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ABSTRACT 

In the context of intelligent transportation, this paper presents a novel on-line trajectory-

generation method for autonomous lane changing. The proposed scheme is guidance based, real-

time applicable, and ensures safety and passenger ride comfort. Based on the principles of 

Rendezvous Guidance, the passing vehicle is guided in real-time to match the position and 

velocity of a shadow target (i.e., rendezvous with) during the overtaking manoeuvre. The shadow 

target’s position and velocity are generated based on real-time sensory information gathered 

about the slower vehicle ahead of the passing vehicle as well as other vehicles which may be 

travelling in the passing lane. Namely, the guidance principle is also used to prevent any 

potential collision with these obstacle vehicles. The proposed method can be used as a fully 

autonomous system or simply as a driver-assistance tool. Extensive simulations and experiments, 

some of which are presented herein, clearly demonstrate the tangible efficiency of the proposed 

method. 
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I. INTRODUCTION 

Intelligent transportation systems have been widely researched in the past two decades by the 

academic community as well as automotive manufacturers for increased safety, passenger 

comfort, traffic congestion, etc. [1]. Although manufacturers have concentrated their efforts on 

developing technologies to help drivers, academic interest on the subject matter has primarily 

been on the autonomy of driving.  In this context, our focus in this paper is specifically on the 

autonomy of the lane-changing manoeuvre: An effective on-line time-optimal motion-planning 

method is presented herein for the safe and comfortable overtaking of a slow-moving vehicle 

travelling on a two-lane highway.  

The overtaking manoeuvre is one of the critical actions that a driver performs while travelling 

on a highway. Errors in this decision-making process, typically caused by driver failure to 

accurately and timely interpret information about other vehicles in close proximity, have often 

resulted in catastrophic accidents [2]. In order to eliminate such errors, or at least minimize their 

impact, and increase the level of safety, the vehicles of the future would have to incorporate 

intelligent algorithms that will allow them to accurately consider all aspects of a lane-

changing/overtaking manoeuvre. A number of real-time issues would need to be addressed; (i) 

calculating proximities to other vehicles, (ii) determining when the lane-change manoeuvre 

should start, and (iii) developing optimal and safe trajectories. The last two issues are addressed 

in this paper. 

Majority of autonomous-driving research has been on lane following, as part of promoting 

driver-assistance systems, (e.g., [3-12]).  Limited research, however, has been carried out on lane 

changing, though, primarily proposing non-real-time solutions that are commonly based on lane-

following approaches (e.g., [13-21]). Since, these systems have not been primarily designed for 

lane changing, or vehicle overtaking, they usually yield non-smooth lane transitions. One may 

furthermore note that the few papers that have addressed the smoothness issue have paid little 

attention to collision avoidance [22, 30]. 

A vehicle’s acceleration (lateral, longitudinal, and vertical) and angular motion (roll, pitch, 

and yaw) directly contribute to ride comfort (or discomfort), which are often compared to set 

standard metrics. In this context, comfort disturbance has been classified as: (i) direct 

disturbance caused by a sudden motion of the vehicle, and (ii) indirect disturbance, commonly, 
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caused by high lateral accelerations and/or lateral jerks while negotiating transition curves [31]. 

The limits for lateral and axial acceleration, while negotiating a transition curve, have typically 

been set to 1.25 m/s2 and 5 m/s2, respectively, with a mean comfort rating of 2.5 [32, 33]. This 

paper is primarily concerned with the indirect type of comfort disturbance. 

Another important factor in lane changing is the maintenance of a safe distance during the 

manoeuvre. Although studies on the calculation of a minimum safe distance, for a collision-free 

overtaking manoeuvre, have differed on their recommendations, they commonly assumed worst-

case assumptions scenarios (e.g., [18, 34, and 35]). In the absence of information on the passing 

vehicle’s performance ability (including braking capability) and road conditions, most studies 

recommend a (worst-case scenario) minimum safe (closing) distance based on 2 seconds of 

driving separation as an ideal value for preventing most accidents under emergency conditions.   

An effective trajectory planner for lane-changing must address both of the abovementioned 

issues of comfort and safety. In achieving an optimal manoeuvre, the vehicle should, thus, be 

guided in a way that ensures minimum passing time and avoids any potential collisions. In this 

context, there exist three levels of vehicle guidance: geometric rule, guidance law, and vehicle 

control [36]. The first is simply a rule that one needs to obey to follow a target. The guidance 

law is the algorithm that implements the geometric rule. Vehicle control is concerned with the 

dynamics of the vehicle.  

The utilization of (missile) guidance-based techniques in the on-line motion planning for 

autonomous robotic vehicles was first proposed by our research group in the late 1990s [37, 38]. 

One may note that, such methods have also been proposed specifically for autonomous undersea 

and aerial vehicles (e.g., [39, 40]).  Missile-guidance techniques are, typically, classified into five 

main categories [36, 41]: Line-Of-Sight (LOS) guidance; Pure Pursuit (PP); Proportional 

Navigation Guidance (PNG); Optimal Guidance (OG); and, other guidance methods including 

the use of differential game theory. Missile-guidance laws assume that the future trajectory of the 

target is completely defined either analytically or by a probabilistic model [42-44].  

The PNG law uses the homing triangle for computing the acceleration of an interceptor 

pursuing an evading target. The homing triangle is defined by the interceptor, the target, and the 

point of interception. This control law makes the interceptor’s acceleration normal to its path and 

proportional to the rate of change of the LOS vector to the target. Due to its low computational 
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requirements, simplicity of on-board implementation, and time optimality characteristics, PNG 

has been the most widely used guidance technique [45].  

The abovementioned methods provide interception of a target, i.e., positional matching. The 

need for velocity matching as well has resulted in a new class of guidance methods, commonly 

referred to as Rendezvous-Guidance (RG) methods.  A PNG-based RG method for the docking 

problem of two space vehicles was proposed in [46]. In [47], the use of exponential-type 

guidance was suggested for asteroid rendezvous. The problem of rendezvous with an object 

capable of performing evasive manoeuvres in order to avoid rendezvous was addressed in [48]. 

The utilization of RG-based techniques in the on-line motion planning for autonomous robotic 

vehicles was also proposed by our research group (e.g., [49, 50]). 

In conclusion to the above discussion, it can be noted here that this paper presents a novel 

time-optimal RG-based on-line trajectory (i.e., time-phased path) planning algorithm for the 

guidance of a pursuer vehicle overtaking a slower vehicle on a highway setting in the presence 

of other (obstacle) vehicles travelling in the passing lane.  

II.  OPTIMAL OVERTAKING MANOEUVRE 

A.  Problem Definition 

Let us first consider the simplest highway overtaking scenario, namely, where a vehicle 

(hereafter referred to as the pursuer, P) is driving with a velocity , while in front of it, another 

vehicle (hereafter referred to as the obstacle in the driving lane, O

pv

D) is travelling with a slower 

velocity, , (i.e.,  > ). There exists no (obstacle) vehicle in the passing lane that would 

influence the overtaking manoeuvre, which can be performed by the pursuer in three phases: (i) 

move from the driving lane to the passing lane, (ii) travel in the passing lane and, thereafter, (iii) 

return to the driving lane.  

odv pv odv

In the more complex scenario, one could be forced to consider another (obstacle) vehicle in 

the passing lane, OP, which would not allow the P to immediately overtake OD due to safety 

considerations.  In this case, an additional velocity-adjustment phase would need to be included: 

during this phase, P would adjust its velocity according to the velocity of OD until the passing 

lane becomes free of obstacles, Figure 1. 
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Phases: 3 2 1 

    P  OD   Pnew

Velocity Adjustment 

 
 

Figure 1: The Overtaking Manoeuvre. 

 

B.  Proposed Solution Methodology 

The proposed on-line motion-planning method, determines a pursuer vehicle trajectory to 

perform an optimal overtaking manoeuvre based on the Rendezvous Guidance (RG) technique 

[50]. RG has been shown analytically to yield an optimal solution for rendezvous with non-

manoeuvring targets: which can be assumed to be the case for vehicles travelling on highways.  

However, there still exist two major issues that restrict the use of RG law in trajectory planning 

for our cases. First, RG is designed for matching velocity with a target and not to overtake it. 

Therefore, a target needs to be defined in our case. Second, there would be numerous constraints 

on the motion of a pursuer vehicle, which would not exist for spaceships rendezvous 

manoeuvres.  

In order to address the first issue, we introduce herein the concept of a shadow target, S, 

which will be used to guide the pursuer, P, during all the phases of the overtaking manoeuvre. 

The location of S is defined according to the obstacle vehicle, OD, that is being overtaken. In 

order to address the second issue, this paper uses the RG method proposed in [46-50] for robotic 

(autonomous vehicle) interception: namely, information about P, OD, and OP is used to generate 

a single acceleration command for the pursuer, P, to avoid OP and overtake OD in a time-optimal 

manner. This acceleration command is calculated based on velocity-matching capability with S 

keeping in mind the constraints imposed due to pursuer vehicle dynamics and passenger comfort. 

The concept of shadow target is also utilized for obstacle avoidance in the passing lane to ensure 

a collision free path.  
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Trajectory Based on RG Law 
Let us consider a two-dimensional engagement geometry, in which P and S are moving at 

velocities and pv sv , respectively. An imaginary line joining the pursuer vehicle and the target is 

referred to herein as the Line-of-Sight (LOS). The angle formed by the LOS with the fixed 

reference, λ, is defined by 

                    1tan h
l

λ −=    ,                                                                 (1) 

where h is the distance between P and S in the lateral direction and l is distance in axial direction, 

the length of LOS is defined as a range, , connecting P to S.  r

The parallel-navigation law [36] states that the direction of LOS should remain constant 

relative to a non-rotating frame, while, the interceptor (pursuer) approaches the object (target). 

Namely, the relative velocity, , between the pursuer and the target should remain parallel to the 

LOS, , at all the times. If this rule holds throughout the motion of the pursuer, the distance 

between the pursuer and the target would decrease until they collide. 

&r

r

The parallel-navigation law is expressed by the following two relationships 

                    
,
                                                                     (2) 

0× =&r r

                                                 and  

                    .                                                                             (3) 0⋅ <&r r

 

Equation (2) ensures that r and  remain collinear, while (3) ensures that P is not receding 

from S. The above equations can be solved in a parametric form to yield 

&r

        ,                                                  (4) a= −&r r

where  is a positive real number. The instantaneous relative velocity can then be written in 

terms of the pursuer and target velocities, and, 

a

pv sv as follows: 

                      .                             (5) =& s pr v - v
 

Substituting (4) into (5) and solving for the pursuer velocity yields 

     .                             (6) a= +p sv v r

The goal of the proposed trajectory planner is to obtain an optimal pursuer velocity command 

according to the parallel navigation law for the next command instant.  The value of r is obtained 
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based on the data received from proximity sensors on the pursuer vehicle. Substituting this 

vector into (6) would result in a locus for the pursuer’s velocity vectors, , all lying on a semi-

line parameterized by . This semi-line is referred to herein as the Rendezvous Line (RL), Figure 

2. The end-points of the velocity vectors show the positions of S and P, after one unit of time has 

passed, should they adopt the corresponding velocities. If P continually adopts a velocity 

command that falls on the instantaneous RL, the direction of LOS remains constant and 

positional matching between P and S is guaranteed. 

pv

a

 

a= +p sv v r  

λ
X

RL 
r

sv
 

Target Y 

l

pv
 

h

Pursuer 
 

Figure 2: The Rendezvous Line (RL). 

 

The next task is to find the value of , such that velocity matching is also assured. Let us 

assume that the acceleration capability of the pursuer in this direction is given by A. The 

simultaneous reduction of velocity and position differences in the direction of LOS for 

rendezvous may, then, be written as: 

a

 

                      
max

2
max

0,
1 02

r

r

At

tr At

⎧ − =⎪
⎨

− + =⎪⎩

&

&

rend

rend

r

r r  ,                             (7) 

 
where  is the magnitude of the maximum allowable closing velocity, and  is the remaining 

time-to-intercept from the current instant. The maximum instantaneous allowable closing 

velocity is obtained by solving (7): 

max&rendr rt

 
                      max 2 A=&rendr r   .                      (8) 
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The maximum closing velocity, as imposed by the frequency of velocity command generation by 

the trajectory planner for a fast asymptotic interception, is given by 

 
                      max .n t= Δ&cr rr   .                                             (9) 

 
The value of n above is determined empirically. The final allowable closing velocity component 

of the velocity command is, then, obtained by considering (8) and (9) simultaneously: 

 

                    max max maxmin ,= & &rel rend crv r r  .                                         (10) 

 

The end points of all velocity command vectors on RL that have a closing velocity component 

smaller than  constitute a line segment extending from max
relv =pv vs  to 

,max max
⎛ ⎛= = +⎜ ⎜

⎝ ⎠⎝ ⎠
rel

p p s
rv v v v r

⎞⎞
⎟⎟ . This set of points is referred to herein as the Rendezvous Set 

(RS), Figure 3. 

r
 

RS 

X&

RL 

max
relv  

sv
 

Y&

Pursue

Target 

=p sv v  

 
Figure 3: The Rendezvous Set (RS). 

 

The velocity represented by  in Figure 3 may not be achievable by P within the time 

interval  due to constraints of vehicle dynamics. Therefore, a Feasible Velocity Region (FVR), 

Figure 4, representing all velocities physically reachable by P within the time interval

max
relv

tΔ

tΔ  is 

defined herein. Assuming that the current heading angle of P isδ , and considering all the 

kinematic and dynamic constraints of P, the velocity selected for P, for the time interval tΔ , is 
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the component of the RS within FVR with the maximum value represented by . It is, 

thus, concluded that if P adopts the velocity commands from within the RS with the largest 

allowable velocity components, then, a time-efficient interception can be achieved. 

( it t+ Δpv )

 

sv
δ
 

( )it t+Δpv  RS 

X&

RL 

r
 

sv
 

Y&

Pursuer 

Target 

FVR 

( )itpv  
 

Figure 4:  Generation of Pursuer Velocity Command. 

 

Let us assume that the maximum value for the lateral acceleration, , is defined by maxYa

                       
2

2
max 2 2

cos2sin 1
sin

Ya
Kh K

ϑϑ
ϑ

⎛ ⎞
= +⎜ ⎟

−⎝ ⎠

pv
,                          (11) 

where K = p

s

v
v , h is the width of the lane and ϑ is the maximum angle the pursuer vehicle can 

turn with the given set of variables. 

Modification of the RG Algorithm 

The RG method described above is further modified below to yield better overtaking times while 

remaining within the constraints of passenger comfort.  One may note that the limitation on 

lateral acceleration does not allow P to travel at its optimum velocity by limiting the angular 

acceleration that it can achieve: namely, RG selects an angular acceleration value that ensures 

the velocity of P remains on RL, even though the vehicle has the capability of selecting a higher 

value of velocity from the FVR. 

In the case of a target moving on unknown trajectory, if P tries to achieve a velocity greater 

than the rendezvous velocity a situation may arise wherein S is turning away from the direction 
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in which the velocity is increased. This could lead to an increase in the rendezvous time instead 

of a reduction. However, in the case of an overtaking manoeuvre, the behaviour of the vehicle 

moving on a highway is predictable. Using this information, the velocity of P can be increased in 

the forward direction to reduce the overtaking time. However, as noted earlier, the same 

reduction in time would not be possible if the behaviour of S is unknown.   

Taking advantage of this predictability, we define herein a Velocity Line (VL) which 

originates from the start point of the RL and makes an angle ϑ  with the fixed reference, Figure 

5. Now, if P were to select and use a velocity command from VL instead of RL, a more time 

time-efficient overtaking could be achieved. 

 

 

   

ϑ  δ
 

( )it t+Δpv  RS 

X&

RL 

r
 

sv
 

Y&

Pursuer 

Target 

FVR 

( )itpv  sv

 
Figure 5: The Velocity Line. 

 

III. IMPLEMENTATION 

As discussed above, a shadow target, S, is utilized herein for the guidance of the pursuer vehicle, 

P. The location of S is dictated by the location of the (obstacle) vehicle in the driving lane, OD, 

and varied according to the stage of overtaking manoeuvre. Once the manoeuvre starts, the 

position and velocity information is passed on to the RG algorithm which constructs a RS, as 

shown in Figure 6 and checks whether the maximum closing velocity is within the FVR. If 

 is not within the FVR, an optimal velocity from RS is required for the next time instance. 

This velocity is also required to be within the Feasible Velocity Set (FVS), formed by the 

max
relv

max
relv
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intersection of VL and FVR. For time optimal rendezvous, we select the velocity from within 

FVS that takes the P nearest to S, which corresponds to the velocity or , Figure 6.   1v 2v

 

2v
 

RGa  

1v

RS 

X&

RL 

r
 

sv
 

Y&

Pursuer 

Target 

FVR 

( )itpv
  

Figure 6: Pursuer Velocity Command. 

 
As mentioned in the Problem Statement sub-section above, an obstacle vehicle may be 

present in the passing lane, OP. Thus, the overtaking manoeuvre should be considered under two 

possible scenarios:  

 
Scenario 1:  As a first step, when P is 2.5 s behind OD, it checks for obstacles in the passing 

lane. If there is no obstacle vehicle in the passing lane, P continues to travel in the driving lane 

until the distance between P and OD is 2 s. At this point, a shadow target, S, is created in the 

passing lane – as shown in Figure 7 by Positions 1, 2, and 3, for Phases 1, 2, and 3 of 

overtaking, respectively. During the complete manoeuvre, the velocity of S is chosen as the 

original velocity of P, stv , at the start of overtaking. As discussed previously, all position and 

velocity matching objectives for P (with S) are achieved via the proposed RG algorithm. 

     2 s Distance: 

    P    OD

   S1     S2

    S3

  2 s  1 s 

 
Figure 7: Shadow Target Positions for Scenario 1. 
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Scenario 2: As in Scenario 1, as a first step, when P is 2.5 s behind OD, it checks for obstacles in 

the passing lane. If there is an obstacle vehicle, OP, in the passing lane and the gap available 

between OP and OD is deemed as unsafe for overtaking, the pursuer must ‘wait’ until OP first 

overtakes OD. In this case, first, a shadow target is created in the driving lane, 2 s behind OD 

having a velocity equal to the velocity of OD, Position 1, Figure 8. Once OP clears OD, the 

pursuer vehicle may start the overtaking manoeuvre. However, unlike in Scenario 1, the 

velocity of the shadow target at Positions 2 and 3 is set to either to the original velocity of P, 

sv  = stv , or to the velocity of OP, sv  = v , whichever is less.       op

  S1: odv      stv  

       1 s    2 s   2 s Distance:   0.5 s 

  min=s st opv v ,v    

  S2: sv    S3: sv  

    odv    S4: v  st

 
 Figure 8: Shadow Target Positions for Scenario 2.  

 

IV. SIMULATIONS 

A large number of simulations were carried out incorporating combinations of various pursuer 

and obstacle initial positions and velocities. The results clearly showed the viability of the 

proposed RG method in guiding the pursuer vehicle in an optimal, comfortable, and collision-

free manner during the overtaking manoeuvre. Our on-line method was also shown to be 

comparable to the off-line technique proposed in [35] for Scenario 2 discussed above – with our 

method showing even some improvement. 

Two simulation cases are discussed below:  In Example 1, Scenario 2 above is considered, 

where the obstacle vehicle in the driving lane is moving with a sinusoidal velocity – namely, the 

objective herein is to illustrate that our proposed method, unlike most other methods in the 

literature, can cope with variations in obstacle velocity by adjusting its own velocity in real-time. 

In Example 2, our on-line method is also shown to be comparable to the off-line technique 

proposed in [35] for Scenario 2 discussed above – with our method showing even some 
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improvement. However, in this example, the obstacle vehicle in the driving lane is moving with a 

constant velocity, since the technique proposed in [35] cannot cope with variations in obstacle 

velocity.  

Example 1 

In this example, an obstacle vehicle, OP, in the passing lane is nearby the pursuer, P, and as such 

an overtaking manoeuvre is not immediately feasible. The slower vehicle in the driving lane, OD, 

is moving with a sinusoidal velocity – its velocity is oscillating between 18 and 22 m/s (i.e., 

about 10% variation about its mean velocity of 20 m/s), Figure 9. Similarly, the obstacle vehicle 

in the passing lane, OP, is also moving with a sinusoidal velocity – its velocity is oscillating 

between 23 and 27 m/s, Figure 9. Due to presence of OP, P first undertakes a collision-avoidance 

manoeuvre – its velocity is reduced to match the velocity OD at shadow target, S, Position 1 in 

Figure 8. Once the path of P becomes collision free for overtaking, the RG method initiates the 

overtaking manoeuvre which is completed in about 30.5 s, Figure 10 and Table 1. 

Figure 9: Velocity Profiles of Obstacle Vehicles. 
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Figure 10: Simulation Results for Example 1. 

 

Table 1: Overtaking Parameters for Example 1. 
 Proposed RG Technique 

Total Time 30.5 s 
Distance Travelled 800 m 
Maximum Lateral Acceleration 1.1 m/s2

Maximum lateral Deceleration 0.41 m/s2

Maximum Axial Acceleration 2.5 m/s2
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Example 2 

In this example, our on-line RG method is compared to the off-line technique proposed in [35]. 

Example 1 is repeated. However, herein, OD is moving with a constant velocity of 20 m/s and OP 

is moving with a constant velocity of 25 m/s since the technique proposed in [35] cannot cope 

with variations in obstacle velocity. The results are shown in Figures 11 and 12 and Table 2. 

 

 Table 2: Basic Overtaking Parameters for Example 2 – A Comparison. 
 Proposed RG Method Method Proposed in [35] 
Total Time (s) 30 35 
Distance Travelled (m) 800 900 

 

Figure 11: Simulation Results for Example 2: Using the Proposed RG Method. 
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Figure 12: Simulation Results for Example 2: Using the Method Proposed in [35 ]. 

 
V. EXPERIMENTS 

The proposed RG method was tested via a number of experiments, incorporating combinations 

of various pursuer and (constant) obstacle velocities. The results show that the vehicle behavior 

observed during the experiments is very similar to simulated behavior. Two examples are 

included in this paper: Experiment 1 considers a case with no obstacle in the passing lane and 

Experiment 2 considers the case with an obstacle.  

The hardware specifications for the experimental set-up are given in Table 3. The software 

for the experiments run on a Pentium IV 1.6 GHz processor PC and included three primary 

modules: image acquisition and processing, trajectory planning, and communication modules, 

respectively. In our set-up, an analog CCD camera captures the entire image of the workspace. 

The vision algorithm, then, extracts the positional information of all the objects in the 

workspace.  This information is sent to the trajectory planner, where an acceleration command is 

calculated in real-time for the pursuer vehicle.  
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Table 3: Experimental Hardware 

Component Characteristics  
Pursuer and Obstacle 
Vehicles 

Miabot PRO BT v2 Differential-Drive mobile 
Robots with Bluetooth Communication 

CCD Camera Resolution: 640 × 480 pixels 
Lens Focal Length: 6 mm  
Vertical Distance from Floor: 3000 mm 

Floor Workspace 2740 × 1500 mm 
 

o Robotic Vehicles: Three Miabot PRO BT v2 differential-drive mobile robots were used 

in the implementation of the proposed methodology. The robot motors are driven by 

6×1.2 V (AA) cells through a low-resistance driver I.C. with a slow-acting current 

limit at about 5A. Maximum speed of an unloaded motor is in the range of 6000 to 

8000 rpm. The motor shafts drive the wheels through an 8:1 gearing. The motors 

incorporate quadrature encoders giving 512 position-pulses per rotation. The wheels 

are 52 mm in diameter; one encoder pulse corresponds to just under 0.04 mm of 

movement.  

o Communication System: A Bluetooth card enabled the robotic vehicle to communicate 

with the host PC. The MIABOT-BT Bluetooth board is equipped with fixed 

communication settings 19200 baud (8 bits, 1 stop bit, no parity). A PC Bluetooth 

dongle plugs into the USB port on the PC. This can support wireless links with up to 

7 robots at once. 

Experiment 1 

In this experiment, P is required to overtake OD with no obstacle vehicle, OP, being present in the 

passing lane. Due to the dimensions of the robotic vehicle (80 × 80 mm) and the availability of 

limited workspace, the width of the lane was set as 160 mm, the velocity of P was set to 8 mm/s, 

and the velocity of OD was set to 6 mm/s.  The shadow target, S, positions for this experiment are 

shown in Figure 13. The simulation and experimental results are shown in Figures 14 and 15, 

respectively. The experiments were repeated three times under identical conditions.  
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180 mm 

Distance: 

     P   OD

   S1  S2

   S3

180 mm 90 mm 

160 mm 

 

Figure 13: Shadow Target Positions for Experiment 1. 

 

 

Figure 14: Simulation Results for Experiment 1. 

 

 

Figure 15: Experimental Results for Experiment 1. 

Experiment 2 

In this experiment, an obstacle vehicle, OP, is present in the passing lane and an overtaking 

manoeuvre by P is not immediately feasible. OP is moving with a constant velocity of 8 mm/s 

 

USMAN GHUMMAN,  FARAZ KUNWAR AND BENO BENHABIB,  GUIDANCE-BASED ON-LINE
 MOTION PLANNING FOR AUTONOMOUS HIGHWAY OVERTAKING

566



and OD is moving with a constant velocity of 6 mm/s.  The starting velocity of P is 10 mm/s. The 

positions of the shadow target are shown in Figure 16.  

Due to the presence of OP, P first undertakes a collision-avoidance manoeuvre by reducing its 

velocity and ensuring a safe distance between itself and OD. Once OP is ahead of OD, P starts the 

overtaking manoeuvre. The simulation and experimental results are shown in Figures 17 and 18, 

respectively. The experiments were repeated three times under identical conditions.    

 

180 mm 
      S1    stv  

90 mm 180 mm Distance: 45 mm 

   S2     S3

    S4    odv  

 

Figure 16: Shadow Target Positions for Experiment 2. 
 

 

Figure 17: Simulation Results for Experiment 2. 

 

Figure 18: Experimental Results for Experiment 2. 
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CONCLUSIONS 

In this paper, a novel guidance-base -planning algorithm is presented for 
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	o Robotic Vehicles: Three Miabot PRO BT v2 differential-drive mobile robots were used in the implementation of the proposed methodology. The robot motors are driven by 6×1.2 V (AA) cells through a low-resistance driver I.C. with a slow-acting current limit at about 5A. Maximum speed of an unloaded motor is in the range of 6000 to 8000 rpm. The motor shafts drive the wheels through an 8:1 gearing. The motors incorporate quadrature encoders giving 512 position-pulses per rotation. The wheels are 52 mm in diameter; one encoder pulse corresponds to just under 0.04 mm of movement. 
	o Communication System: A Bluetooth card enabled the robotic vehicle to communicate with the host PC. The MIABOT-BT Bluetooth board is equipped with fixed communication settings 19200 baud (8 bits, 1 stop bit, no parity). A PC Bluetooth dongle plugs into the USB port on the PC. This can support wireless links with up to 7 robots at once.
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