 1% noise is 

equivalent to about 10 mm in robot travel. 

Simulation Results 

Figure 8a shows the results of a simulation carried out with static obstacles.  Figures 8b, 8c, and 

8d, in turn, show simulations in which both the obstacles and the target are moving in straight-

line, circular, or sinusoidal paths.  

The simulations verified that (in all scenarios, including cases where the obstacles were 

moving at considerable speeds) the proposed algorithm can effectively and time-optimally avoid 

collisions by deciding on the best direction to navigate in order to rendezvous with the target. In 

dealing with static obstacles, Figure 8a, the pursuer recognized that only a minor deviation is 

required to navigate around both obstacles and achieve an optimal rendezvous with the target. In 

the scenarios depicted in Figures 8b, 8c, and 8d, the algorithm correctly decides whether to 

accelerate in front of the obstacle or to pass it from the rear based on an accurate prediction of 

the future behavior of the obstacles (position, velocity, and acceleration) as well as of the target. 
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Table 1: Summary of Simulation Data. 
Obstacle 1 Obstacle 2 Target 

S.No 
Type Max. Vel 

(mm/s) Type Max. Vel
(mm/s) Type Max. Vel 

(mm/s) 

Rendezvous  
Time (s) 

1 Static 0 Static  0 Sinusoidal 120 8.2 
2 Straight 150 Straight 150 Straight 130 7.9 
3 Circular 150 Circular 100 Sinusoidal 110 8.8 
4 Sinusoidal 180 Sinusoidal Sinusoidal 170 120 8.5 

 
 

(a) 
 

(b) 

 
(d) (c) 

 
Figure 8: Simulations with (a) Static Obstacles, (b) Obstacles and Target Moving in Straight 

Lines, (c) Obstacles Moving on Circular Paths, and (d) Obstacles Moving Sinusoidally.  
 
 

V. EXPERIMENTS 

The physical layout of the experimental set-up is depicted in Figure 9 and the hardware 

specifications are given in Table 2. The software for the experiments, running on a Pentium IV 

1.6 GHz processor PC, consisted of three modules: image acquisition and processing, trajectory 

planning, and communication modules, respectively. An analog CCD camera captured the image 
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of the workspace and transferred it to the frame-grabber in the PC.  The vision algorithm, then, 

extracted the positional information of all the objects in the workspace.  This information was 

sent to the trajectory planner, where an acceleration command is calculated for the robot/pursuer.  

The communication module broadcasted this data to the mobile robots via a Bluetooth module 

connected to the PC. The details of the vision system, communication system and mobile robots 

are included in Appendix B. 

 

Table 2: Experimental Hardware. 

Component Characteristics  
Mobile Robots Miabot Pro Wireless (Bluetooth) Controlled 
PC Host computer, frame grabber and RF module 
CCD Camera Resolution: 640×480 pixels 

Lens focal length: 6 mm  
Distance from floor: 3000 mm 

Floor Workspace 2740×1500 mm Surface material: Felt 
 

 

 

Figure 9: Physical Layout of the Set-up. 

Experimental Results 

Experiments were carried out with the aim to intercept a moving target without trying to 

rendezvous with it (for equipment safety reasons). In the first experiment presented here, the 

target is moving on a straight line and the obstacles are static (Figure 10). In the remaining 

experiments, one obstacle remains static and the other obstacle and the target are mobile, Table 3 
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and Figures 11 to 13.  Each experiment was repeated three times under identical conditions. 

Experimental results show that the real-time paths followed by the pursuer in the experiments are 

similar to its paths observed in simulation. 

Table 3.  Summary of Experimental Data 

Trial Pursuer Vel. 
(mm/s) 

Tgt. Vel 
(mm/s) 

Obs. 1 Vel. 
(mm/s) 

Obs. 2 Vel. 
(mm/s) 

Mean 
Interception Time (s) 

Static 200 100 0 0 6.73 
Linear 200 125 100 0 8.13 
Circular 200 100 130 0 11.73 
Sinusoidal 200 80 80 0 8.10 
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Figure 10: Experiments with A Static Obstacle. 
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Figure 11: Experiments with Linear-Motion Obstacle and Target. 
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Figure 12: Experiments with Circular Motion Obstacle and Target. 
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Figure 13: Experiments with Sinusoidal Motion Obstacle and Target. 

 

VI.  CONCLUSIONS 

A novel rendezvous-guidance method is proposed for autonomous robotic interception of highly 

maneuvering targets in a dynamic environment with static and/or dynamic obstacles. The future 
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maneuver of the target is predicted using a five-state Extended Kalman Filter (EKF). The 

proposed algorithm, then, uses the novel Advanced Predictive Guidance Law (APGL) to obtain 

the required acceleration commands for rendezvous with the target. In the presence of obstacles, 

the algorithm uses the novel Obstacle-Avoidance Navigation Law (OANL), which first predicts 

the likelihood of a collision and, then defines a collision cone for each potentially colliding 

obstacle (within close proximity of) the pursuer. Based on this information the algorithm directs 

the relative velocity between the pursuer and the obstacle outside the collision cone. By 

employing a velocity and heading outside the collision cone, a collision-free trajectory to the 

target is ensured.  EKF is also used to track the obstacles states. 

Furthermore, in our algorithm, instead of using some form of a heuristic search strategy, 

proposed in most obstacle-avoidance techniques, the search for a feasible velocity for the next 

sampling interval is reduced to velocities that are as close to the maximum closing velocity 

component obtained from the APGL method as possible.  

Simulations and experiments have verified the system to be efficient and robust in regards to 

interception of moving targets with various different interception parameters and situations.  
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APPENDIX A: EXTENDED KALMAN FILTER 

The Kalman filter is a two-step probabilistic estimation process that is very popular in the 

robotics world as a tool to predict the next position of the robot in a linear system. Kalman filters 

are based on linear algebra and the hidden Markov model. The underlying dynamical system is 

modeled as a Markov chain built on linear operators perturbed by Gaussian noise. The state of 

the system is represented as a vector of real numbers. At each discrete time increment, a linear 

operator is applied to the state to generate the new state, with some noise mixed in, and 
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optionally some information from the controls on the system if they are known. Then, another 

linear operator mixed with more noise generates the visible outputs from the hidden state. The 

Kalman filter is a recursive estimator. This means that only the estimated state from the previous 

time step and the current measurement are needed to compute the estimate for the current state. 

The Extended Kalman Filter (EKF) is similar to the KF but it can be used in non-linear 

systems because it linearizes the transformations via the Taylor Expansions. In the EKF the state 

transition and observation models need not be linear functions of the state but may instead be 

(differentiable) functions. A generalized EKF is shown in Figure A1. 
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Figure A1: Extended Kalman Filter. 
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Notation 
x state estimate 
z measurement data 
φ Jacobian of the system model with respect to state 
W Jacobian of the system model with respect to process noise 
V Jacobian of measurement model with respect to measurement noise 
H Jacobian of the measurement model 
Q process noise covariance 
R measurement noise covariance 
K Kalman Gain 
P estimated error covariance 
σp prediction noise 
σm measurement noise 

 

 

APPENDIX B:  DETAILS OF THE EXPERIMENTAL SET-UP 

B1. Vision System 

The robot, the obstacles, and the target were color-coded for identification.  The raw image 

containing three channels of data, indicating the intensities of the Red (R), Green (G) and Blue 

(B) colors, in each pixel were transformed into the YCbCr (luminance, chrominance-blue, and 

chrominance-red) color space. The transformation is performed by [47]: 

 
        (B1) 0.299 0.587 0.114Y R G= + + B

2    ,      (B2) ( ) /1.77Cb B Y= −

          (B3) ( ) /1.402Cr R Y= −

 
where Y has a range of [0, 255] and Cb and Cr both have a range of [−127.5, 127.5]. 

 When an image is examined, the weighted Euclidean distances, in the YCbCr color space, 

between each pixel in the image and the predefined colour set are calculated:   
2 20.15( ) 0.425( ) 0.425( )p c p c p c

2D Y Y Cb Cb Cr Cr= − + − + − ,   (B4) 

 
where D is the weighted Euclidean distance, Yp, Cbp, and Crp, are the measured YCbCr values of 

the pixel, and Yc, Cbc, and Crc are the values of the predefined color set. During the experiments, 

it was noted that the pixels on the identification marker did not vary more than 18.0 in weighted 

Euclidean distance from the defined YCbCr value. This value was, therefore, set as the threshold 
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distance: if a pixel is within this threshold distance of a certain color in the predefined color set, 

then, it is considered to be that color. After the image has gone through the thresholding 

operation, the positions of the mobile robot, the obstacles, and the target are determined.  

A search is performed to find the markers on all the objects. In order to achieve the smallest 

sampling rate, the dimension of the smallest marker is used, denoted here as l pixels. Starting 

from the pixel location (0, 0), every 0.5l pixels are sampled along the X and Y directions. If the 

sampled pixel has the color of the predefined set, a search frame is placed over that pixel. The 

size of the search frame is twice the diameter of the marker.  If the number of pixels of a certain 

color in the search frame exceeds a pre-determined threshold, then, a marker of that color is 

considered to be located in that search frame. The centroid of that color blob is, then, calculated 

to sub-pixel accuracy using the Centroid Method [46], Figure B1. 

With all the markers located, object identification can be performed. The vision program first 

searches for blue markers. Once a blue marker is found, the algorithm looks for a white marker 

within a distance of the radius of a robot. If a corresponding white marker is located, then, a 

robot has been successfully identified. Bearing of the object is indicated by an imaginary line 

drawn from the centre of the blue circle to the centroid of the white pattern. The algorithm takes 

approximately 150 ms to execute (i.e., a frame-rate of 6.5 fps). 
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Figure B1: Color Marker Search. 
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B2. Communication System 

The Bluetooth card enables the robot to communicate with the host PC, converting the Bluetooth 

link to logic-level serial signals. The MIABOT-BT Bluetooth boards are supplied with fixed 

communication settings 19200 baud (8 bits, 1 stop bit, no parity). A PC Bluetooth dongle is 

supplied that plugs into the USB port on the PC. This can support wireless links with up to 7 

robots at once. 

B3.  Mobile Robots 

Three Miabot PRO BT v2 differential-drive mobile robots were used in the implementation of 

the proposed methodology: a pursuer, a moving obstacle, and a target. The robot motors are 

driven by 6×1.2 V (AA) cells through a low-resistance driver I.C. with a slow-acting current 

limit at about 5A. Maximum speed of an unloaded motor is in the region of 6000 to 8000 rpm. 

The motor shafts drive the wheels through an 8:1 gearing. The motors incorporate quadrature 

encoders giving 512 position-pulses per rotation. The wheels are 52mm in diameter; one encoder 

pulse corresponds to just under 0.04 mm of movement. Each robot contains two 3 AA-cell 

battery packs (nominal 1.2V per cell, 1300 mAh). 
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