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This study aimed to provide a  simple way to approach group differences by independent component analysis when researching 
functional connectivity changes of resting‑state network in brain disorders. We used baseline resting state functional magnetic 
resonance imaging from the Alzheimer’s disease neuroimaging initiative dataset and performed independent component analysis 
based on different kinds of subject selection, by including two downloaded templates and single‑subject independent component 
analysis method. All conditions were used to calculate the functional connectivity of the default mode network, and to test group 
differences and evaluate correlation with cognitive measurements and hippocampal volume. The default mode network functional 
connectivity results most fitting clinical evaluations were from templates based on young healthy subjects and the worst results were 
from heterogeneous or more severe disease groups or single‑subject independent component analysis method. Using independent 
component analysis network maps derived from normal young subjects to extract all individual functional connectivities provides 
significant correlations with clinical evaluations.

Key words: functional connectivity, resting‑state network, default mode network, Alzheimer’s disease, mild cognitive impairment, 
independent component analysis

INTRODUCTION

Cognitive impairment is the most consistent 
neurological complication of acquired and degenerative 
brain disorders. The human brain is currently considered 
as a network system and cognitive processing is supported 
by continuous integration of information among brain 
regions (van den Heuvel and Hulshoff Pol 2010). Exploring 
the human brain via network approach has been proven as 
practical to investigate the relation between brain operation 
and human behavior and to evaluate the disorganization 
of this process in neurodegenerative diseases (Bullmore 
and Sporns 2009, Greicius 2008). Resting‑state functional 
magnetic resonance imaging (rfMRI) is capable of 
measuring the intra‑network functional connectivity (FC) 

during rest (Biswal et al. 1997, Greicius et al. 2003, Lowe et 
al. 2000) and has already become a popular tool to study 
cognition and neurological and psychiatric brain disorders 
(van den Heuvel and Hulshoff Pol 2010).

One of the most commonly used tools to analyze rfMRI 
data is the independent component analysis (ICA), which is 
a statistical model‑free method and is applicable to process 
whole‑brain voxel‑wise data. In this method, hidden 
sources from observed data are assumed to be linear 
mixtures of independent sources. Group ICA has been 
developed to simultaneously evaluate multiple subjects, 
usually through temporal concatenation approach, and 
the resultant resting‑state networks (RSNs) can be easily 
selected to compare group differences (van den Heuvel and 
Hulshoff Pol 2010, Calhoun et al. 2009). Although separate 
group ICAs for different study groups are sometimes 
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performed (Harrison et al. 2008a, 2008b), problems of 
false‑positive group differences may occur (Calhoun et 
al. 2001, Beckmann et al. 2005). Therefore, in general, 
all patient and control subjects are included to perform 
combined group ICA (Calhoun et al. 2009).

RSNs selected from the ICA maps are consistent 
across healthy subjects (Damoiseaux et al. 2006), but 
will change in spatial distribution, signal intensity, and 
internal connection pattern when the brain is diseased 
(Littow et al. 2015, Hafkemeijer et al. 2012, Wang et al. 
2013), suggesting that the patterns of RSNs based on ICA 
maps resulting from subjects with different characteristics 
are significantly dissimilar. Nonetheless, these group 
differences of RSNs might be obscured by performing 
combined group ICA because the resultant spatial maps 
are required to be universally present across all subjects in 
this method, and thereby, the differences across subjects 
are blurred (Anderson et al. 2011). From the literature 
review, this problem is mainly handled by clustering 
single‑subject ICA results instead of performing group 
ICA, such as self‑organizing clustering method, bagged 
clustering method, and group ICA with intrinsic reference, 
all of which avoid the required assumption of common 
functional networks across all subjects in group ICA. These 
methods reflect the individual functional network better 
and the resultant ICA components are more correlated 
with individual components than those from traditional 
group ICA (Anderson et al. 2011, Shi et al. 2015, Esposito 
et al. 2005). Computing intra‑network FC based on these 
methods may reflect individual network function, but 
the resultant RSNs are likely composed of partly different 
brain regions in different subjects and even more different 
in diseased subjects because the commonness of ICA 
components across subjects is not included in these new 
ICA methods.

Increasing evidence suggests that neurodegenerative 
diseases affect functional networks rather than specific 
brain regions (Zhou et al. 2012), but the influence of the 
diseases could impact distinct regions of the networks 
differently (Damoiseaux et al. 2012, Li et al. 2013, Wang et 
al. 2015). Therefore, disease‑related FC change of original 
RSNs will result in new but impaired RSNs, showing 
different spatial distribution, signal intensity, and internal 
connection pattern (Littow et al. 2015, Hafkemeijer et al. 
2012, Wang et al. 2013). Single‑subject ICA methods for the 
analysis of FC will not include the regions decreasingly 
correlated within original networks, but include new 
regions increasingly correlated with original networks 
at the individual level, probably due to compensatory 
reaction (Damoiseaux et al. 2012, Vemuri et al. 2012, Seidler 
et al. 2010). Therefore, FC from single‑subject ICA methods 
might not be able to reflect the impaired regions within the 
original networks and might be affected by new regions 
outside the original networks. These two conditions will 

offset each other, raising the possibility of poor reflection 
of disease‑related FC change in the networks. Here, we 
use RSNs derived from relatively normal subjects as the 
template to calculate FC for both patients and controls. 
This method may be able to more precisely reflect the 
disease‑related FC change by including the impaired 
regions in the original spatial distribution of normal RSNs 
and excluding the outside compensatory reaction.

Our goal of this study was to provide a simple way to 
enhance the power of ICA to reflect group differences of 
RSNs. RSNs are relatively stable across healthy subjects 
(Damoiseaux et al. 2006), and we think only neuronal 
activities in the spatial maps of normal original RSNs are 
more likely to reflect the disease‑related change. Therefore, 
using the ICA maps from only healthy subjects to extract 
FC of RSNs from both controls and patients might be 
a reasonable and easy way to reflect FC changes of RSNs 
in disease states. To test our hypothesis, we applied our 
method to calculate the FC of the extensively studied the 
default mode network (DMN) (Mevel et al. 2011) in three 
diagnostic groups: Alzheimer’s disease (AD), mild cognitive 
impairment (MCI), and healthy aging.

METHODS

Participants

Data used in the preparation of this article were obtained 
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu). The ADNI was launched in 2003 
as a public‑private partnership, led by Principal Investigator 
Michael W. Weiner, MD. The primary goal of ADNI has been to 
test whether serial magnetic resonance imaging (MRI), positron 
emission tomography (PET), other biological markers, and 
clinical and neuropsychological assessment can be combined 
to measure the progression of MCI and early AD. Inclusion 
criteria were subjects with baseline fMRI data and preprocessed 
volumetric 3‑dimensional magnetization prepared rapid 
acquisition gradient echo (3D‑MPRAGE) T1‑weighted images. 
Left‑handed subjects were excluded. Based on the baseline 
diagnosis, all subjects were separated into three groups: NL 
(normal), MCI (mild cognitive impairment), and AD (dementia). 
Baseline results of six neuropsychological examinations were 
collected, including four examinations for general cognitive 
evaluation: Mini‑Mental State Examination (MMSE), Montreal 
Cognitive Assessment (MOCA), Clinical Dementia Rating Scale 
Sum of Boxes (CDR‑SB), and modified Alzheimer’s Disease 
Assessment Scale cognitive 13‑item scale (ADAS13), and two 
scores specific for memory function: Memory domain in 
Everyday Cognition scales (EcogMemory) and a composite 
score for memory in ADNI dataset (ADNI_MEM). Besides, 
baseline hippocampal volume (HipV) for each subject was also 
recorded from the ADNI dataset. 
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MRI acquisition and analysis

We downloaded raw baseline fMRI data and preprocessed 
3D‑MPRAGE T1‑weighted images from the public ADNI 
website. The MRI scanners used for the included subjects 
in this study were all Phillips 3T systems, and according to 
the ADNI website, the preprocessing procedure in Phillips 
systems was N3 correction. 

All rfMRI data were preprocessed using FSL v5.0.8 
(Functional Magnetic Resonance Imaging of the Brain 
Software Library; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) 
(Smith et al. 2004, Woolrich et al. 2009, Jenkinson et 
al. 2012). The preprocessing steps applied to these 
datasets included slice timing correction, motion 
correction, removing non‑brain tissue, smoothing, and 
high‑pass temporal filtering to remove low‑frequency 
drifts. After preprocessing procedure, any participant 
showing a maximum rotation more than 1.5 degree or 
displacement more than 1.5 mm in any direction was 
excluded. Then, the preprocessed time series data were 
registered into a stereotactic space (MNI152 template; 
Montreal Neurological Institute (MNI), Montreal QC) 
(Greve and Fischl 2009, Jenkinson and Smith 2001) and 
we resampled the MNI‑space time series data into 4‑mm 
resolution for group ICA analysis to generate intrinsic 
functional network templates with dimensionality at 20 
(Beckmann et al. 2005). We used different subject groups 
to conduct ICA analysis, including: 1) all subjects, 2) all 
AD subjects, 3) all MCI subjects, and 4) all NL subjects. 
For controlling subject number effect and because the AD 
sample size (27 subjects) was the smallest, we collected 

two groups with age and gender‑matched MCI and NL 
subjects to form the 5) MCI_27 group and 6) NL_27 group. 
Another 7) younger normal group (YN) was formed by 
collecting 22 normal youngest subjects with equal gender 
number (mean age: 69.1 years, ranging 65.1–73.9 years) 
from the original NL group. Furthermore, we chose the 
site with the largest subject number to form 8) a single 
site population (SS) in order to diminish the effect 
of heterogeneous data from multi‑site database with 
23 subjects, including 10 AD subjects, 9 MCI subjects, 
and 4 NL subjects. One downloaded ICA template was 
from 9) BrainMap (BM) activation database, analyzed by 
Smith and others (2009), which was from a 20‑component 
analysis of 29671 subjects, derived from more than 7000 
different functional maps. The other downloaded ICA 
template was from Smith’s 20‑component analysis result 
of FMRI data (Smith et al. 2009), composed of 36 healthy 
young adults (mean age: 28.5 years, ranging 20–35 years; 
21 men and 15 women), and this template was considered 
as the 10) standard template (Smith) for comparison. In 
addition, we downloaded 11) another group of young 
and healthy control subjects from a single site of Autism 
Brain Imaging Data Exchange (ABIDE) project (http://
fcon_1000.projects.nitrc.org/indi/abide/) (Di Martino et 
al. 2014) and the group comprised 28 subjects (mean age: 
23.5 years, ranging 18–30 years, 22 men and 6 women). 
This group had the most similar characteristics to Smith’s 
template, but was analyzed by using our own identical 
ICA procedure in order to exclude the effect of different 
analytic method. Last, we performed 12) single‑subject 
ICA for each subject (SICA) (Table I).

Table I. The abbreviations and relevant detailed descriptions of the twelve groups in this study

Group Detailed description

ABIDE a downloaded group of young and healthy control subjects from a single site of Autism Brain Imaging Data Exchange (ABIDE) 
project, analyzed by our protocol

AD all AD subjects enrolled from ADNI dataset

All all subjects enrolled from ADNI dataset

BM a downloaded ICA template from BrainMap (BM) activation database, analyzed by Smith

MCI all MCI subjects enrolled from ADNI dataset

MCI_27 age and gender‑matched subjects with equal subject number to AD group, collected from MCI group 

Normal all normal subjects enrolled from ADNI dataset

Normal_27 age and gender‑matched subjects with equal subject number to AD group, collected from Normal group

Smith a downloaded ICA template from Smith’s 20‑component analysis result of FMRI data

SS a single site population with the largest enrolled subject number from the ADNI dataset

YN 22 normal youngest subjects with equal gender number from the original Normal group

SICA results of single‑subject ICA for all subjects enrolled from ADNI dataset

Abbreviations: ABIDE – Autism Brain Imaging Data Exchange, BM – BrainMap, SS – single site population, YN – younger normal, SICA– single subject independent component 
analysis, ICA – independent component analysis.
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Using fslcc utility in FSL to compare with Smith’s 
template, the DMN was then identified visually from the ICA 
components with higher correlation for further FC analysis. FC 
was calculated by measuring the internal correlation among 
the four major portions of the DMN, including 1) the posterior 
cingulate cortex and precuneus, 2) anterior cingulate cortex 
and ventral medial prefrontal cortex, 3) right temporoparietal 
junction, and 4) left temporoparietal junction (Utevsky et al. 
2014, Mars et al. 2012). For the DMN in all 11 group ICA results, 
we used a z value of 3.7 (representing p<0.0001) as a threshold 
to divide the DMN into several clusters. After the visualization 
check, 4 clusters fitting in the abovementioned 4 core regions 
of the DMN were extracted for further FC calculation. 
Individual FC in the DMN was then evaluated by calculating 
the correlation among mean time courses of the resultant 
4 core clusters in each of these 11 group ICA results. The same 
method of extracting FC of the DMN was also applied on our 
single‑subject ICA results to measure individual FC of the DMN.

Statistical analysis

Statistical analysis was performed using Statistical 
Package for Social Sciences (SPSS) program, version 20 

(SPSS Inc. Chicago, IL, USA). After test of homogeneity of 
variance for age, gender, and years of schooling among 
the three diagnostic groups, NL, MCI, and AD, the one‑way 
analysis of variance (ANOVA) with post‑hoc test using 
Scheffe’s method to observe group differences in FC of 
the DMN from all 12 different ICA results. Cohen’s effect 
size with 95% confidence interval for these between‑group 
comparisons was also calculated. In addition, partial 
correlation was used to observe the association between FC 
of the DMN and 1) MMSE, 2) MOCA, 3) CDR‑SB, 4) ADAS13, 5) 
EcogMemory, 6) ADNI_MEM, and 7) HipV, after controlling 
for age, gender, and years of schooling. The threshold for 
statistical significance was a p value of less than 0.05.

RESULTS

Subjects

The initial selection of subjects from the ADNI database, 
searching for baseline visits with brain fMRI data and 
preprocessed T1WI images, resulted in 173 subjects. 
Among them, 28 subjects were excluded for the following 
reasons: 11 left‑handed, 5 failing to transform fMRI data 

Table II. The between‑group comparison of DMN FC among the three diagnostic groups: NL, MCI, AD

NL vs. MCI (p value)
(Cohen’s d effect size, [CI 95%])

NL vs. AD (p value)
(Cohen’s d effect size, [CI 95%])

MCI vs. AD (p value)
(Cohen’s d effect size, [CI 95%])

ABIDE NL>MCI (p=0.324)
(0.29, [−0.08 to 0.66])

NL>AD (p=0.041)*
(0.61, [0.11 to 1.09])

MCI>AD (p=0.337)
(0.33, [−0.11 to 0.78])

AD NL>MCI (p=0.197)
(0.36, [−0.02 to 0.73])

NL>AD (p=0.116)
(0.47, [−0.02 to 0.94])

MCI>AD (p=0.765)
(0.16, [−0.28 to 0.60])

All NL>MCI (p=0.203)
(0.36, [−0.01 to 0.73])

NL>AD (p=0.080)
(0.52, [0.03 to 0.99])

MCI>AD (p=0.646)
(0.21, [−0.24 to 0.65])

BM NL>MCI (p=0.555)
(0.21, [−0.17 to 0.58])

NL>AD (p=0.922)
(0.10, [−0.38 to 0.57])

MCI<AD (p=0.893)
(−0.12, [−0.56 to 0.32])

MCI NL>MCI (p=0.561)
(0.22, [−0.15 to 0.59])

NL>AD (p=0.095)
(0.49, [0.00 to 0.97])

MCI>AD (p=0.352)
(0.33, [−0.12 to 0.77])

MCI_27 NL>MCI (p=0.623)
(0.19, [−0.18 to 0.56])

NL>AD (p=0.110)
(0.50, [0.01 to 0.98])

MCI>AD (p=0.348)
(0.33, [0.11 to 0.78])

Normal NL>MCI (p=0.071)
(0.47, [0.09 to 0.84])

NL>AD (p=0.018)*
(0.66, [0.16 to 1.13])

MCI>AD (p=0.520)
(0.25, [−0.19 to 0.69])

Normal_27 NL>MCI (p=0.116)
(0.42, [0.04 to 0.79])

NL>AD (p=0.030)*
(0.60, [0.11 to 1.08])

MCI>AD (p=0.526)
(0.25, [−0.20 to 0.69])

Smith NL>MCI (p=0.289)
(0.31, [−0.06 to 0.68])

NL>AD (p=0.010)*
(0.69, [0.20 to 1.18])

MCI>AD (p=0.141)
(0.45, [0.00 to 0.89])

SS NL>MCI (p=0.210)
(0.36, [−0.02 to 0.73])

NL>AD (p=0.103)
(0.48, [−0.01 to 0.96])

MCI>AD (p=0.714)
(0.19, [−0.26 to 0.63])

YN NL>MCI (p=0.052)
(0.49, [0.11 to 0.86])

NL>AD (p=0.013)*
(0.68, [0.19 to 1.16])

MCI>AD (p=0.512)
(0.26, [−0.19 to 0.70])

SICA NL>MCI (p=0.387)
(0.28, [−0.09 to 0.65])

NL>AD (p=0.332)
(0.36, [−0.12 to 0.84])

MCI>AD (p=0.906)
(0.09, [−0.35 to 0.54])

ANOVA with Scheffe’s post‑hoc results. No group difference in age, gender, and years of schooling. Abbreviations: DMN – default mode network, FC – functional connectivity, 
NL – normal, MCI – mild cognitive impairment, AD – Alzheimer’s disease, ABIDE – Autism Brain Imaging Data Exchange, BM – BrainMap, SS – single site population, YN – younger 
normal, SICA – single subject independent component analysis, CI – confidence interval; * p<0.05.

4_771_Huang_v4.indd   297 27/12/16   16:11



298 Huang et al. Acta Neurobiol Exp 2016, 76: 294–303

to a 4D image, 2 with marked motion artifact, and 10 
with imaging distortion. The resultant 145 subjects were 
divided into three groups based on the baseline diagnosis: 
NL group: 46 subjects (including 20 men) with mean age 
74.04±5.67 years (ranging 65.1–85.6 years) and mean years 
of schooling 16.78±2.11 years (ranging 12–20 years), MCI 
group: 72 subjects (including 36 men) with mean age 
71.33±7.61 years (ranging 55.5–88.6 years) and mean years 
of schooling 15.94±2.67 years (ranging 11–20 years), and 
AD group: 27 subjects (including 14 men) with mean age 
72.68±7.44 years (ranging 55.9–86.5 years) and mean years 
of schooling 15.63±2.69 years (ranging 12–20 years). 
These three groups did not differ in terms of age, gender, 
and years of schooling.

Group differences of FC in DMN

Among the three diagnostic groups, all 12 templates 
did not show significant FC differences between NL and 
MCI groups or between MCI and AD groups. However, 
significantly higher FC in the NL group than the AD group 
was found in 5 results: ABIDE (p=0.041), Normal (p=0.018), 

Normal_27 (p=0.030), Smith (p=0.010), and YN (p=0.013). 
The results of p values and Cohen’s d effect sizes for all the 
between‑group comparisons were listed in Table II. All the 
effect sizes in the comparison between NL and MCI and 
between MCI and AD were below 0.50. The effect sizes in 
the comparison between NL and AD ranged from 0.10 to 
0.69 and the top five conditions with at least effect size of 
0.60 were compatible with the significant results: ABIDE 
(d=0.61), Normal (d=0.66), Normal_27 (d=0.60), Smith 
(d=0.69), and YN (d=0.68).

Correlation between FC of DMN and 
neuropsychological examinations or HipV

In MMSE, there was no significant correlation. In 
MOCA, a positive correlation was found in ABIDE (r=0.204, 
p=0.023), AD (r=0.182, p=0.043), All (r=0.206, p=0.022), MCI 
(r=0.180, p=0.045), Normal (r=0.219, p=0.014), Normal_27 
(r=0.211, p=0.018), Smith (r=0.223, p=0.013), and YN 
(r=0.233, p=0.009). In CDR‑SB, a negative correlation 
was noted in ABIDE (r=−0.196, p=0.029), Smith (r=−0.252, 
p=0.005), and YN (r=−0.195, p=0.030). In ADAS13, 

Table III. Partial correlation between the DMN FC and neuropsychiatric evaluations or HipV

r (p value) MMSE MOCA CDRSB ADAS13 EcogMemory ADNI_MEM HipV

ABIDE x 0.204  
(0.023)

−0.196  
(0.029) x −0.177  

(0.049)
0.182  

(0.043)
0.262  

(0.003)

AD x 0.182  
(0.043) x x x x x

All x 0.206  
(0.022) x x x x 0.182  

(0.043)

BM x x x x x x x

MCI x 0.180  
(0.045) x x x x x

MCI_27 x x x x x x x

Normal x 0.219  
(0.014) x x x x 0.229  

(0.011)

Normal_27 x 0.211  
(0.018) x x x x 0.216  

(0.016)

Smith x 0.223  
(0.013)

−0.252  
(0.005)

−0.180  
(0.046)

−0.203  
(0.024)

0.202  
(0.024)

0.301  
(0.001)

SS x x x x x x x

YN x 0.233  
(0.009)

−0.195  
(0.030) x x 0.178  

(0.048)
0.252  

(0.005)

SICA x x x x x x x

Partial correlation results controlling age, gender and years of schooling. Abbreviations: DMN – default mode network, FC – functional connectivity, HipV – hippocampal volume, 
MMSE – mini‑mental state examination, MOCA – Montreal cognitive assessment, CDRSB – Clinical Dementia Rating Scale Sum of Boxes, ADAS13 – modified Alzheimer’s Disease 
Assessment Scale cognitive 13‑item scale, EcogMemory – Memory domain in Everyday Cognition scales, ADNI_MEM – a composite score for memory in ADNI dataset, MCI – mild 
cognitive impairment, AD – Alzheimer’s disease, ABIDE – Autism Brain Imaging Data Exchange, BM – BrainMap, SS – single site population, YN – younger normal, SICA – single 
subject independent component analysis.
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a negative correlation was found in Smith (r=−0.180, 
p=0.046). In EcogMemory, a negative correlation was 
noted in ABIDE (r=−0.177, p=0.049) and Smith (r=−0.203, 
p=0.024). In ADNI_MEM, a positive correlation was found 
in ABIDE (r=0.182, p=0.043), Smith (r=0.202, p=0.024), and 
YN (r=0.178, p=0.048). The correlation between HipV and 
FC of the DMN was also evaluated and six results were 
found to be positively correlated with HipV, including 
ABIDE (r=0.262, p=0.003), All (r=0.182, p=0.043), Normal 
(r=0.229, p=0.011), Normal_27 (r=0.216, p=0.016), Smith 
(r=0.301, p=0.001) and YN (r=0.252, p=0.005) (Table III).

MOCA and HipV showed relatively more significant 
correlations with the twelve ICA results and the scatterplots 
with fitted regression lines and associated R‑squared values 
in significant correlations were created for these two 
measurements respectively (Figs 1 and 2). The R‑squared 
values ranged from 0.035 to 0.062 in MOCA and from 0.016 
to 0.072 in HipV. Though not shown, the R‑squared values 
in the significant correlations of the rest 5 measurements 
were in similar ranges.

DISCUSSION

Among the twelve ICA results, significantly higher FC of 
the DMN in NL than AD with relatively higher effect size was 
demonstrated only in the ICA results from normal subjects, 
including young and old normal subject groups, suggesting 
using ICA templates from normal subjects was better to 
demonstrate FC difference of the DMN between normal 
subjects and patients with Alzheimer’s disease. In this 
study, we used seven measurements to evaluate the twelve 
ICA results. These seven measurements were known to be 
able to reflect the effect of Alzheimer’s disease on patients, 
including 4 general cognitive measurements, 2 specific 

memory function measurements, and HipV. Among the 
twelve ICA results, the stronger correlation results were 
all from the ICA results from young healthy adults. On the 
contrary, the weaker results were from heterogeneous 
conditions, diseased groups, and single‑subject ICA 
method. Therefore, using ICA templates from young 
healthy subjects to extract FC of DMN was more likely to 
enhance the correlation between FC change of DMN and 
clinical measurements.

Among all ICA results, significantly higher FC in NL than 
AD was demonstrated in the ABIDE, Normal, Normal_27, 
Smith, and YN groups. There was no condition showing 
significant difference between NL and MCI or between MCI 
and AD. MCI condition is recognized as the transitional 
zone between normal aging and AD, and although not 
fulfilling the criteria for AD, MCI subjects have significant 
cognitive deficits and are of higher risk for AD (Mueller et 
al. 2005). In the research field of DMN in MCI, insignificant 
difference of FC between normal and MCI subjects or 
between MCI and AD subjects has been demonstrated but 
FC of MCI group is numerically in between those of normal 
and AD groups (Binnewijzend et al. 2012). The phenomenon 
of ambiguous but intermediate status of FC in MCI and 
increased FC in normal than AD groups is compatible with 
our findings and is considered as a reasonable FC result. 
This phenomenon might be due to the heterogeneous 
regional FC changes in the DMN, including both increased 
and decreased FC, in MCI status (Qi et al. 2010, Cha et al. 
2013) and these bidirectional changes will increase the 
variation of FC of the DMN as a whole. Besides, using 
Cohen’s d effect size to evaluate these between‑group 
comparisons, the comparisons between NL and MCI and 
between MCI and AD show a d value below 0.50, suggesting 
at most small effect in these comparisons (Cohen 1988). 

Fig. 1. Scatterplots with fitted regression lines and associated R‑squared 
values in significant correlations between FC of DMN and MOCA.

Fig. 2. Scatterplots with fitted regression lines and associated R‑squared 
values in significant correlations between FC of DMN and hippocampal 
volume.
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Seven comparisons between NL and AD have medium 
effect, including ABIDE, All, MCI_27, Normal, Normal_27, 
Smith, and YN and of which, the top five comparisons 
with an effect size of at least 0.60 are using ABIDE, Normal, 
Normal_27, Smith, and YN ICA templates, compatible with 
significant results. Among the three diagnostic groups, 
better FC results came from only templates based on old 
or young normal subjects. From this standpoint, FC of the 
DMN by using ICA results from relatively normal healthy 
groups are more likely to significantly show reasonable 
findings, which might be obscured by using ICA results 
from diseased or heterogeneous condition subjects or 
single‑subject ICA method.

Furthermore, we chose 4 general cognitive 
measurements, 2 specific memory function 
measurements, and HipV to evaluate correlations 
between these measurements, or HipV with FC of 
the DMN in order to validate the ICA results in the 
twelve conditions. MMSE is a commonly used reliable 
test to measure cognitive impairment and a higher 
score indicate a healthier condition (Pangman et al. 
2000). However, in our study, no condition showed any 
correlation with MMSE scores. Different regional FC 
correlation of the DMN with MMSE has been noted and 
is probably lower the significant correlation of average 
FC in the whole DMN in our study (Cha et al. 2013). 
MOCA is another validated tool for the detection of 
cognitive impairment in MCI and early AD and a higher 
score indicates a healthier condition (Nasreddine et 
al. 2005). Significantly positive correlations existed 
between MOCA scores and most DMN FC results, 
including those from the ABIDE, AD, All, MCI, Normal, 
Normal_27, Smith, and YN groups. No correlation was 
found in results from the BM, MCI_27, and SS groups. 
CDR‑SB score is useful to stage the severity of AD 
and MCI, with a higher score indicating more severe 
symptoms (O’Bryant et al. 2008). Negative correlation 
between FC of the DMN and CDR‑SB scores was 
present in the results from the ABIDE, Smith, and YN 
groups. ADAS13 is used to evaluate cognitive function 
including a variety of cognitive domains and a higher 
score reflects more cognitive impairment (Mohs et al. 
1997). Negative correlation between ADAS13 and FC 
of the DMN was found in the result from Smith group. 
Except for MMSE, better correlation results were 
from the Smith template in the other three general 
neuropsychiatric evaluations, closely followed by the 
ABIDE and YN groups. The other results merely showed 
one or no fitting correlation. 

Moreover, memory impairment is one of the main 
symptoms of AD, which also exists in MCI, and is the 
earliest manifestation of AD (Association 2000, Salmon 
2012). Results of two specific memory evaluations were 
collected from ADNI website, including EcogMemory 

and ADNI_MEM, which is a composite score for memory 
function from the ADNI neuropsychological battery 
using modern psychometric methods. EcogMemory is 
one of the six domain‑specific factors included in the 
measurement of Everyday Cognition (Ecog) and is a useful 
tool to evaluate everyday memory function in the elderly. 
A higher EcogMemory score is suggestive of worse daily 
function (Farias et al. 2008). There were two conditions 
showing negative correlations with the EcogMemory 
score, including ABIDE and Smith. ADNI_MEM has been 
tested for the power to predict progression from MCI to AD 
and shows equal or better results as compared with many 
other scores, such as longitudinal Rey Auditory Verbal 
Learning Test, AD Assessment Schedule – Cognition, 
MMSE, and CDR‑SB. In addition, ADNI_MEM is suggested 
for analyzing the strength of associations between 
imaging and memory and a higher score represents better 
memory performance (Crane et al. 2012). In this study, 
only the ABIDE, Smith and YN conditions showed positive 
correlations with ADNI_MEM. For these two memory 
specific measurements, only the ICA results from the 
ABIDE group and Smith’s template show good correlation, 
followed by the YN group. Furthermore, smaller HipV 
in patients with AD and MCI as compared with healthy 
controls has been validated in many studies (den Heijer 
et al. 2010). Therefore, we also used HipV to evaluate 
the quality of ICA results in the eleven conditions. There 
were 6 conditions showing positive correlations between 
FC of the DMN and HipV, including ABIDE, All, Normal, 
Normal_27, Smith, and YN. Considering all six clinical 
evaluation scores and HipV, the best two ICA results fitting 
5 to 6 kinds of measurements were the Smith template and 
the ABIDE group, followed by the YN group, which fitted 
4 kinds of measurements. Three groups, All, Normal, and 
Normal_27 groups, fitted 2 measurements. The AD and MCI 
groups only fitted one measurement and the BM, MCI_27, 
SS, and SICA results fitted no measurement. Thus, the best 
results came from the Smith’s and ABIDE group templates, 
both derived from young and healthy adults, while the 
worst results come from the heterogeneous condition, 
diseased groups, and single‑subject ICA method. The SS 
group was purely from a single site but showed one of the 
worst results, suggesting that single site data do not have 
the strength to properly reflect clinical measurements and 
the unsatisfactory result might be primarily due to the 
heterogeneous condition of this single site population. The 
correlation result from single‑subject ICA also showed one 
of the worst results. This phenomenon might be partly due 
to the different spatial distribution of the individual DMN, 
which is likely affected by diseases, and to the change in 
the spatial distribution results from the decreased and 
increased regional FC of the whole brain to the original 
healthy DMN, which might mutually offset. Therefore, 
though the single‑subject ICA method is better to reflect 
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current individual FC of the DMN (Anderson et al. 2011, 
Shi et al. 2015, Esposito et al. 2005), this method might 
not be able to detect the influence of impaired regions of 
DMN and to diminish the effect of compensatory regions 
on the DMN (Damoiseaux et al. 2012, Vemuri et al. 2012, 
Seidler et al. 2010). Instead, our method, using a DMN 
template from young and normal subjects to extract FC of 
the DMN for all subjects, is likely to solve this problem and 
truly demonstrate a much better clinical correlation than 
the single‑subject ICA method. In addition, the overall 
correlation results from the Normal and Normal_27 
groups were slightly worse than the results from the 
ABIDE, Smith, and YN groups, among which, the YN group 
was worse than the ABIDE group and Smith template. The 
possible explanation is that although the subjects in the 
NL group from the ADNI dataset have relatively preserved 
cognitive function, they are aging and the aging process 
can alter RSNs even though less severely than diseased 
conditions (Huang et al. 2015, Onoda et al. 2012, Geerligs et 
al. 2015, Agosta et al. 2012, Campbell et al. 2015). Therefore, 
the DMN is still impaired in elder normal subjects, causing 
relatively poor correlation results.

There are several limitations in this study. One 
is that we performed ICA for subjects from the ADNI 
dataset and ABIDE project subjects and downloaded the 
templates from BM and Smith’s studies. Therefore, those 
downloaded templates might be based on ICA using 
different parameter settings from ours, even though 
all are analyzed at the same dimensionality of 20. In 
addition, fMRI data from the ADNI, ABIDE, BM, and FMRI 
could be with different scan protocols, which might 
affect the imaging quality and imaging results. The 
solution to these limitations is to use the same group ICA 
setting to analyze subjects from single MRI scanner with 
identical scan protocols, with subjects who are young 
healthy adults, normal elderly, and diseased participants. 
All the resultant ICA templates from different groups 
can be applied on identical subject groups with clinical 
cognitive evaluations to test which result has better 
power to reflect clinical conditions. Furthermore, the 
R‑squared values in the linear regression analysis of 
significant correlations between FC of DMN and the 
seven measurements are quite low, suggesting marked 
variability of the data, but this phenomenon is not 
uncommon in studying human behavior.

CONCLUSION

By using group differences among three diagnostic 
groups and using correlation evaluation with 4 global 
cognitive measurements, 2 memory specific measurements, 
and HipV, the best results fitting clinical evaluations were 
the FC results of the DMN template derived from young 

healthy subjects. Results from relatively young normal 
elders intermediately fit the clinical evaluations and the 
worst results were from heterogeneous or more severe 
disease groups and single‑subject ICA method. The overall 
findings suggest that the diseased condition or even aging 
process will alter the DMN and some significant correlations 
with clinical evaluations might be obscured by using the 
DMN derived from ICA results with source subjects who are 
diseased or aging, as compared with the ICA results from 
young and healthy adults. The single‑subject ICA method is 
able to reflect individual DMN condition but is of low power 
to reflect disease influence on the DMN. Accordingly, testing 
a new imaging analysis method, such as using different 
ICA maps, on a well‑evaluated subject group might also be 
helpful in order to reduce the possibility of false negative 
or false positive results.
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