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Abstract- The property of scalability for a given system indicates the ability of a system or a subsystem 

to be modified with changing load on the system. For a sufficiently large complex system, there are 

several factors that influence the ability of the system to scale. It is necessary to incorporate solutions to 

these factors (or bottlenecks) in the design for scalability of a given system. In this paper, we discuss 

such design principles to handle the key factors that influence the scalability of large complex systems. 

Specifically, we demonstrate design and implementation of simple, innovative, and relatively less 

expensive methodology to guarantee that a large complex system (such as network of sensors) is 

scalable under varying load conditions. 

 

Index terms: Wireless sensor networks, scalability and performance, sensor calibration, data summarization 

and aggregation. 

 

I. INTRODUCTION 

 

A. Scalability 

A system is said to be scalable if its availability and fault tolerance are within the acceptable 

thresholds when the load or subsystems is increased in the system [1-3]. Both parameters along 
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with the performance of the system signify the usability of the system. A system that scales well 

does not necessarily mean that it performs well. Ideally, if a system is scalable, then its 

performance increases (or remains same), and its availability increases. Performance of a system 

is based on its output behavior. Availability signifies that there is no single point of failure in the 

system. The system shows graceful degradation with an increase in fault tolerance. 

A system can be,  

• Geographically scalable – usability is still good no matter how geographically far the 

system is located from the users. However, usability depends on the system’s sensitivity, 

range, power, and other parameters. 

• Load scalable – usability is still good even with the increase in load on the system. 

 

An important aspect of scalability may be best described in applications that require several 

complex large-scale systems to work in synergy in order to accomplish a common goal. 

Examples of such systems include sensor systems often seen in military and defense applications, 

to provide increased situational awareness (as shown in figure 1).The combination of two or more 

systems is entirely necessitated by the application under consideration. Therefore, a single system 

would not have accomplished the task efficiently as compared to multiple scalable systems 

working in tandem. 

 

 

 

Figure 1. Sensory Systems Working in Tandem to Provide Increased Situational Awareness 

(Image courtesy of [4]) 
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B. Scalability in Large Complex Systems 

The importance of scalability as a design factor is due to the fact that such systems should ideally 

be able to add more systems or sub-systems without having to re-engineer the existing 

architecture. Consider for example an airport. Adding a redundant system (for example a new 

communication system) should ideally not degrade the performance, availability and usability of 

the existing system (airport). Generally, System Engineering (SE) [5] should provide such a 

systematic engineering methodology to deliver scalable systems and should incorporate the 

necessary means to guarantee scalability in the design principles.  

 

II. SCALABILITY ISSUES IN SENSOR NETWORKS 

 

Consider network of embedded sensors as yet another example of a system that is complex and is 

composed of heterogeneous, independent subsystems (or systems). This complex system is 

composed of sensor nodes each of which have multiple sensors on-board along with limited 

processing and storage capabilities. Therefore, they are sufficiently complex and operationally 

independent in nature. The hardware characteristics provided by these sensor nodes make it 

feasible to load software (and operating system) on these nodes. These software tools along with 

an operating system make the nodes managerially independent. The type of sensors on-board a 

given node determines if the node is functionally different from other nodes. Within a given 

sensor network, the sensor nodes can have different processors (ARM, Intel XScale, etc), 

different RF middleware technologies (ZigBee, 802.11, etc) and even different software layers on 

top of hardware. These characteristics make them architecturally different.  

Having multiple sensor nodes clearly demonstrates the advantage of increased situational 

awareness. For example, multiple sensors deployed in a vast geographical area can provide better 

coverage than a single sensor. An increase in sensor node deployment will increase the coverage 

of the area (given an idealistic situation where nodes do not overlap). The availability and 

interval of failure of the entire network also increases due to increase in node density (as some 

nodes can act as redundant back-up nodes). This method of scaling is sometimes referred to as 

scale-out, where more load (nodes) is added to a given system [6]. In scale-up, one can add more 

resources (memory, processor power, low power usage etc.) to a single sensor node so as to 

increase its coverage which in turn can affect the scalability of the entire network. However, it is 
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important to note whether the performance of such a system would increase with the increase in 

sensor nodes.  

There are two important metrics that can describe the performance of a given system – 

throughput and latency [7]. Throughput defines the amount of work processed by the system in 

a given unit time. The amount of time it takes to complete one given task is defined as latency. 

Ideally, a given system is said to be efficient in terms of performance if it has high throughput 

and low latency. In our previous example, increasing the sensor nodes (to achieve increased 

situational awareness) could decrease the performance of the overall system. Consider the task of 

delivering the sensed data from the sensor nodes to a processing node (such as base-station) and 

processing the sensed data to obtain a decision milestone. With an increase in sensor nodes, there 

is enormous amount of data being delivered to the central base-station. This results in network 

congestion which in turn induces higher latency before the data is actually delivered and 

processed. The throughput also suffers as a result of high utilization of the network and high 

processor usage at the base-station. 

To this end, we will discuss in detail, two important features relating to performance in sensor 

networks. Specifically, we will focus on summarization of data in order to achieve cost effective 

means to optimize data transmission. The presented approach also proposes the use of spatially 

variant weights to reduce the significance of sensor readings taken near the boundary of the 

sensor range, in order to minimize potential corruption of summarized data. Although data 

summarization generally incurs delay, the proposed approach is a cost effective method (i.e., low 

computation utilization) resulting in decreased delay latency caused due to communication. 

Before summarization, the data in each sensor node can be locally calibrated to further enhance 

the correctness of data. This will also ensure one important factor of scalable design – tolerance 

to failure. We will discuss one such localized calibration technique in our next section. 

 

A. Localized Calibration 

The principle idea behind fault tolerance is the system’s ability to perform or operate correctly 

even in the presence of faults. Fault-tolerant calibration scheme when performed at a local sub-

system level (sensor node level) can have tremendous impact on a global system level (sensor 

network level). The problem of fault identification and isolation is generally a complex, non-

trivial task in sensor networks due to the very nature of their construction and deployment. 
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Moreover, due to the low computation and communication capabilities of the sensor nodes, the 

fault-tolerant mechanism should have a very low computation overhead. There are several sensor 

data validation mechanism proposed in literature [8-10]. Most of these are limit checking 

mechanisms, in which, sensor reading is compared against pre-establish nominal window. If the 

reading is outside this window, the sensor is deemed faulty. Mechanisms such as Kalman 

filtering, particle filtering, and wavelet transforms [11, 12] for sensor data validation are not 

suitable simply because they are computationally intensive. A simple mechanism to detect and 

isolate faults in sensors is to use range tests. A sensor is deemed to be faulty if its reading exceeds 

the threshold limits (minimum and maximum values specified). Such tests are commonly used to 

capture “hard faults” that occur rapidly and are termed as Built-In Test (BIT) [13, 14]. 

The design of threshold limits for a given sensor should be meaningful. If the limits (min and 

max values) are tight, we obtain high false alarms. If the limits are relaxed, then we will capture 

very few faults. In our approach to fault detection, we assume that each sensor within a node is 

assumed to operate within a usable threshold window. A Built-in Test (BIT) is said to have 

passed if the sensor reading is within this window. Every sensor is guaranteed to work 

“correctly” within a given operating range specified by the manufacturer. We call this operating 

range of sensor as guaranteed window. This window is usually obtained from the sensor 

manufacturer. The usable threshold window is defined outside guaranteed window such that it 

will incorporate the guaranteed window for a given sensor. That is, lower threshold boundary of 

the usable threshold window will be lesser than the minimum range of operation defined by the 

guaranteed window and higher threshold boundary will be greater than the maximum operating 

range of the sensor. The sensor might still work outside this guaranteed window, however, with a 

much lesser accuracy.  With limit checking or limit filtering, a sensor is deemed faulty when its 

reading is outside such guaranteed window. By using the concept of added usable window, 

however, we can capture intermittent sensor faults or sensor drifts that are seen only for a brief 

period of time.  A simple methodology is to use a bell-function that decreases the weight 

exponentially as the reading deviates from the guaranteed window. At each time instance, the 

reading of the sensor (if outside the guaranteed window but within the usable window) can be 

weighted based on the weights obtained from the function:  
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where, r is the sensor reading, w is weighting factor, and ε is chosen appropriately such that 

0<w<1.A detailed algorithm with limitations for this approach is discussed in [15]. A simple 

validation function or curve as described in (1) is dynamic in nature with the operating conditions 

of the sensor (since the weighting factor is influenced by the sensor reading). This means that the 

sensor reading gets discounted every time it moves away from the guaranteed towards usable 

threshold window.  

Figure 2 shows the benchmarking result on aggregation of simulated sensor data from three 

temperature sensors. The guaranteed window is set to [+20
o
C, +120

o
C]. Reading from sensor-2 

gradually approaches the usable window, thereby suggesting that there is high probability of 

failure. Our proposed windowing approach incorporates the degradation of sensor-2 and failure 

of sensor-1 during the aggregation process, and thus influences the effect of aggregation.  

 
Figure 2. Windowing Effects on Sensor Data Aggregation 

 

Threshold tests prove useful in detecting hard faults. By nature “soft faults” occur when sensors 

are working within the threshold limits but might still be deemed faulty. For example, when the 

sensor reading is outside the manufacturer’s guaranteed window, it is generally difficult to 

classify whether the reading is an environmental stimuli captured by the sensor or if it’s an 

(1) 
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intermittent transient (short-lived oscillation due to sudden voltage or current change) or if it’s an 

intermittent fault (soft fault). In order to detect such faults, we will take advantage of the nature 

of applications in which the sensor nodes are often deployed. These applications often require 

dense deployment of sensor nodes, thereby, making the sensor nodes spatially correlate with 

neighboring nodes within the same event region. This means that a given sensor would read the 

same event value (with minimal variations) as neighboring k sensors which are closely deployed. 

For example, consider three sensor readings a,b, and c from three redundant sensors. Two sensor 

readings are averaged ((a+b)/2, (a+c)/2, and (b+c)/2) at each predetermined time interval. The 

actual reading is set to the value at which the majority of the three averaged values agree upon – a 

plurality voting principle [16].  This helps to eliminate the faulty sensor in the group of the three 

sensors under consideration.  

 

B. Data Summarization 

A more comprehensive mechanism based on the plurality voting principle is to decrease the 

contribution of the faulty sensor and increase the contribution of the non-faulty sensors. This can 

be achieved by simple weighting factor.  

Each sensor node has a weighting factor at any instance of time t, given by wi(t).  In the event of 

sensor degradation, the proposed algorithm adaptively decreases the weight for sensors which 

demonstrate likelihood to fail. At the same time, weighting factors for the neighboring sensor 

nodes is increased. Hence, every reading from each sensor is weighted at each predetermined 

time interval t, and weight updates are computed as follows:   

 

( +1) = ( )  ( )i i iw t w t w t± ∆  

 

A coordinator in a large-scale complex system framework (a cluster-head in sensor network) can 

simply query the nodes for sensor reading in the event region. Based on a specific timeout, the 

fusion node performs weighted average aggregation based on the data it has received currently 

from the sensors.  

In traditional neural networks, the change in weights ∆wi(t) is a function of the error estimate 

[17], which is based on the difference between the expected reading and the actual reading. 

However, in sensor nodes, we do not know the expected or desired reading a priori.  In order to 

(2)
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estimate ∆wi(t), we use the concept of spatial correlation as explained earlier. In order to estimate 

∆wi(t), we propose the following model: 

∆wi(t)= |τi|*ε 

 

where, τ, the adaptation parameter is given by, 

 

1 2 1 1.... 1... i i k
i i

r r r r r
r

k
τ

− + ++ +
= −  

 

ri is the reading from the i-th sensor, k is the number of neighboring sensors and ε, the scaling 

factor, is a  small value 0< ε<1 and is chosen appropriately for a given application. The scaling 

factor ensures that 0<∆wi(t)<1. A complete implementation can be found in [18]. 
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Figure 3. Comparison of Aggregation under Faulty and Normal Conditions 

In order to validate our algorithm, we aggregated the data based on the obtained weighting factor. 

Figure 3 shows the comparison of data aggregation with and without spatial correlation. As the 

aggregated value approaches ground truth (actual aggregated value), the error in the algorithm 

performance decreases and eventually becomes zero (see figure 4).  

(3)
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Figure 4. Error between Ground Truth and Proposed Approach 

We also compared the weighted average data with a simple average of three sensory data with 

and without fault correction as shown in figure 5. Detailed real-world experimentation can be 

found in [19].  

 

Figure 5. Aggregation with and without Fault Correction 

By having such a fault-tolerant data aggregation, we have addressed the key factors that influence 

the scalability in large scale systems. The availability of the system (network) as whole is also 

guaranteed in general, since the deployment of sensor nodes is large to get better coverage. 
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Consolidating data by using time-varying weight adaptation method helps to reduce the data 

propagated from the sensor field to the base-station thereby having minimal effect on the 

utilization of the network. 

 

B. Centralized Controllability and Experimental Verification 

Extensive computation load should be handled by base-station which is assumed to have higher 

computation, power and storage capabilities compared to sensor nodes. This is our centralized 

implementation. Critical, faster, and less expensive computations (such as early fault detection, 

data summarization, etc.) should be handled at a node or cluster-head level, which is distributed 

in the area of interest. At the base-station level, in order to visualize data from different sensors as 

well as to propagate decision from base-station to all the nodes it is necessary to have a user-level 

visualization tool. Such visualization tool should also enable the user to control or pass messages 

(to control) to the deployed sensors. This forms a sensing-decision-actuation loop. We 

developed the visualization interface tool in National Instruments’ LabView®. This interface 

allows the user to observe aggregated data and take decisions based on the observed data – such 

as enabling built-in test, disable aggregation for critical data, etc. A snap-shot of the interface 

developed is shown in figure 6.  

 

Figure 6. User Interface for Sensor Calibration and Data Summarization 
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In order for the user to control the parameters on a remote sensor through the interface it is 

necessary to devise a protocol (and a message format). The message or packet format will be 

understood by the remotely deployed sensor and takes specific action based on the action type in 

the message. The message structure is as shown figure 7. 

 

 

Figure 7. Custom Message Structure for Over the Air Programming 

 

The description of fields (8-bit) in the message structure is as follows: 

len: Length of the payload 

node: node-id to send the message 

action: action to be performed on the node 

 action type:  01 – Aggregate data 

   02 – Disable aggregation 

   03 – Enable Built-in Test 

   04 – Disable Built-in Test 

   05 – High Sleep Time 

   06 – Low Sleep Time 

   07 – Reset Sleep Time 

   08 – High Transmission Power (adjust potentiometer) 

   09 – Reset Transmission Power  

rsvd: reserved field for future use. 

 

For the remotely deployed sensor nodes to understand the commands from the interface, nodes 

need to decipher the packet (as shown in figure 7). The action selection at the sensor nodes is 

based on the action type in the message.  Therefore, a middleware or service layer software 

component is embedded in these sensor nodes that can decipher the message [20].  

 

        header                   len      node  action   rsvd         CRC 

payload 
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III. CONCOLUDING REMARKS 

Scalability is one of the important concepts necessary in more effectively implementing and 

analyzing large, complex, independent, heterogeneous and autonomous systems working 

cooperatively. When systems interact (and often cooperate and coordinate) with each other to 

address the defined high level objectives, the performance of the entire combination of such 

systems could degrade due to optimization, autonomy, etc. We can summarize our scalable 

design – a multi-tier architecture for efficient deployment of sensor nodes as shown in figure 8.  

 

 

 

 

 

 

 

 

Figure 8. Multi-Tier Scalable Design 

We have addressed the scalability issue in sensor networks as a case study by proposing an 

innovative solution to fault-tolerance and policy/decision making. The solution provided is 

generic in nature and can be extended to any complex systems applications. The coordinator 

takes critical managerial operations (for performance improvement) whereas each system takes 

local hard-real time operations (for fault isolation in this case study). Other factors that could also 

influence the performance of large-scale systems such as optimization can also be carried out at a 

coordinator level. For example, [21] addresses and formulates an optimization problem when 

system of sensors works cooperatively with system of robots with varying degree of autonomy 

for a specific application. Such analysis and modeling can be generalized to any complex 

heterogeneous system application. 
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