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Abstract- This paper proposes a soft sensor to estimate phase flow rates utilizing common measurements 

in oil and gas production wells.  The developed system addresses the limited production monitoring due 

to using common metering facilities. It offers a cost-effective solution to meet real-time monitoring 

demands, reduces operational and maintenance costs, and acts as a back-up to multiphase flow meters. 

The soft sensor is developed using feed-forward neural network, and generalization and network 

complexity are regulated using K-fold cross-validation and early stopping technique. The soft sensor is 

validated using actual well test data from producing wells, and model performance is analyzed using 

cumulative deviation and cumulative flow plots. The developed soft sensor shows promising performance 

with a mean absolute percent error of around 4% and less than 10% deviation for 90% of the samples. 

 

Index terms: Multiphase Flow, Soft Sensor, Virtual Flow Meter, Neural Network, early stopping. 
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I. INTRODUCTION 

 

Soft Sensors or sometimes called “Inferential Sensors” are computational models that can provide 

real-time approximations of hard-to-measure or economically inconceivable process variables [1]. 

They have been widely implemented in the last decades in many industries including refineries, 

chemical plants, power plants, polymer industry, healthcare etc. [1-6]. Soft sensors are valuable 

when desired-to-measure variables have long delays, or physical sensors cannot be deployed due 

to hostile environment or financial considerations.   

Soft sensors utilize readily available measurements or cheaper sensors to infer or estimate the 

desired variables. For example, using temperature and pressure measurements to estimate gas 

quality (composition) in real-time in-between laboratory analysis runs [7], estimation of rocks 

porosity and permeability for uncored wells by correlating well logs and core data [8], and 

predication of drum pressure and level in coal-fired power plants using heat and flow rates [9], etc. 

There are generally two approaches for soft sensor development. The first approach is using 

Mechanistic modeling which is based on physical and chemical laws that describes system 

behaviors and formulation of mathematical relationships among system variables. Assumptions are 

usually required to simplify the complexity of such models [1].  Second approach is data-driven 

modeling which exploits the actual measurements available to identify the soft sensor model 

employing multivariate statistics and soft-computing techniques [10]. 

Several data-driven techniques have been used to design soft sensors such as principle component 

analysis (PCA) [11], partial least squares (PLS) [3], support vector machine (SVM) [12,13], neural 

networks (NN) [14,15], and ensemble methods [16]. 

An area where soft sensors are of great benefits is multiphase fluid flow in petroleum and 

petrochemical industries. Multiphase flow is a flow of several components such as oil, gas and 

water in the same pipe. Two-phase flow of oil and gas is the most common multiphase flow in oil 

and gas production lines. Measuring individual phase flow rates (oil phase flow rate and gas phase 

flow rate) is of great importance for production monitoring, optimization and reservoir 

management [17].  

Conventional techniques to physically measure phase flow rates are using common test separator 

or common Multiphase Flow Meter (MPFM). This approach rotates and samples each production 
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well regularly in a weekly or monthly intervals. This however does not provide real-time 

monitoring and usually leads to late diagnosis and correction actions of production issues [18]. The 

use of a common physical meter for several production wells is primarily due to the high costs 

associated with dedicated test separators or MPFMs [17,19]. Furthermore, MPFM requires high 

operating and maintenance costs due to the complexity of instruments used within the meter. This 

complexity is also a source of measurement uncertainty and error propagation; hence frequent 

calibration is necessary [20]. 

Emerging soft sensor technology used to estimate multiphase flow rates, sometimes referred to as 

Virtual Flow Metering (VFM), is often based on empirical correlations [21] or mechanistic 

approach [22]. Mechanistic models are however highly dependent on fluid properties and 

production regimes. Hence they are computationally expensive and are sensitive to changing Gas-

Oil ratio (GOR) [23,24]. Consequently, they require extensive tuning on filed data [17]. 

In this article, a soft-computing technique based on neural networks is proposed to design a soft 

sensor for multiphase flow rates estimation in oil and gas production pipes. This soft sensor can 

augment MPFM measurements and act as a backup when it fails. It also can provide estimations 

between well test runs if a common MPFM or test separator is installed. This could ultimately 

reduce operational and maintenance costs as well as support integrated operations [23,25]. 

 

II. NEURAL NETWORKS 

Neural Network (NN) is a machine learning technique that mimics cognitive abilities of biological 

nervous system. The network consists of units called neurons which are arranged in layers and are 

interconnected to each other through weights as illustrated in Figure 1. 
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Figure 1: Three-layer neural network with R inputs, S2 hidden neurons, and S3 outputs 
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Every neuron performs a computational task based on the inputs received and generate output to 

next neurons. The net input to neuron 𝑖 in layer 𝑣 + 1 is calculated by: 

𝑛𝑣+1(i) = ∑ 𝑤𝑣+1(𝑖, 𝑗)𝑎𝑣(𝑗) + 𝑏𝑣+1(𝑖)𝑆𝑣

𝑗=1    (1) 

Where, 𝑤 is neuron weight, 𝑏 is neuron bias, and 𝑎 is input from previous neurons 1 to 𝑆𝑣. The 

output of neuron 𝑖 will be: 

𝑎𝑣+1(i) = 𝑓𝑣+1(𝑛𝑣+1(𝑖))      (2) 

For V-layer network, layer output can be represented in matrix form as: 

𝒂𝑣+1 = 𝒇𝑣+1(𝑾𝑣+1𝒂𝑣 + 𝒃𝑣+1)      

𝑣 = 0,1, … , 𝑉 − 1       (3) 

The transfer function 𝑓 in hidden layer is usually a nonlinear function such as sigmoid function 

given by: 

𝑓(𝑛) =
2

1+𝑒(−2𝑛) − 1       (4) 

While output transfer function is usually linear for regression problems. 

 Feed-forward neural network is the most famous architecture and is considered a universal 

function approximator [26]. The parallel distributed structure of neural network has several 

advantages including high nonlinearity, capability of input-output mapping, adaptable learning, 

fault tolerance, and generalization [27].   

Several neural network training algorithms are available in the literature. The most popular ones 

are backpropagation based-algorithms such as Levenberg Marquardt algorithm [28]. 

Neural networks are nevertheless prone to over-fitting [28,29]. Two regularization approaches are 

available to avoid over-fitting and improve generalization capabilities. The first is training 

regularization or commonly known as early stopping. While the second approach is performance 

function regularization which modifies the performance function to promote simplicity such as L2 

regularization. This article will adapt the first approach, namely early stopping, to develop a neural 

network soft sensor. 

 

III. PROPOSED METHODOLOGY 

Neural network is proposed to develop multiphase flow soft sensor that can predict phase flow rates 

in multiphase production lines. The model is trained using actual well test data, and K-fold cross-

validation is used to validate the model performance. Flow chart of the proposed methodology is 

shown in Figure 2. First, data is preprocessed and divided into training, validation, and testing sets. 
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Neural network architecture is then selected and trained. Lastly the model is tested, and its 

performance is analyzed. 

 

Figure 2. Flow chart of proposed soft sensor methodology 

 

a. Data Collection and Preprocessing 

In order to develop a soft sensor to estimate gas and oil flow rates, representative measurements 

that are correlated to the desired variables have to be identified. Typical measurements that often 

exists in production fields and are correlated to multiphase flow rates are pressure (P) and 

temperature (T) down-hole the reservoir, pressure and temperature at the well-head, and choke 

valve opening percentage, which controls the amount of multiphase production. Figure 2 shows 

positions of these measurements in production field.  
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Once these measurements are collected, they are normalized and checked for any outliers using 

Turkey boxplot and Z-score. If there are potential outliers, they will be investigated further. If 

proven to be faulty or represents irregular rare behavior, such as shut-in or water flashing, they will 

be removed.   

Processed data containing 𝑚 samples are expressed as 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑖=1
𝑚 , where 𝑥𝑖 ∈ ℛ𝑣×1 are 

inputs (v is the number of input variables) and 𝑦𝑖 ∈ ℛ2×1  are outputs (gas flow rate and oil flow 

rate). K-fold cross-validation is used to split the data into training set 𝐷𝑡𝑟𝑎𝑖𝑛, validation set 𝐷𝑣𝑎𝑙, 

and testing set 𝐷𝑡𝑒𝑠𝑡. Data are partitioned into K folds. Each fold is used as testing set while the 

remaining K-1 folds are divided into training set (80%) and validation set (20%). The folds are 

rotated to generate K training/validation/testing sets as illustrated in Figure 2. 

 

b. Parameter Selection and Model Training 

The neural network architecture considered in this article contains one hidden layer with hyperbolic 

tangent sigmoid transfer function represented by equation (4), and linear output layer transfer 

function. Nguyen-Widrow method [30] is used for weight initialization to ensure even distribution 

across input space. Furthermore, number of neurons is selected using K-fold cross-validation in 

order to ensure the network is complex enough to represent the underlying patterns within the data, 

and not too complex to avoid over-fitting. Sum of squares of network errors (SSE) is used in this 

article as the performance function for training the feed-forward neural network and can be 

represented by:  

𝐸(𝑥, 𝑤) =
1

2
∑ ∑ 𝑒𝑝,𝑚

2𝑀
𝑚=1

𝑃
𝑝=1      

𝑒𝑝,𝑚 = 𝑦𝑝,𝑚 − 𝑦̂𝑝,𝑚       (5) 

Where 𝑥 is inputs, 𝑤 is network weights, 𝑃 is the number of training samples, 𝑀 is the number of 

outputs, and 𝑒𝑝,𝑚 is training error when applying sample 𝑝 and is the difference between desired 

output 𝑦𝑚 and current network output 𝑦̂𝑚. 

One way to minimize performance function is using Steepest Descent (or Gradient Descent) 

algorithm which uses first-order gradient vector of performance function 𝑔 =
𝜕𝐸(𝑋,𝑊)

𝜕𝑊
. Update rule 

of steepest decent in matrix form is: 

𝑾𝑘+1 = 𝑾𝑘 − 𝛼𝒈𝑘      (6) 
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Where, 𝛼 is learning rate. However, the training process of the steepest descent algorithm 

converges asymptotically and takes many iterations to get desired performance. More efficient 

training is accomplished using second-order methods such as Newton’s method which assumes 

weights are linearly independent and all gradients are functions of weights.  Newton’s method relies 

on second-order derivatives of performance function Hessian matrix 𝑯, which is computationally 

expensive. Update function of Newton’s method is given by: 

𝑾𝑘+1 = 𝑾𝑘 − 𝑯𝑘
−1𝒈𝑘     (7) 

Gauss-Newton algorithm alternatively uses Jacobian matrix  𝑱 that involves first derivatives only 

to approximate Hessian matrix 𝑯 [31]. Hessian matrix 𝑯 can be approximated by:  

𝑯 ≈ 𝑱𝑇𝑱       (8) 

While gradient vector 𝒈 can be computed by: 

𝒈 = 𝑱𝒆        (9) 

Where, 𝒆 is network error vector and has the following form: 

𝒆 = [𝑒1,1, 𝑒1,2, 𝑒1,3 … , 𝑒1,𝑀, … , 𝑒𝑃,1, 𝑒𝑃,2, 𝑒𝑃,3, … , 𝑒𝑃,𝑀 ]
𝑇
 (10) 

The weights update rule of Gauss-Newton method becomes: 

𝑾𝑘+1 = 𝑾𝑘 − (𝑱𝒌
𝑇𝑱𝒌)−1𝑱𝑘𝒆𝑘     (11) 

Even though Gauss-Newton method does not require computing Hessian matrix, it still faces 

convergence issues just like Newton method for complex error surfaces, i.e. 𝑱𝑇𝑱 matrix may not be 

invertible. In order to ensure 𝑱𝑇𝑱 is invertible, Levenberg Marquardt algorithm modifies the Hessian 

equation to: 

𝑯 ≈ 𝑱𝑇𝑱 + 𝝁𝑰       (12) 

Where, 𝝁 is positive combination coefficient, and 𝑰 is the identity matrix. 

The Levenberg–Marquardt update rule hence becomes: 

𝑾𝑘+1 = 𝑾𝑘 − (𝑱𝒌
𝑇𝑱𝒌 + 𝝁𝑰)−1𝑱𝑘𝒆𝑘    (13) 

𝜇 is decreased every step the performance function reduces and is incremented when the 

performance function increases.  When 𝜇 is nearly zero, the update rule becomes just like Gauss-

Newton which is faster and more accurate near error minimum. And when 𝜇 is large, the algorithm 

behaves like steepest descent with a small step size [32]. This way, Levenberg Marquardt combines 

both steepest descent and Gauss-Newton algorithms.  

Several networks with different number of hidden neurons are trained using Levenberg Marquardt 

algorithm and then evaluated on validation folds of K-fold cross-validation. The number of neurons 
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that generates the minimum validation error is selected. Early stopping is implemented to regularize 

the training process and avoid over-fitting [33]. Validation error is tracked during network training 

and whenever the validation error starts growing, the training is terminated. In this study, the 

validation error is checked every epoch. When the error increases 10 times the training is stopped. 

This way, training process will usually stop before reaching maximum number of iterations.  

Therefore, early stopping not only avoids over-fitting, it is also more efficient and guarantees better 

generalization. 

 

c. Model Testing and Validation 

After selecting the architecture and parameters of neural network, the network is trained using the 

training folds. Then testing is carried out on the K testing folds. Then average performance and 

generalization capability of the developed model are reported. Furthermore, variable importance is 

checked, where input measurements influence on soft sensor performance is examined. This is 

important as some of these measurements are not always available or frequently fail.  

Performance indicators used in this article are mean squared error (MSE), mean absolute 

percentage error (MAPE), minimum MSE, maximum MSE, and MSE standard deviation. MSE 

and MAPE are calculated as follow:  

𝑀𝑆𝐸 =
1

𝑚
∑ (𝑦𝑖 − 𝑦̂𝑖)2 𝑚

𝑖=1       (14) 

𝑀𝐴𝑃𝐸 =
1

𝑚
∑ |

𝑦𝑖−𝑦̂𝑖

𝑦𝑖
|𝑚

𝑖=1      (15) 

Where 𝑚 is number of samples, 𝑦𝑖 are actual outputs and 𝑦̂𝑖 are predictions by the developed model.  

Besides these generic performance indicators, two other indicators are of great significance to 

validate a virtual flow meter model, namely cumulative flow plot and cumulative deviation plot. 

Cumulative flow represents the sum of all previous points up to the current point. It helps identify 

if the model has any systematic offset or drift. While cumulative deviation plot, recommended by 

Norwegian Society for Oil and Gas Measurement [34], indicates the percentage of test points that 

fulfil certain deviation criteria.  
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IV. RESULTS AND DISCUSSION 

 

In this section, results of the proposed NN soft sensor are presented. Data used to develop the model 

consists of 591 samples, and was collected over a period of 1.5 years. Flow can be considered two-

phase since Water Cut (WC) only represents a maximum of 1% of total flow rate. The 

measurements available as inputs to the soft sensor model are choke valve opening percentage 

(CV%), well-head pressure (WHP), well-head temperature (WHT), and bottom-hole pressure 

(BHP). While the outputs that will be predicted by the soft sensor are gas flow rate (Qgas) and oil 

flow rate (Qoil). The soft sensor will consist of two neural networks to estimate gas and oil flow 

rates separately. Table 1 shows the characteristics of measurements used to develop the soft sensor. 

Where, STD is standard deviation. 

Table 1. Characteristic of dataset 

Measurement Mean Min Max STD 

Choke valve (%) 24.3 10.9 34.3 5.6 

Well-head pressure (bar) 279.1 240.2 320.1 20.8 

Well-head temperature (oC) 63.8 61.7 65.5 0.8 

Bottom-hole pressure (bar) 425.3 417.7 435.2 4.5 

Gas flow rate (mmscf/d) 74.4 47.2 88.3 9.3 

Oil flow rate (bbl/d) 9583.4 4712.9 14190.0 2248.6 

a. Data Pre-processing 

Data set is first normalized to the range [-1, 1] using min-max normalization: 

𝑦 =
2(𝑥−𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
− 1      (16) 

Figure 3 shows Tukey boxplot of the normalized data with coverage percent of 97%. 
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Figure 3. Boxplot of normalized data set 

In the boxplot, potential outliers are represented by red plus signs. There are 48 points identified as 

potential outliers (46 in BHP and 2 in Qgas). Z-score is used to confirm if a point is an outlier that 

should be removed. If Z-score is greater than 3.0, then a point is considered outlier and is removed 

from the dataset. Z-score is calculated using the following formula: 

𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑋−𝑚𝑒𝑎𝑛(𝑋)

𝑆𝑇𝐷(𝑋)
      (17) 

Z-scores intervals are [-1.69, 2.17] and [-2.91, 1.50] for BHP and Qgas respectively. It is observed 

that none of these potential outliers are outside the interval [-3, 3]. Hence, none of these points is 

removed, and the complete data set is used to develop and validate the neural network model.  

 

b. Parameter Selection 

The dataset is divided into training set, validation set and testing set according to subsection III.a, 

where K is set to 10 in the K-fold cross-validation. The validation set is used to decide the number 

of hidden neurons in the neural network. The range of candidate values are from 1 to 30 with 

increment of 1. Figure 4 shows the validation and training MAPE errors of neural network with 

different number of neurons for gas flow rate (a) and oil flow rate (b). Values represent average of 

the 10 folds in K-fold cross-validation. MAPE is presented rather than MSE due to clearer trend 

visualization when MAPE is plotted. 



INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS VOL. 10, NO. 1, MARCH 2017 

209 
 

 

(a) Gas flow model 

 

(b) Oil flow model 

Figure 4. Number of neurons VS network performance. (a) Gas flow model. (b) Oil flow model. 

It is observed that the validation error decreases in the beginning indicating improved 

generalization. However, at some point the error starts increasing as the number of neurons 

increases even though training error is still reducing. This indicates over-fitting and loss of 

generalization. Minimum validation MAPE of 2.13 and 3.73 occur when number of hidden neurons 

are 6 and 7 for gas and oil flow rate models respectively. Note that testing error is not used to select 

number of neurons as it can only be used to validate generalization capability of the model and 

should not be used for parameter selection process. 
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c. Neural Network Model Performance 

After determining numbers of neurons in hidden layer. Two NNs are developed to estimate gas and 

oil flow rates based on the available inputs: BHP, WHP, WHT and CV%. Maximum training 

epochs is set to 500. Number of hidden neurons are set to 6 and 7 for gas and oil flow models 

respectively. In order to eliminate influence of data variability, performance of 10-folds cross-

validation are averaged and reported in Table 2. Average of the 10 folds MSE minimum, MSE 

maximum and MSE standard deviation (STD) are also reported for both training and testing sets. 

MSE, Min, Max and STD values are multiplied by 100 for clearer presentation. 

Table 2. Average performance on 10 folds training and testing sets. MSE, Min, Max and STD are 

multiplied by 100 

Model Data set / indicator MAPE MSE Min Max STD 

Gas flow 
Training  2.09 1.44 1.25 1.66 0.15 

Testing  2.27 1.83 0.74 2.91 0.70 

Oil flow 
Training  3.65 1.00 0.78 1.41 0.20 

Testing  4.22 1.56 0.72 2.59 0.66 

MAPEs of the networks are below 5% on testing sets and this is considered an excellent 

performance. MSEs and standard deviations, using different data divisions, are also small 

indicating the models are able to generalize well. Influence of data variability can be observed in 

Figure 5 where the trend of testing and training MSEs of the 10 folds are shown. It can be seen that 

performance is within acceptable standard deviation across all folds, 0.0070 and 0.0066 STD for 

gas and oil flow models respectively. 

 

(a) Gas flow model 
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(b) Oil flow model 

Figure 5. Training and testing MSE of all 10 folds. (a) Gas flow model. (b) Oil flow model. 

Figure 6 shows regression line of predictions relative to outputs, and coefficient of determination 

(R2) for the 10 training and testing folds combined. R2 is close to 1.0 for both training and testing 

sets confirming that the developed models are able to explain most of the variance within gas and 

oil flow rate trends. 

 

(a) Gas flow model 

 

(b) Oil flow model 
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Figure 6. R2 of the combined 10 training and testing folds. (a) Gas flow model. (b) Oil flow 

model. 

Testing folds are used to plot the histogram of prediction residuals and are presented in Figure 7. 

The residuals follow a Gaussian distribution with almost zero mean (-0.002 and -0.001 to be exact) 

and standard deviation less than 0.1. 

 

(a) Gas flow model 

 

(b) Oil flow model 

Figure 7. Histogram of average residuals across all folds. (a) Gas flow model. (b) Oil flow model. 

Figure 8 illustrates the actual normalized flow rate trend of the first training fold compared to the 

neural network estimations. The plot shows good tracking ability without any signs of over-fitting.  
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(a) Gas flow model 

 

(b) Oil flow model 

Figure 8. Actual versus predicted normalized flow rates for the first training fold. (a) Gas flow 

model. (b) Oil flow model. 

Figure 9 captures the generalization ability of the developed models when presented with unseen 

data (testing sets). This shows model estimations follow closely with actual measurements. 

However, it is not enough to show the accuracy of the model. Next, soft sensor accuracy and 

cumulative flow performance are examined to confirm its accuracy and applicability.    
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(a) Gas flow model 

 

(b) Oil flow model 

Figure 9. Actual versus predicted normalized flow rates of all testing folds. (a) Gas flow model. 

(b) Oil flow model. 

 

d. Cumulative Deviation and Cumulative Flow Analysis 

After validating the soft sensor model using the test data. It is imperative to also check soft sensor 

accuracy using cumulative deviation and cumulative flow plots. To plot cumulative performance, 

the relative error percent between actual and soft sensor estimate is calculated for each sample in 

all testing folds. Then, the number of samples with relative error below certain deviation percentage 

(5%, 10%, 15%, etc.) are counted. The counts are then divided by total number of samples then 

plotted against deviation percentage. Figure 10 shows the resulted cumulative deviation plots for 

gas and oil flow models. 
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(a) Gas flow model 

 

(b) Oil flow model 

Figure 10. Cumulative deviation plot of soft sensor. (a) Gas flow model. (b) Oil flow model. 

It can be seen from the plots that around 90% of points are within 10% deviation, while more than 

97% of the points are within 20% deviation. Key deviation values are summarized in Table 3. 

Table 3. Percent of test points at different deviation% 

Model 
Deviation% 

5% 10% 20% 30% 

Gas flow 91.9 95.9 98.8 99.4 

Oil flow 75.3 89.7 97.6 99.8 

From cumulative deviation results, the soft sensor is considered quite accurate for such application 

since physical well test measurements themselves have ±10% error, and it can be conveniently used 

for real-time monitoring, optimization and maintenance applications. To validate the soft sensor 

further, cumulative flow trends of un-normalized testing folds are presented in Figure 11. 
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(a) Gas flow model 

 

(b) Oil flow model 

Figure 11. Cumulative flow plot of testing folds. (a) Gas flow model. (b) Oil flow model. 

Cumulative flow of soft sensor predictions follows closely with actual cumulative flow without 

any apparent systematic drift. Deviation percent of final cumulated values, at last samples, are -

0.07 % and -0.12% for gas and oil flow models respectively. This confirms that the model 

predictions are robust over time.  

From reported results, it can be concluded that the developed soft sensor is accurate and can meet 

monitoring and optimization requirements. In Next section, the study of measurements importance 

is presented. 

 

e. Measurements Importance 

Not all oil and gas wells have permanent bottom-hole pressure (BHP) gauges installed. 

Furthermore, BHP frequently fails due to the harsh environment down the reservoir. Similarly, 

choke valve opening percentage (CV%) is not always available since some production wells are 

operated manually, hence no real-time update of CV% is possible. In this section, each 
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measurement importance to soft sensor performance is examined. This is done by first analyzing 

the developed soft sensor sensitivity to a change in one of the inputs. The medians of inputs are fed 

to the soft sensor and outputs are recorded. Then 20% perturbation to one of the inputs is introduced 

and the change in output is recorded. After repeating this procedure for all inputs, the relative 

percent of change in output is plotted. The percentage signifies the input influence and importance. 

Figure 12 shows the contribution of each measurement to output change as percentage.   

 

(a) Gas flow model 

 

(b) Oil flow model 

Figure 12. Input variables importance. (a) Gas flow model. (b) Oil flow model. 

Secondly, a neural network is developed using a single measurement as its input, then its 

performance on testing folds is inspected. This is repeated for all input measurements. The 

performance summary is presented in Table 4. 
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Table 4. Model performance of individual input and of all inputs combined 

Model Indicator/Input CV% WHP WHT BHP All 

Gas flow 

rate 

R2 0.880 0.796 0.711 0.465 0.954 

MAPE 4.38 5.84 7.21 9.26 2.27 

MSE 4.65 7.56 10.19 16.19 1.83 

STD 1.58 2.75 3.10 2.96 0.74 

Min 2.22 4.00 4.56 12.76 2.91 

Max 6.57 12.38 16.09 21.58 0.70 

Oil flow 

rate 

R2 0.857 0.861 0.500 0.899 0.965 

MAPE 8.10 7.76 16.89 6.75 4.22 

MSE 6.01 5.80 16.86 4.30 1.56 

STD 3.58 3.05 1.76 1.91 0.72 

Min 1.53 1.61 14.61 2.39 2.59 

Max 13.86 10.04 19.75 8.66 0.66 

This summary confirms measurement importance in Figure 12 since the most significant 

measurement is able to perform well when it is used alone as input to the soft sensor. While the 

least significant measurements cannot predict flow rates accurately when used independently. 

Another observation is that some measurements are important to predict gas flow rate (CV%) but 

not as much when used to predict oil flow rate. The opposite is also true, BHP importance to predict 

oil flow rate. Finally, the most two significant measurements to obtain accurate predictions are 

BHP and CV% and this is in line with mechanistic multiphase flow modeling. 

 

V. CONCLUSIONS 

Feed-forward neural network soft sensor trained by Levenberg Marquardt algorithm and early 

stopping was developed to predict gas and oil phase flow rates in multiphase production wells. 

Neural network parameters were selected using K-fold cross-validation, and model was validated 

with actual well test data collected over a period of 1.5 years. The developed virtual flow meter 

displayed promising results with less than 10% deviation for 90% of the time. It is expected to meet 

real-time monitoring demands, to assist in production optimization and to reduce operational costs, 

as well as to backup and augment physical multiphase flow meters. For robust implementation of 
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the proposed soft sensor, dynamic update of the neural network is recommended. This can be done 

using just-in-time learning techniques such as moving-window or any other adaptation techniques 

to accommodate any operational or reservoir changes over time. 
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