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Abstract- When a new bug report is received, developers usually need to reproduce the bug and perform code 

reviews to find the cause, a process that can be tedious and time consuming. A tool for ranking all the source files 

with respect to how likely they are to contain the cause of the bug would enable developers to narrow down their 

search and improve productivity. This project introduces an adaptive ranking approach that leverages project 

knowledge through functional decomposition of source code, API descriptions of library components, the bug-

fixing history, the code change history, and the file dependency graph. Given a bug report, the ranking score of 

each source file is computed as a weighted combination of an array of features, where the weights are trained 

automatically on previously solved bug reports using a learning-to-rank technique. I  applied SVM (Support 

Virtual Machine) to classify the bug reports to identify,  which category the bug belongs to. It helps to fix the 

critical defects early. The ranking system evaluated on six large scale open source Java projects, using the before-

fix version of the project for every bug report. The experimental results show that the learning-to-rank approach 

outperforms three recent state-of-the-art methods. In particular, proposed method makes correct 

recommendations within the top 10 ranked source files for over 70 percent of the bug reports in the Eclipse 

Platform and Tomcat projects. 
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I. INTRODUCTION 

A software bug or defect is a coding mistake that may cause an unintended or unexpected 

behavior of the software component. Upon discovering an abnormal behavior of the software 

project, a developer or a user will report it in a document, called a bug report or issue report. A 

bug report provides information that could help in fixing a bug, with the overall aim of improving 

the software quality. A large number of bug reports could be opened during the development life-

cycle of a software product. A developer who is assigned a bug report usually needs to reproduce 

the abnormal behaviour and perform code reviews in order to find the cause. If the bug report is 

constructed as a query and the source code files in the software repository are viewed as a 

collection of documents, then the problem of finding source files that are relevant for a given bug 

report can be modelled as a standard task in information retrieval(IR). 

The ranking function is defined as a weighted combination of features, where the features draw 

heavily on knowledge specific to the software engineering domain in order to measure relevant 

relationships between the bug report and the source code file. While a bug report may share 

textual tokens with its relevant source files, in general there is a significant inherent mismatch 

between the natural language employed in the bug report and the programming language used in 

the code. Ranking methods that are based on simple lexical matching scores have sub optimal 

performance, in part due to lexical mismatches between natural language statements in bug 

reports and technical terms in software systems. The system contains features that bridge the 

corresponding lexical gap by using project specific API documentation to connect natural 

language terms in the bug report with programming language constructs in the code. 

 

II. LITERATURE SURVEY 

 

Hal Daume III and Daniel Marcu [1] Entity detection and tracking (EDT) is the task of 

identifying textual mentions of real-world entities in documents, extending the named entity 

detection and co reference resolution task by considering mentions other than names (pronouns, 

definite descriptions, etc.). Like NE tagging and co reference resolution, most solutions to the 

EDT task separate out the mention detection aspect from the co reference aspect. By doing so, 

these solutions are limited to using only local features for learning. In contrast, by modeling both 
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aspects of the EDT task simultaneously, we are able to learn using highly complex, non-local 

features. Develop a new joint EDT model and explore the utility of many features, demonstrating 

their effectiveness on this task. In many natural language applications, such as automatic 

document summarization, machine translation, question answering and information retrieval, it is 

advantageous to pre-process text documents to identify references to entities. An entity, loosely 

defined, is a person, location, organization or geopolitical entity (GPE) that exists in the real 

world. Being able to identify references to real-world entities of these types is an important and 

difficult natural language processing problem. It involves finding text spans that correspond to an 

entity, identifying what type of entity it is (person, location, etc.), identifying what type of 

mention it is (name, nominal, pronoun, etc.) and identifying which other mentions in the 

document it co refers with. The difficulty lies in the fact that there are often many ambiguous 

ways to refer to the same entity. 

RiponK.Saha, MathewLease, Dewayne E.perry [2] Locating bugs is important, difficult, and 

expensive, particularly for large-scale systems. To address this, natural language information 

retrieval techniques are increasingly being used to suggest potential faulty source files given bug 

reports. While these techniques are very scalable, in practice their effectiveness remains low in 

accurately localizing bugs to a small number of files. Key insight is that structured information 

retrieval based on code constructs, such as class and method names, enables more accurate bug 

localization. BLUiR, which embodies this insight, requires only the source code and bug reports, 

and takes advantage of bug similarity data if available. Build BLUiR on a proven, open source IR 

toolkit that anyone can use. The research work provides a thorough grounding of IR-based bug 

localization research in fundamental IR theoretical and empirical knowledge and practice. 

Evaluate BLUiR on four open source projects with approximately 3,400 bugs. Results show that 

BLUiR matches or outperforms a current state-of-the art tool across applications considered, even 

when BLUiR does not use bug similarity data used by the other tool. 

 

Giuliano antonial, Yann-gael Gueheneuc [3] Feature identification is a well-known technique 

to identify subsets of a program source code activated when exercising a functionality. Several 

approaches have been proposed to identify features. An approach to feature identification and 

comparison for large object-oriented multi-threaded programs using both static and dynamic data. 

Using processor emulation, knowledge filtering, and probabilistic ranking to overcome the 
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difficulties of collecting dynamic data, i.e., imprecision and noise. We use model transformations 

to compare and to visualise identified features. Compare the new approach with a naive approach 

and a concept analysis-based approach using a case study on a real-life large object-oriented 

multi-threaded program, Mozilla, to show the advantages of our approach. Maintenance of legacy 

software involves costly and tedious program understanding tasks to identify and to understand 

data structures, functions, methods, objects, and classes and, more generally, any high-level 

abstractions required by maintainers to perform their tasks. Source code browsing is the most 

common activity performed during software maintenance because obsolete (or missing) 

documentation forces maintainers to rely on source code only. Unfortunately, source code 

browsing becomes very resource consuming as the size and the complexity of programs increase. 

An alternative to source code browsing is automated design recovery. Central to design recovery 

is the recovery of higher-level abstractions beyond those obtained by examining the system itself. 

We propose an approach to support the recovery of higher-level abstractions through program 

feature identification and comparison.  

 

Sushil K Bajracharya, Joel ossher, cristina V Lopes[4] Developers often learn to use APIs 

(Application Programming Interfaces) by looking at existing examples of API usage. Code 

repositories contain many instances of such usage of APIs. However, conventional information 

retrieval techniques fail to perform well in retrieving API usage examples from code repositories. 

This paper presents Structural Semantic Indexing (SSI), a technique to associate words to source 

code entities based on similarities of API usage. The heuristic behind this technique is that 

entities (classes, methods, etc.) that show similar uses of APIs are semantically related because 

they do similar things. We evaluate the effectiveness of SSI in code retrieval by comparing three 

SSI based retrieval schemes with two conventional baseline schemes. The results of the 

evaluation show that SSI is effective in improving the retrieval of examples in code repositories. 

The large availability of software on the Web is having a fundamental impact on software 

development in at least two ways. First, web search engines have enabled the retrieval of 

software that would otherwise be undiscoverable. Second, thanks to the wide availability of all 

sorts of libraries, developers often prefer to reuse components than to write something from 

scratch. nowadays, it is possible to find libraries that implement virtually every well-known piece 
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of functionality – both because those libraries exist and because they are findable via search 

engines. 

 

Martin Buger, Andreas Zeller[5] A program fails. Taking a single failing run, we record and 

minimize the interaction between objects to the set of calls relevant for the failure. The result is a 

minimal unit test that faithfully reproduces the failure at will: ―Out of these 14,628 calls, only 2 

are required‖. In a study of 17 real-life bugs, our JINSI prototype reduced the search space to 

13.7% of the dynamic slice or 0.22% of the source code, with only 1–12 calls left to examine. 

When a program fails, a developer must debug it in order to fix the problem. Debugging consists 

of two essential steps. The first is reproducing the failure. Reproducing is essential because 

without being able to reproduce the failure, the developer will have trouble diagnosing the 

problem and eventually demonstrating that it has been fixed. Reproducing failures depends on the 

knowledge about the circumstances that lead to a failure; if these are little known or hard to 

recreate, reproducing can be a tough challenge. The second step in debugging is finding the 

defect. For this purpose, one must trace back the cause-effect chain that leads from defect to 

failure—a search across the program state and the program execution to identify the cause of the 

problem.  

 

Nicholas Bettenburg, sascha just[6] CUEZILLA prototype is such a tool and measures the 

quality of new bug reports; it also recommends which elements should be added to improve the 

quality. We trained CUEZILLA on a sample of 289 bug reports, rated by developers as part of 

the survey. In our experiments, CUEZILLA was able to predict the quality of 31–48% of bug 

reports accurately. Bug reports are vital for any software development. They allow users to 

inform developers of the problems encountered while using software. Bug reports typically 

contain a detailed description of a failure and occasionally hint at the location of the fault in the 

code (in form of patches or stack traces). However, bug reports vary in their quality of content; 

they often provide inadequate or incorrect information. 

 

III. EXISTING SYSTEM 

A developer who is assigned a bug report usually needs to reproduce the abnormal behaviour and 

perform code reviews in order to find the cause. However, the diversity and uneven quality of 
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bug reports can make this process nontrivial. Essential information is often missing from a bug 

report. Bacchelli and Bird surveyed 165 managers and 873 programmers, and reported that 

finding defects requires a high level understanding of the code and familiarity with the relevant 

source code files. In the survey, 798 respondents answered that it takes time to review unfamiliar 

files. While the number of source files in a project is usually large, the number of files that 

contain the bug is usually very small. Therefore, we believe that an automatic approach that 

ranked the source files with respect to their relevance for the bug report could speed up the bug 

finding process by narrowing the search to a smaller number of possibly unfamiliar files. If the 

bug report is construed as a query and the source code files in the software repository are viewed 

as a collection of documents, then the problem of finding source files that are relevant for a given 

bug report can be modeled as a standard task in information retrieval (IR). As such, we propose 

to approach it as a ranking problem, in which the source files (documents) are ranked with 

respect to their relevance to a given bug report (query). In this context, relevance is equated with 

the likelihood that a particular source file contains the cause of the bug described in the bug 

report. The ranking function is defined as a weighted combination of features, where the features 

draw heavily on knowledge specific to the software engineering domain in order to measure 

relevant relationships between the bug report and the source code file. While a bug report may 

share textual tokens with its relevant source files, in general there is a significant inherent 

mismatch between the natural language employed in the bug report and the programming 

language used in the code.  
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Fig.1 Existing System Architecture 

 

IV. PROPOSED SYSTEM 

 

 To locate a bug, developers use not only the content of the bug report but also domain 

knowledge relevant to the software project. We introduced a learning-to-rank approach that 

emulates the bug finding process employed by developers. The ranking model characterizes 

useful relationships between a bug report and source code files by leveraging domain knowledge, 

such as API specifications, the syntactic structure of code, or issue tracking data. Experimental 

evaluations on six Java projects show that our approach can locate the relevant files within the 

top 10 recommendations for over 70 percent of the bug reports in Eclipse Platform and Tomcat. 

Furthermore, the proposed ranking model outperforms three recent state-of-the-art approaches. 

Feature evaluation experiments employing greedy backward feature elimination demonstrate that 

all features are useful. When coupled with runtime analysis, the feature evaluation results can be 

utilized to select a subset of features in order to achieve a target trade-off between system 

accuracy and runtime complexity.  

The proposed adaptive ranking approach is generally applicable to software projects for which 

there exists a sufficient amount of project specific knowledge, such as a comprehensive API 

documentation and an initial number of previously fixed bug reports. Furthermore, the ranking 

performance can benefit from informative bug reports and well documented code leading to a 

better lexical similarity, and also have a plan to use the ranking SVM with nonlinear 

classification to classify the source code files in given seven types. 
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ARCHITECTURE DIAGRAM: 

 

 

 

 

Fig.2 System Architecture 

 

4.1 MODULES 

 

1. Pre-processing 

2. Collaborative Filtering 

3. Feature Selection 

4. Ranking 

5. Classification result 

 

 

4.1.1 Pre-processing 

The first step towards handling and analyzing textual data formats in general is to consider the 

text based information available in free formatted text documents or text. Initially the pre-

processing is done by the following processes 

4.1.1.1 Removal of Stop Words  

 The first step is to remove the un-necessary information available in the sentence of stop 

words. These include some verbs, conjunctions, disjunctions and pronouns, etc. (e.g. is, am, the, 

of, an, we, our)  
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4.1.1.2 Removal of Stem Words  

 Stemming words e.g. ‗deliver‘, ‗delivering‘ and ‗delivered‘ are stemmed to ‗deliver‘.  

 For removing the stem words here we are using PORTER-STEMMER algorithm. 

4.1.1.2.1 Porter-Stemmer Algorithm 

The Porter stemming algorithm (or ‗Porter stemmer‘) is a process for removing the commoner 

morphological and inflexional endings from words in English. Its main use is as part of a term 

normalisation process that is usually done when setting up Information Retrieval systems.  

Removing suffixes by automatic means is an operation which is especially useful in the field of 

information retrieval. In a typical IR environment,one has a collection of documents, each 

described by the words in the document title and possibly by words in the document abstract. 

Ignoring the issue of precisely where the words originate, we can say that a document is 

represented by a vector of words, or \terms\. Terms with a common stem will usually have 

similar meanings, for example: 

 

        CONNECT 

        CONNECTED 

        CONNECTING 

        CONNECTION 

        CONNECTIONS 

 

STEPS: 

Step 1 :  Gets rid of plurals and -ed or -ing suffixes  

Step 2: Turns terminal y to i when there is another  vowel in the stem  

Step 3:  Maps double suffixes to single ones: -ization,         -ational, etc.  

Step 4:   Deals with suffixes, -full, -ness etc.  

Step 5:   Takes off -ant, -ence, etc.  

Step 6:   Removes a final -e 

 

Examples 

Step 1:       Possesses --> possess  

    Ponies --> poni  
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    Operatives --> operative 

Step 2:       Coolly --> coolli  

    Furry --> furri  

    Fry --> fry 

Step 3:      Rational --> rational  

   Optional --> option 

   Possibly --> possibli --> possible 

Step 4:     Authenticate --> authentic  

   Predicate --> predic  

   Felicity --> feliciti --> felic 

Step 5:     Precedent --> preced  

  Operational --> operate --> oper  

  Fable --> fable 

Step 6:     Parable --> parabl  

  Fate --> fate (cvc)  

  Controllable --> controll --> control 

 

4.1.2 Collaborative Filtering 

Collaborative filtering (CF) is a technique used by recommender systems. Collaborative 

filtering has two senses, a narrow one and a more general one.  

In  narrower sense, collaborative filtering is a method of making automatic predictions (filtering) 

about the interests of a user by collecting preferences or taste information from many 

users (collaborating). 

In the more general sense, collaborative filtering is the process of filtering for information or 

patterns using techniques involving collaboration among multiple agents, viewpoints, data 

sources, etc 

Compute the term weights for each term t in the vocabulary based on the classical tf, idf 

weighting. 

The term frequency factor  represents the number of occurrences of term t in document d. 

https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Prediction
https://en.wikipedia.org/wiki/Taste_(sociology)
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Crowdsourcing
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The document frequency factor dft represents the number of documents in the repository that 

contain term t.  

N is to the total number of documents in the repository. 

 idf refers to the inverse document frequency, which is computed using a logarithm in order to 

dampen the effect of the document frequency factor in the overall term weight. 

In collaborative filtering process, if previously fixed bug reports are textually similar with the 

current bug report, then the files that have been associated with the similar reports may also be 

relevant for the current report. It has been observed in that a file that has been fixed before may 

be responsible for similar bugs. For example, an Eclipse bug report about incorrect menu options 

for parts that is not closeable. The feature computes the textual similarity between the text of the 

current bug report and the summaries of all the bug reports there is not much historical 

information that can be used for computing features that are based on collaborative filtering or 

the file revision history. In particular, there is less opportunity for exploiting duplicated bug 

reports. 

 

4.1.3 Feature Analysis 

The overall set of 19 features used in the ranking model is summarized in Table 

 

Table 6.1: Feature Set 

FEATUR

E 

SHORT  

DESCRIPTION 

Q-

dependen

t? 

ɸ1 Surface lexical 

similarity 

Yes 

ɸ2 API-enriched 

lexical similarity 

Yes 

ɸ3 Collaborative 

filtering score 

Yes 

ɸ4 Class name 

similarity 

Yes 

ɸ5 Bug-fixing Yes 



S.Rajeswari, S. Sharavanan, R.Vijai and RM. Balajee  

Learning to rank and classification of bug reports using svm and feature evaluation 

322 

recency 

ɸ6 Bug-fixing 

frequency 

Yes 

ɸ7 Summary-class 

names similarity 

Yes 

ɸ8 Summary-method 

names similarity 

Yes 

ɸ9 Summary-variable 

names similarity 

Yes 

ɸ10 Summary-

comments 

similarity 

Yes 

ɸ11 Description-class 

names similarity 

Yes 

ɸ12 Description-

method names 

similarity 

Yes 

ɸ13 Description-

variable names 

similarity 

Yes 

ɸ14 Description-

comments 

similarity 

Yes 

ɸ15 In-links = # of file 

dependencies of s 

No 

ɸ16 Out-links = # of 

files that depend 

on s 

No 

ɸ17 Page Rank score No 

ɸ18 Authority score No 
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ɸ19 Hub score No 

 

As shown in the last column in the table, we distinguish between two 

major categories of features: 

Query dependent  

 These are features ɸi(r,s) that depend on both the bug report r and the source code file s. 

A query dependent feature represents a specific relationship between the bug report and the 

source file, and thus may be useful in determining directly whether the source code file s contains 

a bug that is relevant for the bug report r. 

Query independent.  

 These are features that depend only on the source code file, i.e., their computation does 

not require knowledge of the bug report query. As such, query independent features may be used 

to estimate the likelihood that a source code file contains a bug, irrespective of the bug report. 

 

4.4 Ranking 

The resulting ranking function is a linear combination of features, whose weights are 

automatically trained on previously solved bug reports using a learning-to-rank technique. The 

ranking approach to the problem of mapping source files to bug reports that enables the seamless 

integration of a wide diversity of features exploiting before fixed bug reports as training 

examples for the planned ranking model in conjunction with a learning-to-rank technique. 

Given a bug report r  ranking is computed as follows: 

1) Rank all source code files s based on their scores f(r,s) as computed by the LR system using all 

19 features . 

2) Within each source file, rank all its methods m based on their lexical similarities with the bug 

report sim(r,m). 

3) Eliminate from the ranking all methods m for which sim(r,m)< ʈ  i.e., their lexical similarity 

with the bug report is below a pre-defined threshold ʈ 

 

 

4.5 SVM 
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―Support Vector Machine‖ (SVM) is a supervised machine learning algorithm which can be used 

for both classification or regression challenges. However,  it is mostly used in classification 

problems.  

 

Two types of classification 

 

4.5.1 Linear classification  

In this algorithm,  plot each data item as a point in n-dimensional space (where n is number of 

features you have) with the value of each feature being the value of a particular coordinate. Then, 

perform classification by finding the hyper-plane that differentiate the two classes very well (look 

at the below snapshot). 

 

Fig. 3 Linear Classification 

 

Support Vectors are simply the co-ordinates of individual observation. Support Vector Machine 

is a frontier which best segregates the two classes (hyper-plane/ line). 

4.5.2 Non-Linear Classification 

 A way to create nonlinear classifiers by applying the kernel trick to maximum-margin 

hyperplanes.  The resulting algorithm is formally similar, except that every dot product is 

replaced by a nonlinear kernel function. This allows the algorithm to fit the maximum-margin 

hyperplane in a transformed feature space. The transformation may be nonlinear and the 

transformed space high dimensional, although the classifier is a hyperplane in the transformed 

feature space, it may be nonlinear in the original input space. 

https://en.wikipedia.org/wiki/Kernel_trick
https://en.wikipedia.org/wiki/Dot_product
https://en.wikipedia.org/wiki/Kernel_(integral_operator)
https://en.wikipedia.org/wiki/Feature_space
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Kernel methods owe their name to the use of kernel functions, which enable them to operate in a 

high-dimensional, implicit feature space without ever computing the coordinates of the data in 

that space, but rather by simply computing the inner products between the images of all pairs of 

data in the feature space. This operation is often computationally cheaper than the explicit 

computation of the coordinates. This approach is called the "kernel trick". Kernel functions have 

been introduced for sequence data, graphs, text, images, as well as vectors. 

  

 

Fig. 4 Non-Linear Classification 

 

It is noteworthy that working in a higher-dimensional feature space increases the generalization 

error of support vector machines, although given enough samples the algorithm still performs 

well. 

The model of the training task as a classification in which bug reports and files are assigned to 

multiple topics, we directly train our model for ranking, which we believe is a better match for 

the way the model is used. 

 

V. RESULT & ANALYSIS 

 

 

graph.1. comparison of four methods 

https://en.wikipedia.org/wiki/Positive-definite_kernel
https://en.wikipedia.org/wiki/Inner_product
https://en.wikipedia.org/wiki/Graph_kernel
https://en.wikipedia.org/wiki/Generalization_error
https://en.wikipedia.org/wiki/Generalization_error
https://en.wikipedia.org/wiki/Generalization_error
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graph.2. comparison of features 

 

 

graph.3. comparison of existing & proposed system 

 

VI. CONCLUSION AND FUTURE WORK  

 

To locate a bug, developers use not only the content of the bug report but also domain knowledge 

relevant to the software project. Here I introduced a learning-to-rank approach that emulates the 

bug finding process employed by developers. The ranking model characterizes useful 

relationships between a bug report and source code files by leveraging domain knowledge, such 

as API specifications, the syntactic structure of code, or issue tracking data.  

The proposed adaptive ranking approach is generally applicable to software projects for which 

there exists a sufficient amount of project specific knowledge, such as a comprehensive API 
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documentation and an initial number of previously fixed bug reports. Furthermore, the ranking 

performance can benefit from informative bug reports and well documented code leading to a 

better lexical similarity, and from source code files that already have a bug-fixing history. SVM 

will classify the bug reports, that helps the developer to classify the bug belongs to which 

category and helps him/her to fix it early. In phase-1 I have implemented first two modules and it 

showed a good performance improvement, hope the SVM will give good accuracy. 
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