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ABSTRACT 

This paper develops allocation methods for stratified sample surveys in which 
small area estimation is a priority. We assume stratified sampling with small 
areas as the strata. Similar to Longford (2006), we seek efficient allocation that 
minimizes a linear combination of the mean squared errors of composite small 
area estimators and of an estimator of the overall mean. Unlike Longford, we 
define mean-squared error in a model-assisted framework, allowing a more 
natural interpretation of results using an intra-class correlation parameter. This 
allocation has an analytical form for a special case, and has the unappealing 
property that some strata may be allocated no sample. We derive a Taylor 
approximation to the stratum sample sizes for small area estimation using 
composite estimation giving priority to both small area and national estimation. 

Key words: composite estimation, mean squared error, sample design, small area 
estimation, sample size allocation, Taylor approximation. 

1. Introduction 

Sampling designs, and sample sizes in particular, are chosen in practice so as 

to provide reliable estimates for large geographical regions or broad demographic 

groups. Budget and other constraints usually prevent the allocation of sufficiently 

large samples to each of the small areas. It is not possible to anticipate and plan 

for all possible areas (or domains) of applications as “the client will always 

require more than is specified at the design stage" (Fuller, 1999). The increased 

emphasis on small area estimation raises the question of how best to design 

surveys when the precision of small area estimates is a priority. If small area data 

needs are to be served using survey data then there is a need to develop an overall 

strategy that involves careful attention to satisfy these needs at the planning, 

sample design and estimation stages of the survey process (Singh et al., 1994). 

Singh et al. (1994) presented an illustration of compromise sample size allocation 
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to satisfy reliability requirements at the provincial level as well as sub-provincial 

level in Canada. 

Assume that small areas are identified in advance, and that stratified 

sampling is used with H strata defined by the small areas, indexed by
1h U . The population of units, indexed by j, denoted U  is of size N . The 

population of hN  units in stratum h is Uh and the sample of hn units 

selected by simple random sampling without replacement (SRSWOR) 

from stratum h is denoted by hs . Let 
jY  be the value of the characteristic of 

interest for the jth  unit in the population. The small area population mean is 

𝑌̅ℎ and the national mean is 𝑌̅. The corresponding sample estimators are hy  

and y , respectively; 
1

h
h jh j s

y n y


  and 1 h hh U

y P y


 , where 

1

h hP N N  . Let the sampling variances be var ( )h p hv y  and var ( )pv y
 
 

Longford (2006) considers the problem of optimal sample sizes for small area 

estimation for this design. The approach is based on minimizing the weighted sum 

of the mean squared errors of the planned small area mean estimates and an 

overall estimate of the mean, with the weights specified to reflect the inferential 

priorities. An analytical solution exists when no weight is attached to estimating 

the overall mean but it has undesirable practical properties. For example, the 

optimal sample allocation is arrived at iteratively and some stratum sample sizes 

may be zero. When the overall mean is also important Longford does not find an 

exact or approximate analytical solution to the optimization problem. He suggests 

that the equation can be solved by numerical methods, such as the Newton 

method which interpolates between or extrapolates from a pair of provisional 

solutions, but that solving these equations iteratively may involve a considerable 

amount of computing when there are thousands of small areas. 

The aim of this paper is to find the best allocation to strata for a linear 

combination of the mean squared errors of small area composite estimators and of 

an overall estimator of the mean, similar to Longford (2006). In section 2 we 

reformulate the objective in model-assisted terms, and derive the model-assisted 

composite estimator. Section 3 is devoted to optimizing the design. In subsection 

3.1 we derive the optimal allocation for this objective when national estimation 

has no priority (G = 0) (similar in form to Longford but with different 

interpretation due to the explicit use of a model). Longford (2006) did not give an 

analytical solution when both national (overall) and small area estimates are a 

priority (G > 0). A numerical algorithm was given but may be computationally 

intensive, and its iterative nature makes it less transparent. In subsection 3.2 we 

derive two Taylor series approximations to the optimum. Unfortunately, the 

optimal allocations (both when G = 0 and when G > 0) have some undesirable 

properties. 
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2. Composite estimation 

Royall (1973), in a discussion of papers by Gonzalez (1973) and Ericksen 

(1973), suggested that a choice between direct and synthetic approaches need not 

be made but that ‘... a combination of the two is better than either taken alone’. 

A natural way to balance the potential bias of a synthetic estimator y  for 𝑌̅ℎ 

against the instability of a direct estimator hy , is to use a composite estimator
C

h
y . 

Composite estimators for small areas are defined as convex combinations of 

direct (unbiased) and synthetic (biased) estimators. A simple example is the 

composition (1 )
C

h hh h
y y y    of the sample mean hy for the target area h 

and the overall sample mean y  of the target variable. The (area-specific) 

coefficients h  and 1 h  in this composition are set with the intent to minimize 

its mean squared error (MSE), see for example, Schaible (1978); Brock et al. 

(1980) and Rao (2003). The coefficients for which minimum MSE would be 

attained depend on some unknown parameters which have to be estimated. 

The design-based MSE of the composite estimator is given by: 

      2 2 2; (1 ) 2 1
C

hp h h h h h h hhMSE y Y v v B C        
    

(1) 

where hC  is the sampling covariance of hy  and y , hv  is the sampling variance 

of the direct estimator hy , v  is the sampling variance of the synthetic estimator 

y  for hy  and h hB Y Y  is the bias of using y  to estimate hy . Further, 

   2 2 2; (1 )
C

hp h h h hhMSE y Y v B          (2) 

because hC  ≪ hv and v  ≪ hv when the sample for area ℎ is not a large part of 

the national sample. Auxiliary variables jx  are assumed to be available for the 

full population
1j U . 

The following model  will be assumed: 

 
 

 

 

2

2

var

cov , ; ,

cov , 0 , ,

T

j j

j d

i j d

i j d k

E Y x

Y j U

Y Y i j i j U

Y Y i U j U d k















   

     


      


        

     (3) 
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where i and j are units and h and g are small areas. Under the model (3),  

     1 2 1 2var 1h p h hw hhE v E y E n S n             
 

and 

     
2

2 1 2 1var var 1 1
h

h hh h j h hj U
E B E Y Y Y N Y N N      



                  


 

While the areas may have small sample sizes, their population sizes are 

substantial, so that
2 2

hE B      . Also, 

       1 1

2 1 2 2 2 1var 1p h h hw h hh U h U
E v E y E P n S P n     

 
    
     (4) 

Following Molefe and Clark (2015), we assume a small-area composite 

estimator which is a weighted mean of an approximately design unbiased 

estimator 

 
T

h hhr h
y y X x    

recommended by Hidiroglou and Patak (2004) for small domains, and a model-

based synthetic estimator ( )

T

h syn hY X . The composite estimator which 

approximately minimizes the anticipated MSE is 

 

 ( )( ) ( ) ( )(1 ) (1 )
T TC

h syn h hh opt d opt h opth hr h
y y Y X y x            

where 
1

( ) (1 ) 1 ( 1)h opt hn  


      , assuming that 𝑛 , 𝑁ℎ and 𝐻 are all large 

(Molefe and Clark, 2015). Under the same assumptions, the approximate 

anticipated MSE of the optimal composite estimator of 𝑌̅ℎ conditional on hn
 is 

 

 

   

( )

2 2
1 1

1 2 2

1
2

; |

1 ( 1) ( ) (1 ) (1 ) 1 ( 1)

(1 ) 1 ( 1)

C

p h opt h hh

h h h h

h

E MSE y Y n

n n n n

n

 

       

   



 
    




   

            

     

  

 (5) 
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3. Optimizing the design 

3.1. Area-only optimal design 

Provision of precise survey estimates for domains of interest requires that 

samples of adequate sizes be allocated to the domains. Conflicts arise when equal 

precision is desired for domains with widely varying population sizes. If estimates 

of means are desired at the same level of precision for all domains, then an equal 

allocation may be the most efficient strategy. However, such an allocation can 

cause a serious loss of efficiency for national estimates. 

One way of measuring the performance of designs for small area estimation is 

with a linear combination of the anticipated MSE's of the small area mean and 

overall mean estimates. Following Longford (2006), the weights (called 

inferential priorities) 
q

hN  for 0 2q  are used. The approximate weighted total 

of the anticipated MSE's for the areas is given by 

 1

( )

( ) ; |
Cq q

hh h opt hhh U
F N E MSE y Y n GN E v   


      (6) 

where 
1

( )q q

hh U
N N 


  

The quantity G is a relative priority coefficient. Ignoring the goal of national 

estimation corresponds to G = 0 and ignoring the goal of small area estimation 

corresponds to large values of G, in that case the second component in (6) is 

dominant. If G is positive, the priority coefficient has to be large because v  

would generally be much smaller than hv , where hv  is the sampling variance of 

the direct estimator hy , v  is the sampling variance of the synthetic estimator y , 

so that G has to be large if the last term of (6) is to have any influence on the 

outcome. The factor 
( )qN

is introduced to appropriately scale for the effect of the 

absolute sizes of 
q

hN   and the number of areas on the relative priority G. Criterion 

(6) is similar to the criterion in Longford (2006), however unlike this paper we 

adopt the model-assisted approach which treats the design-based inference as the 

real goal of survey sampling, but employs models to help choose between valid 

randomization-based alternatives (Sẳrndal et al., 1992). The minimization is 

subject to a fixed sample size constraint. It would be straightforward to extend 

this to a fixed cost constraint with cost coefficients specific to the strata. 

When national estimation has no priority (G = 0), the solution for the number 

of units to be sampled from each strata is found by optimizing (6) subject to a 

fixed total sampling cost function. The stationary point for this optimization is 

1 1

, 1

1
1

q q

h h

h opt q q

h hh U h U

n N N
n

N H N



 

 

 
   
 
  

     (7) 
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Equation (7) is the optimal design if it gives a feasible solution  

(
,0 h opt hn N  for all h); if not, the optimal design must be obtained numerically. 

An approximate solution can be found by setting the non-feasible solutions to 

, 0h optn  when 
, 0h optn   or 

,h opt hn N  when 
,h opt hn N and then reallocating 

the remaining small areas (Longford, 2006). 

In practice it will always be appropriate to set 0 2q  , with q = 0 

corresponding to all areas being equally important regardless of size, and q = 2 

being the best choice for national  estimation. In many cases q = 1 would be a 

sensible compromise. 

The first term in (7) above is the optimal allocation for the direct estimator 

and corresponds to power allocation (Bankier, 1988). The second term will be 

positive for more populous areas (large hN ) and negative for less populous areas. 

Therefore, the allocation optimal for composite estimation has more dispersed 

subsample sizes 
,h optn than the allocation that is optimal for direct estimators. 

3.2. Compromise design 

To incorporate priority for national estimation in optimizing design for small 

area estimation, we set the relative priority G to a positive value. Unfortunately, 

this optimization has no simple closed form solution (Molefe, 2012). The solution 

can be expressed as a quartic equation. Analytic solutions can be found to quartic 

equations but finding the solution would be convoluted and difficult to interpret. 

Also, there are up to 4 real-valued solutions. Another approach would be to find a 

Taylor series approximation based on ρ close to 0 and then minimize this with 

respect to hn . The optimal hn  depends on ρ; one could consider hn  to be a 

function of this quantity and write ( )h hn n  . 

The approximate weighted total of the anticipated MSE's for the areas is given 

by 

 1 1

12 ( ) 2 2 1(1 ) 1 ( 1) (1 )q q

h h h hh U h U
F N n GN P n      

 

 
        (8) 

Replacing 
2  by 1 as this value does not affect the optimal design, the 

minimum of (8) when G>0 satisfies the condition  

 
22 ( ) 2 21 ( 1)q q

h h h hN n GN P n  
 

     (9) 

where   is the Lagrange multiplier. 

This needs to be solved with respect to hn , but there is no simple closed form 

solution. One approach would be to find a Taylor series approximation based on 
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 close to 0 to the LHS of (9) and then minimize this with respect to hn . The 

objective function is  

 1 1

1 ( ) 2 1(1 ) 1 ( 1) (1 )q q

h h h hh U h U
F N n GN P n   

 

 
        

 (10) 

 

The first derivative with respect to   is: 

   

  

1

1

1 1

2 ( ) 2 1

( ) (1 ) 1 ( 1) 1 ( 1)

(1 ) 1 ( 1)

q

h h hh U

q

h h h hh U

F N n n

n n GN P n

    

  

 



 

 

       

    




 

 

Evaluated at 0  , we get: 

1

( ) 2 1(0) q

h hh U
F GN P n

 
   

1 1

( ) 2 1(0) q q

h h hh U h U
F N GN P n

 
     

 

Hence, the first order Taylor series approximation around 0  is: 

1 1 1

1 1

( ) 2 1 ( ) 2 1

( ) 2 1

( ) (0) (0)

{(1 ) }

q q q

h h h h hh U h U h U

q q

h h h

h U h U

F F F

GN P n N GN P n

GN P n N

 

 

  

 

   





 

 

  

   

  

 

 

But it is clear that minimizing this approximation of ( )F   is equivalent to 

minimizing 1

2 1

h hh U
P n

 , which is equivalent to just ignoring the first term of 

(10). Therefore, this gives no priority to small area estimation. Hence, a first order 

Taylor series approximation of F with respect to  is not sufficient approximation 

for the purpose of designing sample for both small areas and national mean. 

The second order Taylor series approximation is: 

     

       

1 2

2

2 2 2 3

1 (1 ) 1
( )

1 ( 1) 1 ( 1)1 ( 1)

(1 ) 2 (1 )

1 ( 1) 1 ( 1) 1 ( 1) 1 ( 1)

q h
hh U

h hh

h h h h

h h h h

n
F N

n nn

n n n n

n n n n




 

    

   



 
     

    

  
   

        


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Evaluated at 0   we get: 

1 1(0) 1 1 2 ( 1)q q

h h h h hh U h U
F N n n N n

 
           

The second order Taylor series approximation is then expressed as: 

 

1 1 1

2

( ) 2 1 2

1
( ) (0) (0) (0)

2

{(1 ) } ( 1)q q q

h h h h hh U h U h U

F F F F

GN P n N N n

  

   

   

   

       
 

We now consider minimizing the second order Taylor series 

approximation with respect to hn  subject to the cost constraint. The 

Lagrangian is: 

1 1 1 1

( ) 2 1 2{(1 ) } ( 1) ( )q q q

h h h h h hh U h U h U h U
L GN P n N N n n n    

    
          

 

To obtain the solution for the optimal within-strata sample size, we use partial 

derivatives with respect to hn  and  , respectively. These are given by equations 

(A1) and (A2) in the Appendix. The solution for the optimum within-strata 

sample size hn  is given by 

 

 

1

1

2

2 3 ( ) 1 1 1

2 2 ( ) 1 1 1

1
(0) (0) (0)

2

1
( )

2

1
1 ( )

2

h h h h

q q q

h h h hh U

q q q

h h hh U

n n n n

nP n P GN N N N

nP n GN N N N

 





  

 

  

 

   

  

 
   

 





    (11) 

The approximate solution is a function of G,   and q. When G   the 

approximate solution for hn  tends to h hn nP , which is proportional allocation. 

When G is large, priority is given to estimation of the national mean, hence this is 

as would be expected, since proportional allocation will be optimal when the 

focus is on estimating accurately the overall mean. When G = 0 the approximate 

solution is not defined since division by zero is undefined. The approximate 

solution is therefore not suitable or appropriate when the only goal is small area 

estimation. When 0  the approximate solution is approximately equal to 

h hn nP . When 0  , units within a small area are less similar to each other 

for the variable of interest. When this happens it is natural for small areas to be 

represented in proportion to their population sizes. 
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When q = 1 or 2, it is not clear what the value of the approximate solution will 

be. The value of 
hn  depends on the magnitude and sign of 1

1 1q q

h hh U
N N N 


  . 

We obtain large positive and negative values of 
hn  depending on the population 

size of the stratum. For relatively smaller strata, the result is large negative values 

which would in practice be truncated at zero and the opposite is true for relatively 

large strata. In practice, these would be truncated to either 0 or the population 

size.  

The approximate analytical optimal design based on 0  gave counter-

intuitive results, particularly when G is small or zero. Hence, we are now going to 

approximate hn  based on a different quantity based on both   and G rather than 

on   only, say, ( )h hn n   where   ( ) 1, ( )q qf G GN N   

  . Our interest 

is the case where   is small. The problem is to minimize 

 1 1

1 ( ) 2 11 ( 1)q q

h h h hh U h U
F N n GN P n 

 

 
      

with respect to hn  subject to 1 hh U
n n


 . This is equivalent to minimizing 

 1 1

1 2 11 ( 1)q

h h h hh U h U
F P n P n 

 

 
      

The corresponding Lagrangian function is 

   1 1 1

1 2 11 ( ( ) 1) ( )q

h h h h hh U h U h U
L P n P n n n    

 

  
         

 (12) 

The partial derivatives of equation (12) with respect to hn  and   are, 

respectively, 

 
2 2 2

10 1 ( ( ) 1) ( )q

h h h h

h

L
L P n P n

n
     

 
         

  (13) 

  120 ( )hh U

L
L n n

 


   


        (14) 

Equations (13) and (14) are easily solved when 0  , or in the limit as   

approaches 0. We will derive an approximation for the solution hn  when 0  , 

as this may often be the case in practice. 

Let ( )hn  be the solution of (13) and (14) for any given value of . We can 

then approximate hn  by (0) (0)h h hn n n   . 
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We use equation (13) to obtain the value of (0)hn by substituting for 0  to 

obtain 
2 2(0) (0)h hP n    

Solving for (0)hn we get 

 
1

2(0) (0)h hn P 


         (15) 

 

We substitute for (0)hn into equation (14) and make it equal to zero to get 

   1

1 1

2 2(0) (0)hh U
P n 

 


   

 

Substituting for  
1

2(0)


into (15) we obtain the value of (0)hn as 

  

(0)h hn nP            (16) 

 
We take the derivative of (13) with respect to : 

 

1 1 1 10 ( ) ( )h

h

dL L L d L d
n

d n d d
  

    

     
      

     
 

 
Therefore 

 

 

  

221

32 2 3

0 1 ( ( ) 1)

2 1 ( ( ) 1) 2 ( ) ( ) ( )

h h

q

h h h h h

dL
P n

d

P n P n n

  


       



 

       

      

  (17) 

where ( ) ( )h h

d
n n

d
 


  and ( ) ( )

d

d
   


  . Evaluating (17) at 0   

gives 

 

 
2 2 30 1 ( (0) 1) 2 (0) (0) (0)q

h h h h hP n P n n  
            

 

Substituting for (0)hn given by (16) we get 

 

 
2 1 30 1 ( 1) 2 (0) (0)q

h h h h hP nP P n n  
             
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and therefore 

 

  231
(0) 1 ( 1) (0)

2

q

h h h hn P n P nP  


         (18) 

 

Differentiating (14) with respect to   tells us 

 

 !

2
0 (0) 0hh U

dL
n

d



 

   

 

Combined with (18), this implies that 

  

   1 1

231
(0) 1 ( 1) (0) 0

2

q

h h h h hh U h U
n P n P P nP  



 
        

 

 And therefore  1

21(0) 1 ( 1)q

h hh U
P nP  




     

 

Substituting for (0)  into (18) gives 

 

    1

2 23 2 11
(0) 1 ( 1) 1 ( 1)

2

q

h h h h h hh U
n P n P nP P nP   

 


        

 

Hence, the approximation to hn  is 

    1

2 23 1

(0) (0)

1
1 ( 1) 1 ( 1)

2

h h h

q q

h h h h h hh U

n n n

nP P n P nP P nP



    
 



 

      
 

Substituting for
( ) 1( )q qGN N  

 we obtain the general result: 

 

    1

2 22 ( ) 1 3 11
( ) 1 ( 1) 1 ( 1)

2

q q q q

h h h h h h hh U
h

n nP GN N P n P nP P nP  
  

 
        

Rewritten, this becomes 

 

    1

2 22 2 ( ) 1 11
1 ( ) 1 ( 1) 1 ( 1) (19)

2

q q q q

h h h h h hh U
n nP n GN N P nP P nP   

  

 

 
       

 
  
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In the previous approximation based on  , we obtained large positive or 

negative values of hn  when n was large. Here, as n  the approximate sample 

size is equal to: 

 

 

 

1

1

2 2 ( ) 1 2 1 2

( ) 1 2 1

1
1 ( ) ( ) ( )

2

1
1 ( )

2

q q q q

h h h h h hh U

q q q q

h h hh U

n nP n GN N P nP P nP

nP GN N P P

     

 

  

 

 
   

 

 
   

 




 

 

which seems more reasonable. 

 

When q = 0 and n is large, we get 

 

 1

1 2 11
1 ( )

2
h h h hh U

n nP GH P P  



 
   

 
  

 

where 1

(0) 0

hh U
H N N 
   

 

When q = 1 and n is large, we get 

 

 1

1 01
1

2
h h h hh U

n nP P P
G





 
   

 
  

 

When q = 2 and n is large, we get 

 

 1

(2) 1 2 0 11
1 ( )

2
h h h h hh U

n nP GN N P P nP

 

 
    

 
  

 

A priority exponent of q = 2 implies proportional allocation, hence the result 

is as expected. 

When G  the approximate sample size is equal to h hn nP . This result is 

as expected since very large G implies more priority for national estimation. 

Proportional allocation will be optimal when the focus is on estimating accurately 

the overall mean. When 0G  , this corresponds to   , and the approximate 

solution is undefined. This means that the alternative approximate analytical 

optimal design for hn  breaks down as 0G  . Perhaps this is not surprising, as 

our approximation is based on small   not large  . When 0  the alternative 
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approximate analytical design is equal to h hn nP . When 0  , units within a 

small area are somewhat similar to each other though the degree of similarity is 

very low. Hence, it is appropriate for sample sizes within small areas to be in 

proportion to their population sizes. 

4. Numerical example 

We use data on the 26 cantons of Switzerland (Longford, 2006); their 

population sizes range from 15,000 (Appenzell-Innerrhoden) to 1.23 million 

(Zurich). The population of Switzerland is 7.26 million. We assume that  

n = 10,000, 𝜌 = 0.025. We allocate a sample to the 26 cantons in Switzerland for 

q = 1 and a range of values of {50,100,200,500}G  using the approximation 

in equation (11). The planned overall sample size is n = 10,000. The result of the 

percentiles of the sample sizes is shown in Table 4.1. 

Table 4.1.  Canton sample sizes by Taylor approximation when q = 1 and   

    0.025    

 Percentiles of hn   

Priority Coefficient Minimum 1st Quarter Median 3rd Quarter Maximum 

G = 50 -9322.0 -8620.0 -5648.0 -2226.0 97380.0 

G = 100 -4470.0 -4097.0 -2634.0 -1088.0 49540.0 

G = 200 -2050.0 -1878.0 -1126.0 -519.2 25620.0 

G = 500 -617.0 -584.2 -324.5 -168.2 11260.0 

When G > 0 and q = 1, the solution gives negative sample sizes for smaller 

cantons and very large positive sample size for the largest canton so that the 

negative sample sizes will be truncated at zero. 

In summary, the approximate analytical optimal design based on 0   does 

not seem like a sensible approximation as evidenced by the allocation in Table 4.1. 

We similarly allocate the sample sizes using the approximation in equation 

(19). The planned overall sample size is n = 10,000. The result of the percentiles 

of the sample sizes is shown in Table 4.2. 

 

Table 4.2.  Canton sample sizes by the alternative Taylor approximation when 

     q = 1 and 0.025    

 Percentiles of hn  

Priority Coefficient Minimum 1st Quarter Median 3rd Quarter Maximum 

G = 50 237.0 275.2 296.0 383.8 1152.0 

G = 100 129.0 181.5 290.5 426.8 1422.0 

G = 200 75.0 139.0 288.0 448.2 1558.0 

G = 500 42.0 113.2 286.5 461.2 1639.0 
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From Table 4.2, we see that when G = 50 the sample sizes of the least 

populous cantons are boosted in relation to proportional allocation at the expense 

of the most populous cantons.  As G increases the sample size allocation 

approaches proportional allocation. 

In summary, the alternative approximate analytical design seems to be useful 

especially when G > 0. The design seems sensible when there is priority for 

national estimation and is not applicable when the only priority is small area 

estimation. 

5. Conclusions 

The anticipated MSE is a sensible objective criterion for sample design 

because the particular sample which will be selected is not available in advance of 

the survey. Hence, a criterion which averages over all possible samples is 

appropriate. Sẳrndal et al. (1992, Chapter 14) base their optimal designs on the 

anticipated variance, which similarly averages over both model realizations and 

sample selection, although they consider only approximately design-unbiased 

estimators. 

An analytical solution for the stationary point exists when the only priority is 

small area estimation. However, there are difficulties in applying it because when 

the strata have disparate population sizes, the stationary point gives negative 

sample sizes so that the optimum must be obtained numerically. The numerical 

optimum then has some strata with hn = 0 which is also not desirable. 

When priority is given to national estimation as well as to small area 

estimation so that G > 0, two approximate solutions were derived, based on 0   

and   1, ( ) 0q qf G GN N   

   . Both had undesirable properties, giving 

very large positive and negative sample sizes in some cases. This approximate 

solution gives counter-intuitive results, with large negative or positive values 

when there are unequal priorities for strata. Therefore, the Taylor approximation 

is not useful. An undesirable property of the second design is that it is not 

applicable when there is no priority for national estimation (G = 0). 
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APPENDIX 

 

( ) 2 2 2

10 {(1 ) } q q

h h h

h

L
L GN P n N

n
   




       


    (A1) 

 

110 hh U

L
L n n

 


   


        (A2) 

  

Equations (A1) and (A2) are easily solved when 0  , or in the limit as   

approaches 0. We will derive an approximation for the solution hn  when 0  , 

as this may often be the case in practice. 

 

Let ( )hn   be the solution of (A1) and (A2) for any given value of  . We can 

then approximate hn  by 
21

(0) (0) (0)
2

h h h hn n n n      

It is easily shown that (0)h hn nP . To derive (0)hn  we use (A1) to obtain the 

value of (0)hn by substituting for 0  to obtain 
( ) 2 2(0) (0)q

h hGN P n 

 
  

 

Solving for (0)hn we get 

1
( ) 2

(0)
(0)

q

h h

GN
n P




 
  

 
         (A3) 

 

Substituting for hn into (A2) gives 1

1
( ) 2

(0)

q

hh U

GN
P n






 
 

 
 . Summing 

through and re-arranging terms gives  
11

( ) 22(0) ( )qn GN


 . Substituting for 

 
1

2(0)


 into (A3), we obtain the value of (0)hn  as 

    (0)h hn nP          (A4) 

 

We take the first derivative of (A1) with respect to  : 

 

 1 1 1 10 ( ) ( )h

h

dL L L d L d
n

d n d d
  

    

     
      

     
    (A5) 
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using the result on differentiation of composite functions by, for example, 

Demidovich (1964) and Binmore (1982). The partial derivative of (A1) with 

respect to   is: 

 

( ) 2 21 2q q

h h h

L
GN P n N








 


 

 

and the partial derivative with respect to hn  gives 

 

( ) 2 31 2(1 ) q

h h

h

L
GN P n

n
 




 


 

 

Substituting the partial derivatives in (A5) gives 

 

 

1 1 1 1

( ) 2 2 ( ) 2 3

0

2 2(1 ) ( ) ( )

h

h

q q q

h h h h h h

dL L L d L d
n

d n d d

GN P n N GN P n n


    

     

 

     
      

     

     
  

(A6) 

 

where ( )h h

d
n n

d



   and ( )

d

d
  


  . 

 

Evaluating (A6) at 0  gives 

 
( ) 2 2 ( ) 2 30 (0) 2 (0) (0) (0)q q

h h h h hGN P n GN P n n  

 
       (A7) 

 

Solving for (0)hn gives: 

 

 ( ) 2 2 ( ) 2 1 3

( ) 2 1 3 ( ) 2 2 ( ) 2 1 3

( ) 1 3

(0) 2 (0) (0) ( ) (0)

2 (0)( ) (0) 2 (0)( ) (0)

(0)( )

q q

h h h h h

q q q

h h h h h h

q

h h

n GN P n GN P n

GN P n GN P n GN P n

GN n P nP







  

 

    

  





   

  

  

 

 (A8) 

 

Differentiating (A2) with respect to   tells us 

 

!

2
0 (0) 0hh U

dL
n

d



 

        (A9) 
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Combined with (A8), this implies that 

 

 1

( ) 1 3(0)( ) 0q

h hh U
GN n P nP 


    

   

Consequently, 
( ) 2(0) qGN n 


   . Substituting for (0) into (A8) gives the 

result that 

(0) 0hn   

 

 

We now take the second derivative of (A5). Let 

  

1 1 1 1
3 ( ) ( )h

h

dL L L d L d
L n

d n d d
  

    

     
      

     
 

 

and therefore 

 

 
( ) 2 2 ( ) 2 3

3 2 2(1 ) ( ) ( )q q q

h h h h h hL GN P n N GN P n n     

 
        (A10) 

 

 

We take the derivative of (A10) with respect to  : 

 

3 3 3 30 ( ) ( )h

h

dL L L d L d
n

d n d d
  

    

     
       

     
 

  

The partial derivative of (A10) with respect to   is given by 

 

( ) 2 3 ( ) 2 330 2 2 ( ) 2(1 ) ( ) ( )q q q

h h h h h h h

dL
N GN P n n GN P n n

d
    

  

 

 

 
        

 

 

The partial derivative evaluated at 0  is then 

 

( ) 2 3 ( ) 2 33
0

( ) 2 3

| 2 2 (0) (0) 2 (0) (0) (0)

2 2 ( ) (0) (0)

q q q

h h h h h h h

q q

h h h h

L
N GN P n n GN P n n

N GN P nP n

 




 

  






      



    

 

 

since (0) 0hn  . 
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The partial derivative of (A10) with respect to hn  is given by 

 

( ) 2 3 ( ) 2 4 ( ) 2 33 2 6(1 ) ( ) 2(1 ) ( )q q q
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The partial derivative evaluated at 0  is: 
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since (0) 0hn  . 

 

We put the results together to obtain 
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since 0(0) ( ) | 0h h

d
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d




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d

d
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
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Solving for (0)hn we find 
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Differentiating (A9) with respect to  gives: 
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Combined with (A11), this implies that 

 

3

1 1

( ) 11
(0) (2 (0)) ( ) 0

2

q q

h h hh U h U
n N GN n P 

 
      

 

Therefore 
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Solving for (0) we get 1
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   . Substituting into (A11) 

gives 
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Hence, our approximation to hn  is: 
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