
INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

311

LEARNING TO RANK AND CLASSIFICATION OF BUG

REPORTS USING SVM AND FEATURE EVALUATION

1
S.Rajeswari,

2
S. Sharavanan,

3
R.Vijai and

4
RM. Balajee

1
PG Scholar/ Department of CSE,

2
Professor & Head / Department of CSE,

3, 4
AP / Department of CSE,

Annapoorana Engineering College, Salem.

Email: rajeswariselvaraj89@gmail.com

 Submitted: May 27, 2017 Accepted: June 15, 2017 Published: Sep 1, 2017

Abstract- When a new bug report is received, developers usually need to reproduce the bug and perform code

reviews to find the cause, a process that can be tedious and time consuming. A tool for ranking all the source files

with respect to how likely they are to contain the cause of the bug would enable developers to narrow down their

search and improve productivity. This project introduces an adaptive ranking approach that leverages project

knowledge through functional decomposition of source code, API descriptions of library components, the bug-

fixing history, the code change history, and the file dependency graph. Given a bug report, the ranking score of

each source file is computed as a weighted combination of an array of features, where the weights are trained

automatically on previously solved bug reports using a learning-to-rank technique. I applied SVM (Support

Virtual Machine) to classify the bug reports to identify, which category the bug belongs to. It helps to fix the

critical defects early. The ranking system evaluated on six large scale open source Java projects, using the before-

fix version of the project for every bug report. The experimental results show that the learning-to-rank approach

outperforms three recent state-of-the-art methods. In particular, proposed method makes correct

recommendations within the top 10 ranked source files for over 70 percent of the bug reports in the Eclipse

Platform and Tomcat projects.

Index terms: Learning to rank, SVM, Preprocessing, CF(collaborative Filtering)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Exeley Inc.

https://core.ac.uk/display/226931084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

312

.

I. INTRODUCTION

A software bug or defect is a coding mistake that may cause an unintended or unexpected

behavior of the software component. Upon discovering an abnormal behavior of the software

project, a developer or a user will report it in a document, called a bug report or issue report. A

bug report provides information that could help in fixing a bug, with the overall aim of improving

the software quality. A large number of bug reports could be opened during the development life-

cycle of a software product. A developer who is assigned a bug report usually needs to reproduce

the abnormal behaviour and perform code reviews in order to find the cause. If the bug report is

constructed as a query and the source code files in the software repository are viewed as a

collection of documents, then the problem of finding source files that are relevant for a given bug

report can be modelled as a standard task in information retrieval(IR).

The ranking function is defined as a weighted combination of features, where the features draw

heavily on knowledge specific to the software engineering domain in order to measure relevant

relationships between the bug report and the source code file. While a bug report may share

textual tokens with its relevant source files, in general there is a significant inherent mismatch

between the natural language employed in the bug report and the programming language used in

the code. Ranking methods that are based on simple lexical matching scores have sub optimal

performance, in part due to lexical mismatches between natural language statements in bug

reports and technical terms in software systems. The system contains features that bridge the

corresponding lexical gap by using project specific API documentation to connect natural

language terms in the bug report with programming language constructs in the code.

II. LITERATURE SURVEY

Hal Daume III and Daniel Marcu [1] Entity detection and tracking (EDT) is the task of

identifying textual mentions of real-world entities in documents, extending the named entity

detection and co reference resolution task by considering mentions other than names (pronouns,

definite descriptions, etc.). Like NE tagging and co reference resolution, most solutions to the

EDT task separate out the mention detection aspect from the co reference aspect. By doing so,

these solutions are limited to using only local features for learning. In contrast, by modeling both

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

313

aspects of the EDT task simultaneously, we are able to learn using highly complex, non-local

features. Develop a new joint EDT model and explore the utility of many features, demonstrating

their effectiveness on this task. In many natural language applications, such as automatic

document summarization, machine translation, question answering and information retrieval, it is

advantageous to pre-process text documents to identify references to entities. An entity, loosely

defined, is a person, location, organization or geopolitical entity (GPE) that exists in the real

world. Being able to identify references to real-world entities of these types is an important and

difficult natural language processing problem. It involves finding text spans that correspond to an

entity, identifying what type of entity it is (person, location, etc.), identifying what type of

mention it is (name, nominal, pronoun, etc.) and identifying which other mentions in the

document it co refers with. The difficulty lies in the fact that there are often many ambiguous

ways to refer to the same entity.

RiponK.Saha, MathewLease, Dewayne E.perry [2] Locating bugs is important, difficult, and

expensive, particularly for large-scale systems. To address this, natural language information

retrieval techniques are increasingly being used to suggest potential faulty source files given bug

reports. While these techniques are very scalable, in practice their effectiveness remains low in

accurately localizing bugs to a small number of files. Key insight is that structured information

retrieval based on code constructs, such as class and method names, enables more accurate bug

localization. BLUiR, which embodies this insight, requires only the source code and bug reports,

and takes advantage of bug similarity data if available. Build BLUiR on a proven, open source IR

toolkit that anyone can use. The research work provides a thorough grounding of IR-based bug

localization research in fundamental IR theoretical and empirical knowledge and practice.

Evaluate BLUiR on four open source projects with approximately 3,400 bugs. Results show that

BLUiR matches or outperforms a current state-of-the art tool across applications considered, even

when BLUiR does not use bug similarity data used by the other tool.

Giuliano antonial, Yann-gael Gueheneuc [3] Feature identification is a well-known technique

to identify subsets of a program source code activated when exercising a functionality. Several

approaches have been proposed to identify features. An approach to feature identification and

comparison for large object-oriented multi-threaded programs using both static and dynamic data.

Using processor emulation, knowledge filtering, and probabilistic ranking to overcome the

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

314

difficulties of collecting dynamic data, i.e., imprecision and noise. We use model transformations

to compare and to visualise identified features. Compare the new approach with a naive approach

and a concept analysis-based approach using a case study on a real-life large object-oriented

multi-threaded program, Mozilla, to show the advantages of our approach. Maintenance of legacy

software involves costly and tedious program understanding tasks to identify and to understand

data structures, functions, methods, objects, and classes and, more generally, any high-level

abstractions required by maintainers to perform their tasks. Source code browsing is the most

common activity performed during software maintenance because obsolete (or missing)

documentation forces maintainers to rely on source code only. Unfortunately, source code

browsing becomes very resource consuming as the size and the complexity of programs increase.

An alternative to source code browsing is automated design recovery. Central to design recovery

is the recovery of higher-level abstractions beyond those obtained by examining the system itself.

We propose an approach to support the recovery of higher-level abstractions through program

feature identification and comparison.

Sushil K Bajracharya, Joel ossher, cristina V Lopes[4] Developers often learn to use APIs

(Application Programming Interfaces) by looking at existing examples of API usage. Code

repositories contain many instances of such usage of APIs. However, conventional information

retrieval techniques fail to perform well in retrieving API usage examples from code repositories.

This paper presents Structural Semantic Indexing (SSI), a technique to associate words to source

code entities based on similarities of API usage. The heuristic behind this technique is that

entities (classes, methods, etc.) that show similar uses of APIs are semantically related because

they do similar things. We evaluate the effectiveness of SSI in code retrieval by comparing three

SSI based retrieval schemes with two conventional baseline schemes. The results of the

evaluation show that SSI is effective in improving the retrieval of examples in code repositories.

The large availability of software on the Web is having a fundamental impact on software

development in at least two ways. First, web search engines have enabled the retrieval of

software that would otherwise be undiscoverable. Second, thanks to the wide availability of all

sorts of libraries, developers often prefer to reuse components than to write something from

scratch. nowadays, it is possible to find libraries that implement virtually every well-known piece

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

315

of functionality – both because those libraries exist and because they are findable via search

engines.

Martin Buger, Andreas Zeller[5] A program fails. Taking a single failing run, we record and

minimize the interaction between objects to the set of calls relevant for the failure. The result is a

minimal unit test that faithfully reproduces the failure at will: ―Out of these 14,628 calls, only 2

are required‖. In a study of 17 real-life bugs, our JINSI prototype reduced the search space to

13.7% of the dynamic slice or 0.22% of the source code, with only 1–12 calls left to examine.

When a program fails, a developer must debug it in order to fix the problem. Debugging consists

of two essential steps. The first is reproducing the failure. Reproducing is essential because

without being able to reproduce the failure, the developer will have trouble diagnosing the

problem and eventually demonstrating that it has been fixed. Reproducing failures depends on the

knowledge about the circumstances that lead to a failure; if these are little known or hard to

recreate, reproducing can be a tough challenge. The second step in debugging is finding the

defect. For this purpose, one must trace back the cause-effect chain that leads from defect to

failure—a search across the program state and the program execution to identify the cause of the

problem.

Nicholas Bettenburg, sascha just[6] CUEZILLA prototype is such a tool and measures the

quality of new bug reports; it also recommends which elements should be added to improve the

quality. We trained CUEZILLA on a sample of 289 bug reports, rated by developers as part of

the survey. In our experiments, CUEZILLA was able to predict the quality of 31–48% of bug

reports accurately. Bug reports are vital for any software development. They allow users to

inform developers of the problems encountered while using software. Bug reports typically

contain a detailed description of a failure and occasionally hint at the location of the fault in the

code (in form of patches or stack traces). However, bug reports vary in their quality of content;

they often provide inadequate or incorrect information.

III. EXISTING SYSTEM

A developer who is assigned a bug report usually needs to reproduce the abnormal behaviour and

perform code reviews in order to find the cause. However, the diversity and uneven quality of

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

316

bug reports can make this process nontrivial. Essential information is often missing from a bug

report. Bacchelli and Bird surveyed 165 managers and 873 programmers, and reported that

finding defects requires a high level understanding of the code and familiarity with the relevant

source code files. In the survey, 798 respondents answered that it takes time to review unfamiliar

files. While the number of source files in a project is usually large, the number of files that

contain the bug is usually very small. Therefore, we believe that an automatic approach that

ranked the source files with respect to their relevance for the bug report could speed up the bug

finding process by narrowing the search to a smaller number of possibly unfamiliar files. If the

bug report is construed as a query and the source code files in the software repository are viewed

as a collection of documents, then the problem of finding source files that are relevant for a given

bug report can be modeled as a standard task in information retrieval (IR). As such, we propose

to approach it as a ranking problem, in which the source files (documents) are ranked with

respect to their relevance to a given bug report (query). In this context, relevance is equated with

the likelihood that a particular source file contains the cause of the bug described in the bug

report. The ranking function is defined as a weighted combination of features, where the features

draw heavily on knowledge specific to the software engineering domain in order to measure

relevant relationships between the bug report and the source code file. While a bug report may

share textual tokens with its relevant source files, in general there is a significant inherent

mismatch between the natural language employed in the bug report and the programming

language used in the code.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

317

Fig.1 Existing System Architecture

IV. PROPOSED SYSTEM

 To locate a bug, developers use not only the content of the bug report but also domain

knowledge relevant to the software project. We introduced a learning-to-rank approach that

emulates the bug finding process employed by developers. The ranking model characterizes

useful relationships between a bug report and source code files by leveraging domain knowledge,

such as API specifications, the syntactic structure of code, or issue tracking data. Experimental

evaluations on six Java projects show that our approach can locate the relevant files within the

top 10 recommendations for over 70 percent of the bug reports in Eclipse Platform and Tomcat.

Furthermore, the proposed ranking model outperforms three recent state-of-the-art approaches.

Feature evaluation experiments employing greedy backward feature elimination demonstrate that

all features are useful. When coupled with runtime analysis, the feature evaluation results can be

utilized to select a subset of features in order to achieve a target trade-off between system

accuracy and runtime complexity.

The proposed adaptive ranking approach is generally applicable to software projects for which

there exists a sufficient amount of project specific knowledge, such as a comprehensive API

documentation and an initial number of previously fixed bug reports. Furthermore, the ranking

performance can benefit from informative bug reports and well documented code leading to a

better lexical similarity, and also have a plan to use the ranking SVM with nonlinear

classification to classify the source code files in given seven types.

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

318

ARCHITECTURE DIAGRAM:

Fig.2 System Architecture

4.1 MODULES

1. Pre-processing

2. Collaborative Filtering

3. Feature Selection

4. Ranking

5. Classification result

4.1.1 Pre-processing

The first step towards handling and analyzing textual data formats in general is to consider the

text based information available in free formatted text documents or text. Initially the pre-

processing is done by the following processes

4.1.1.1 Removal of Stop Words

 The first step is to remove the un-necessary information available in the sentence of stop

words. These include some verbs, conjunctions, disjunctions and pronouns, etc. (e.g. is, am, the,

of, an, we, our)

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

319

4.1.1.2 Removal of Stem Words

 Stemming words e.g. ‗deliver‘, ‗delivering‘ and ‗delivered‘ are stemmed to ‗deliver‘.

 For removing the stem words here we are using PORTER-STEMMER algorithm.

4.1.1.2.1 Porter-Stemmer Algorithm

The Porter stemming algorithm (or ‗Porter stemmer‘) is a process for removing the commoner

morphological and inflexional endings from words in English. Its main use is as part of a term

normalisation process that is usually done when setting up Information Retrieval systems.

Removing suffixes by automatic means is an operation which is especially useful in the field of

information retrieval. In a typical IR environment,one has a collection of documents, each

described by the words in the document title and possibly by words in the document abstract.

Ignoring the issue of precisely where the words originate, we can say that a document is

represented by a vector of words, or \terms\. Terms with a common stem will usually have

similar meanings, for example:

 CONNECT

 CONNECTED

 CONNECTING

 CONNECTION

 CONNECTIONS

STEPS:

Step 1 : Gets rid of plurals and -ed or -ing suffixes

Step 2: Turns terminal y to i when there is another vowel in the stem

Step 3: Maps double suffixes to single ones: -ization, -ational, etc.

Step 4: Deals with suffixes, -full, -ness etc.

Step 5: Takes off -ant, -ence, etc.

Step 6: Removes a final -e

Examples

Step 1: Possesses --> possess

 Ponies --> poni

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

320

 Operatives --> operative

Step 2: Coolly --> coolli

 Furry --> furri

 Fry --> fry

Step 3: Rational --> rational

 Optional --> option

 Possibly --> possibli --> possible

Step 4: Authenticate --> authentic

 Predicate --> predic

 Felicity --> feliciti --> felic

Step 5: Precedent --> preced

 Operational --> operate --> oper

 Fable --> fable

Step 6: Parable --> parabl

 Fate --> fate (cvc)

 Controllable --> controll --> control

4.1.2 Collaborative Filtering

Collaborative filtering (CF) is a technique used by recommender systems. Collaborative

filtering has two senses, a narrow one and a more general one.

In narrower sense, collaborative filtering is a method of making automatic predictions (filtering)

about the interests of a user by collecting preferences or taste information from many

users (collaborating).

In the more general sense, collaborative filtering is the process of filtering for information or

patterns using techniques involving collaboration among multiple agents, viewpoints, data

sources, etc

Compute the term weights for each term t in the vocabulary based on the classical tf, idf

weighting.

The term frequency factor represents the number of occurrences of term t in document d.

https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/Taste_(sociology)
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Crowdsourcing

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

321

The document frequency factor dft represents the number of documents in the repository that

contain term t.

N is to the total number of documents in the repository.

 idf refers to the inverse document frequency, which is computed using a logarithm in order to

dampen the effect of the document frequency factor in the overall term weight.

In collaborative filtering process, if previously fixed bug reports are textually similar with the

current bug report, then the files that have been associated with the similar reports may also be

relevant for the current report. It has been observed in that a file that has been fixed before may

be responsible for similar bugs. For example, an Eclipse bug report about incorrect menu options

for parts that is not closeable. The feature computes the textual similarity between the text of the

current bug report and the summaries of all the bug reports there is not much historical

information that can be used for computing features that are based on collaborative filtering or

the file revision history. In particular, there is less opportunity for exploiting duplicated bug

reports.

4.1.3 Feature Analysis

The overall set of 19 features used in the ranking model is summarized in Table

Table 6.1: Feature Set

FEATUR

E

SHORT

DESCRIPTION

Q-

dependen

t?

ɸ1 Surface lexical

similarity

Yes

ɸ2 API-enriched

lexical similarity

Yes

ɸ3 Collaborative

filtering score

Yes

ɸ4 Class name

similarity

Yes

ɸ5 Bug-fixing Yes

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

322

recency

ɸ6 Bug-fixing

frequency

Yes

ɸ7 Summary-class

names similarity

Yes

ɸ8 Summary-method

names similarity

Yes

ɸ9 Summary-variable

names similarity

Yes

ɸ10 Summary-

comments

similarity

Yes

ɸ11 Description-class

names similarity

Yes

ɸ12 Description-

method names

similarity

Yes

ɸ13 Description-

variable names

similarity

Yes

ɸ14 Description-

comments

similarity

Yes

ɸ15 In-links = # of file

dependencies of s

No

ɸ16 Out-links = # of

files that depend

on s

No

ɸ17 Page Rank score No

ɸ18 Authority score No

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

323

ɸ19 Hub score No

As shown in the last column in the table, we distinguish between two

major categories of features:

Query dependent

 These are features ɸi(r,s) that depend on both the bug report r and the source code file s.

A query dependent feature represents a specific relationship between the bug report and the

source file, and thus may be useful in determining directly whether the source code file s contains

a bug that is relevant for the bug report r.

Query independent.

 These are features that depend only on the source code file, i.e., their computation does

not require knowledge of the bug report query. As such, query independent features may be used

to estimate the likelihood that a source code file contains a bug, irrespective of the bug report.

4.4 Ranking

The resulting ranking function is a linear combination of features, whose weights are

automatically trained on previously solved bug reports using a learning-to-rank technique. The

ranking approach to the problem of mapping source files to bug reports that enables the seamless

integration of a wide diversity of features exploiting before fixed bug reports as training

examples for the planned ranking model in conjunction with a learning-to-rank technique.

Given a bug report r ranking is computed as follows:

1) Rank all source code files s based on their scores f(r,s) as computed by the LR system using all

19 features .

2) Within each source file, rank all its methods m based on their lexical similarities with the bug

report sim(r,m).

3) Eliminate from the ranking all methods m for which sim(r,m)< ʈ i.e., their lexical similarity

with the bug report is below a pre-defined threshold ʈ

4.5 SVM

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

324

―Support Vector Machine‖ (SVM) is a supervised machine learning algorithm which can be used

for both classification or regression challenges. However, it is mostly used in classification

problems.

Two types of classification

4.5.1 Linear classification

In this algorithm, plot each data item as a point in n-dimensional space (where n is number of

features you have) with the value of each feature being the value of a particular coordinate. Then,

perform classification by finding the hyper-plane that differentiate the two classes very well (look

at the below snapshot).

Fig. 3 Linear Classification

Support Vectors are simply the co-ordinates of individual observation. Support Vector Machine

is a frontier which best segregates the two classes (hyper-plane/ line).

4.5.2 Non-Linear Classification

 A way to create nonlinear classifiers by applying the kernel trick to maximum-margin

hyperplanes. The resulting algorithm is formally similar, except that every dot product is

replaced by a nonlinear kernel function. This allows the algorithm to fit the maximum-margin

hyperplane in a transformed feature space. The transformation may be nonlinear and the

transformed space high dimensional, although the classifier is a hyperplane in the transformed

feature space, it may be nonlinear in the original input space.

https://en.wikipedia.org/wiki/Kernel_trick
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Kernel_(integral_operator)
https://en.wikipedia.org/wiki/Feature_space

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

325

Kernel methods owe their name to the use of kernel functions, which enable them to operate in a

high-dimensional, implicit feature space without ever computing the coordinates of the data in

that space, but rather by simply computing the inner products between the images of all pairs of

data in the feature space. This operation is often computationally cheaper than the explicit

computation of the coordinates. This approach is called the "kernel trick". Kernel functions have

been introduced for sequence data, graphs, text, images, as well as vectors.

Fig. 4 Non-Linear Classification

It is noteworthy that working in a higher-dimensional feature space increases the generalization

error of support vector machines, although given enough samples the algorithm still performs

well.

The model of the training task as a classification in which bug reports and files are assigned to

multiple topics, we directly train our model for ranking, which we believe is a better match for

the way the model is used.

V. RESULT & ANALYSIS

graph.1. comparison of four methods

https://en.wikipedia.org/wiki/Positive-definite_kernel
https://en.wikipedia.org/wiki/Inner_product
https://en.wikipedia.org/wiki/Graph_kernel
https://en.wikipedia.org/wiki/Generalization_error
https://en.wikipedia.org/wiki/Generalization_error
https://en.wikipedia.org/wiki/Generalization_error

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

326

graph.2. comparison of features

graph.3. comparison of existing & proposed system

VI. CONCLUSION AND FUTURE WORK

To locate a bug, developers use not only the content of the bug report but also domain knowledge

relevant to the software project. Here I introduced a learning-to-rank approach that emulates the

bug finding process employed by developers. The ranking model characterizes useful

relationships between a bug report and source code files by leveraging domain knowledge, such

as API specifications, the syntactic structure of code, or issue tracking data.

The proposed adaptive ranking approach is generally applicable to software projects for which

there exists a sufficient amount of project specific knowledge, such as a comprehensive API

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

327

documentation and an initial number of previously fixed bug reports. Furthermore, the ranking

performance can benefit from informative bug reports and well documented code leading to a

better lexical similarity, and from source code files that already have a bug-fixing history. SVM

will classify the bug reports, that helps the developer to classify the bug belongs to which

category and helps him/her to fix it early. In phase-1 I have implemented first two modules and it

showed a good performance improvement, hope the SVM will give good accuracy.

REFERENCES

[1] Aizat Azmi, Ahmad Amsyar Azman, Sallehuddin Ibrahim, and Mohd Amri Md Yunus,

―Techniques In Advancing The Capabilities Of Various Nitrate Detection Methods: A Review‖,

International Journal on Smart Sensing and Intelligent Systems., VOL. 10, NO. 2, June 2017, pp.

223-261.

[2] Tsugunosuke Sakai, Haruya Tamaki, Yosuke Ota, Ryohei Egusa, Shigenori Inagaki, Fusako

Kusunoki, Masanori Sugimoto, Hiroshi Mizoguchi, ―Eda-Based Estimation Of Visual Attention

By Observation Of Eye Blink Frequency‖, International Journal on Smart Sensing and Intelligent

Systems., VOL. 10, NO. 2, June 2017, pp. 296-307.

[3] Ismail Ben Abdallah, Yassine Bouteraa, and Chokri Rekik , ―Design And Development Of 3d

Printed Myoelctric Robotic Exoskeleton For Hand Rehabilitation‖, International Journal on

Smart Sensing and Intelligent Systems., VOL. 10, NO. 2, June 2017, pp. 341-366.

[4] S. H. Teay, C. Batunlu and A. Albarbar, ―Smart Sensing System For Enhanceing The

Reliability Of Power Electronic Devices Used In Wind Turbines‖, International Journal on Smart

Sensing and Intelligent Systems., VOL. 10, NO. 2, June 2017, pp. 407- 424

[5] SCihan Gercek, Djilali Kourtiche, Mustapha Nadi, Isabelle Magne, Pierre Schmitt, Martine

Souques and Patrice Roth, ―An In Vitro Cost-Effective Test Bench For Active Cardiac Implants,

Reproducing Human Exposure To Electric Fields 50/60 Hz‖, International Journal on Smart

Sensing and Intelligent Systems., VOL. 10, NO. 1, March 2017, pp. 1- 17

[6] P. Visconti, P. Primiceri, R. de Fazio and A. Lay Ekuakille, ―A Solar-Powered White Led-

Based Uv-Vis Spectrophotometric System Managed By Pc For Air Pollution Detection In

Faraway And Unfriendly Locations‖, International Journal on Smart Sensing and Intelligent

Systems., VOL. 10, NO. 1, March 2017, pp. 18- 49

S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee

Learning to rank and classification of bug reports using svm and feature evaluation

328

[7] Samarendra Nath Sur, Rabindranath Bera and Bansibadan Maji, ―Feedback Equalizer For

Vehicular Channel‖, International Journal on Smart Sensing and Intelligent Systems., VOL. 10,

NO. 1, March 2017, pp. 50- 68

[8] Yen-Hong A. Chen, Kai-Jan Lin and Yu-Chu M. Li, ―Assessment To Effectiveness Of The

New Early Streamer Emission Lightning Protection System‖, International Journal on Smart

Sensing and Intelligent Systems., VOL. 10, NO. 1, March 2017, pp. 108- 123

[9] Iman Heidarpour Shahrezaei, Morteza Kazerooni and Mohsen Fallah, ―A Total Quality

Assessment Solution For Synthetic Aperture Radar Nlfm Waveform Generation And Evaluation

In A Complex Random Media‖, International Journal on Smart Sensing and Intelligent Systems.,

VOL. 10, NO. 1, March 2017, pp. 174- 198

[10] P. Visconti ,R.Ferri, M.Pucciarelli and E.Venere, ―Development And Characterization Of A

Solar-Based Energy Harvesting And Power Management System For A Wsn Node Applied To

Optimized Goods Transport And Storage‖, International Journal on Smart Sensing and Intelligent

Systems., VOL. 9, NO. 4, December 2016 , pp. 1637- 1667

[11] YoumeiSong,Jianbo Li, Chenglong Li, Fushu Wang, ―Social Popularity Based Routing In

Delay Tolerant Networks‖, International Journal on Smart Sensing and Intelligent Systems.,

VOL. 9, NO. 4, December 2016 , pp. 1687- 1709

[12] Seifeddine Ben Warrad and OlfaBoubaker, ―Full Order Unknown Inputs Observer For

Multiple Time-Delay Systems‖, International Journal on Smart Sensing and Intelligent Systems.,

VOL. 9, NO. 4, December 2016 , pp. 1750- 1775

[13] Rajesh, M., and J. M. Gnanasekar. "Path observation-based physical routing protocol for

wireless ad hoc networks." International Journal of Wireless and Mobile Computing 11.3 (2016):

244-257.

[14]. Rajesh, M., and J. M. Gnanasekar. "Congestion control in heterogeneous wireless ad hoc

network using FRCC." Australian Journal of Basic and Applied Sciences 9.7 (2015): 698-702.

[15]. Rajesh, M., and J. M. Gnanasekar. "GCCover Heterogeneous Wireless Ad hoc Networks."

Journal of Chemical and Pharmaceutical Sciences (2015): 195-200.

[16]. Rajesh, M., and J. M. Gnanasekar. "CONGESTION CONTROL USING AODV

PROTOCOL SCHEME FOR WIRELESS AD-HOC NETWORK." Advances in Computer

Science and Engineering 16.1/2 (2016): 19.

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS SPECIAL ISSUE, SEPTEMBER
2017

329

[17]. Rajesh, M., and J. M. Gnanasekar. "An optimized congestion control and error management

system for OCCEM." International Journal of Advanced Research in IT and Engineering 4.4

(2015): 1-10.

[18]. Rajesh, M., and J. M. Gnanasekar. "Constructing Well-Organized Wireless Sensor

Networks with Low-Level Identification." World Engineering & Applied Sciences Journal 7.1

(2016).

[19] L. Jamal, M. Shamsujjoha, and H. M. Hasan Babu, ―Design of optimal reversible carry look-

ahead adder with optimal garbage and quantum cost,‖ International Journal of Engineering and

Technology, vol. 2, pp. 44–50, 2012.

 [20] S. N. Mahammad and K. Veezhinathan, ―Constructing online testable circuits using

reversible logic,‖ IEEE Transactions on Instrumentation and Measurement, vol. 59, pp. 101–109,

2010.

 [21] W. N. N. Hung, X. Song, G. Yang, J. Yang, and M. A. Perkowski, ―Optimal synthesis of

multiple output boolean functions using a set of quantum gates by symbolic reachability

analysis,‖ IEEE Trans. on CAD of Integrated Circuits and Systems, vol. 25, no. 9, pp. 1652–

1663, 2006.

[22] F. Sharmin, M. M. A. Polash, M. Shamsujjoha, L. Jamal, and H. M. Hasan Babu, ―Design of

a compact reversible random access memory,‖ in 4th IEEE International Conference on

Computer Science and Information Technology, vol. 10, june 2011, pp. 103–107.

[23] Dr. AntoBennet, M, Sankar Babu G, Suresh R, Mohammed Sulaiman S, Sheriff M,

Janakiraman G ,Natarajan S, ―Design & Testing of Tcam Faults Using TH Algorithm‖, Middle-

East Journal of Scientific Research 23(08): 1921-1929, August 2015 .

[24] Dr. AntoBennet, M ―Power Optimization Techniques for sequential elements using pulse

triggered flipflops‖, International Journal of Computer & Modern Technology , Issue 01

,Volume01 ,pp 29-40, June 2015.

