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Minimum Variance Distortionless Response Estimators for
Linear Discrete State-Space Models

Eric Chaumette, Benoit Priot, François Vincent, Gael Pages, and Arnaud Dion

Abstract—For linear discrete state-space models, under
certain conditions, the linear least-mean-squares filter es-
timate has a convenient recursive predictor/corrector for-
mat, aka the Kalman filter. The purpose of this paper is
to show that the linear minimum variance distortionless
response (MVDR) filter shares exactly the same recursion,
except for the initialization which is based on a weighted
least-squares estimator. If the MVDR filter is suboptimal
in mean-squared error sense, it is an infinite impulse re-
sponse distortionless filter (a deconvolver) which does not
depend on the prior knowledge (first- and second-order
statistics) on the initial state. In other words, the MVDR filter
can be pre-computed and its behaviour can be assessed in
advance independently of the prior knowledge on the initial
state.

Index Terms—Filtering, minimum mean-squared error up-
per bound, smoothing, state estimation, unbiased filter.

I. INTRODUCTION

We consider the general class of linear discrete state-space (LDSS)
models represented with the state and measurement equations,
respectively

xk =Fk−1xk−1 +wk−1 (1a)

yk =Hkxk + vk (1b)

where the time index k ≥ 1, xk is the P -dimensional state vector,
yk is the N -dimensional measurement vector and the model matrices
Fk and Hk are known. Unless otherwise stated, the process noise
sequence {wk} and the measurement noise sequence {vk}, as well as
the initial state x0 are random vectors with arbitrary distributions but
at least known covariance and cross-covariance matrices containing
elements with finite modulus. The process and the measurement noise
sequences have zero-mean values and the initial state has a finite
known mean value. The objective is to estimate xk based on the
measurements and our knowledge of the model dynamics. If the
estimate of xk is based on measurements up to and including time l,
we denote the estimator as x̂k|l � x̂k|l(y1, . . . ,yl) and we use the
term estimator to refer to the class of algorithms that includes filtering,
prediction, and smoothing. A filter estimates xk based on measure-
ments up to and including time k. A predictor estimates xk based
on measurements prior to time k. A smoother estimates xk based on
measurements prior to time k, at time k, and later than time k.

The authors are with ISAE-SUPAERO, Université de Toulouse,
31055 Toulouse, France (e-mail: eric.chaumette@isae.fr; benoit.priot@
isae.fr; françois.vincent@isae.fr; gael.pages@isae.fr; arnaud.dion@
isae.fr).

Since the seminal paper of Kalman [1], it is known that, if the
process noise sequence, the measurement noise sequence and the ini-
tial state x0 verify certain uncorrelation conditions [2, §9.1], [3, §7.1],
and [4, §8.2] and are Gaussian, the minimum variance or minimum
mean-squared error (MSE) filter estimate for LDSS models has a
convenient recursive predictor/corrector format, so-called the Kalman
filter (KF). Even if the noise is non-Gaussian, the KF is the linear least-
mean-squares (LLMS) filter (LLMSF) estimate.

Interestingly enough, the Kalman (stochastic) filtering problem has
been related to several variants of deterministic least-squares esti-
mation, i.e., the estimation of x0 for a LDSS model (1a) and (1b)
where xk = xk−1 = · · · = x0 and x0 is deterministic and unknown
[2, §2.6], [3, §3], [4, §4], [5, §4.12], and [6]. In the deterministic frame-
work, under Gaussian measurement noise, the weighted least-squares
estimator (WLSE) is identical to the maximum likelihood estimator
(MLE). Even if the measurement noise is non-Gaussian, the WLSE
coincides with the best linear unbiased estimator (BLUE) [4, §4]
aka the linear minimum variance distortionless response estimator
(LMVDRE) [7, §6], [8, §5.6], which is a particular case of constrained
linear estimation [2, p98]. The LMVDRE is a well known suboptimal
technique in the deterministic framework used to circumvent the prob-
lem of the large computational cost of the MLE [7] and its sensitivity to
imperfect, incomplete, or erroneous knowledge about the observation
model [9]. For instance, in the fields of radar, sonar, and wireless
communication, it is common place to design a LMVDRE for the most
studied estimation problem: that of separating the components of data
formed from a linear superposition of individual signals to noisy data
[7]–[9]. This is the reason why, sometimes, the LMVDRE is also called
a deconvolution filter [7, §6], [8, §5.6].

The main novel contribution of the present paper is the proof that
in the stochastic framework, for the fairly general subset of LDSS
models for which Fk, k ≥ 1, are invertible and H1 is full rank, the
LMVDR filter (LMVDRF) shares the same recursion as the KF, except
at time k = 1. This surprising result is worth knowing for users of
the KF since, each time one initializes the KF recursion at time k = 1
with the WLSE associated to the measurement model (1b), i.e., x̂1|1 =
P1|1H

H
1 C−1

v1
y1 and P1|1 = (HH

1 C−1
v1

H1)
−1, because the first- and

second-order statistics of the initial state x0 are not available, one
does not implement any longer the KF but the LMVDRF. Although
the LMVDRF is suboptimal in terms of MSE, it has a number of
merits: a) it does not depend on the prior knowledge (first- and second-
order statistics) on the initial state, b) it is an upper bound on the
performance of the KF whatever the prior knowledge on the initial
state, and c) if the LDSS is time-invariant, it shares the same discrete
algebraic Riccati equation (DARE) as the KF. These features are quite
interesting for filtering performance analysis and design of a LDSS
system since they allow to synthesize an infinite impulse response
(IIR) distortionless filter (a deconvolver) which performance is robust
to an unknown initial state. However, it seems likely that, since the
LMVDRF shares the same recursion as the KF, it also shares the
same sensitivity to modelling error [3, §10], [10] or uncertainties
in the system matrices [11]–[13]. The robustification of the KF to
the presence of mismodeling has been reinvestigated lately by using



unbiased finite impulse response (UFIR) [14], p-shift FIR [15], [16] or
minimum variance UFIR [17] filters. These algorithms have the same
predictor/corrector format as the KF, often ignore initial estimations
errors and the statistics of the noise, and become virtually optimal as
the length of the FIR window increases. All in all, the LMVDRF is
not the best filter in terms of MSE, neither the more robust, but its
performance can be assessed in advance and it can be pre-computed.

The rest of the paper is organized as follows. Notations and sig-
nal model (joint proper complex) are introduced in Section II. In
Section III, for sake of clarity, we give the main points of background
knowledge on LLMS and LMVDR estimators required to discuss
the filtering equations in the next section. In Section IV, we first
highlight the general assumptions required on LDSS models to obtain
a LLMSF satisfying the same predictor/corrector format as the KF
(without extension of the state and measurement equations); then we
demonstrate that the LMVDRF shares the same recursion as the KF,
except at time k = 1. This result allows to show in Section V, that the
two filters share as well, for the so-called “standard LDSS model”, the
same possible extensions (prediction, smoothing, filtering with fading
memory, constrained filtering, . . .) and alternate formulations (infor-
mation filtering, innovations approach, . . .). Last, the LMVDRF’s
properties and performance (in comparison with the KF) are illustrated
with an example in Section VI.

II. NOTATIONS AND SIGNAL MODEL

The notational convention adopted is as follows: we shall use italic,
small boldface, and capital boldface letters to denote, respectively,
scalars, column vectors, and matrices. MC(N,P ) denotes the vec-
tor space of complex matrices with N rows and P columns. The
scalar/matrix/vector transpose, conjugate and transpose conjugate are
respectively indicated by the superscripts T , * and H . I is the identity
matrix. [A B] denotes the matrix resulting from the horizontal con-
catenation of A and B. S = span{A} denotes the linear span of the
set of the column vectors of A. A ≥ B means that A−B is positive
semi-definite. If CH = C and C > 0, ΠC

A = A(AHCA)−1AHC

denotes the orthogonal projection matrix on span{A} and A
C

⊥B
means that A and B are orthogonal, both for the Hermitian inner
product defined by C. S⊥ denotes the orthogonal complement of the
subspace S for the canonical Hermitian inner product. E[·] denotes
the expectation operator. If x is a random vector, mx � E[x] is the
expectation of x. If x and y are two complex random vectors: a) Rx =
E[xxH ], Ry = E[yyH ] and Rx,y = E[xyH ] are, respectively, the
correlation matrices of x, of y and the cross-correlation matrix of x
and y; b) Cx = Rx −mxm

H
x , Cy = Ry −mym

H
y and Cx,y =

Rx,y −mxm
H
y are, respectively, the covariance matrices of x, of y

and the cross-covariance matrix of x and y; c) if Ry is invertible,
then Rx|y � Rx −Rx,yR

−1
y RH

x,y; d) If Cy is invertible, then

Cx|y � Cx −Cx,yC
−1
y CH

x,y.1

A. Joint Proper Complex Signals

As in [2, §3] and [8, §5.1], we adopt a joint proper (proper
and cross-proper) complex signals assumption for the set of vector
(x0, {wk}, {vk}) which allows to resort to standard estimation in
the mean square error (MSE) sense defined on the Hilbert space of
complex random variables with finite second-order moment. A proper
complex random variable is uncorrelated with its complex conjugate
[8], and a zero mean proper complex random vector is said to be

1 Note that if x and y are (proper) normal complex random vectors, then
Cx|y is exactly the covariance matrix of x given y.

second-order circular [2, §3.2.5]. Indeed, in diverse fields such as com-
munications, control, and signal processing, many practical problems
of interest modelize the observation vector as complex and consisting
of a bandpass signal which is the output of an Hilbert filtering leading
to an “in-phase” real part associated to a “quadrature” imaginary part.
These observation vectors belongs to the general class of analytic
signals for which a fundamental result states that wide-sense stationary
analytic signals, and also complex baseband representations of wide-
sense stationary real bandpass signals, must be proper [8, §2.6.1].
Besides its capability to characterize the statistical behavior of the
underlying physics of these problems of interest, the proper complex
signals assumption also simplify computations and, in many aspects,
make complex random signals look and behave like real random
signals. Indeed, any result derived with joint proper complex random
vectors are valid for real random vectors provided that one substitutes
the matrix/vector transpose conjugate for the matrix/vector transpose2

[2, §3.2.5], [8, §5.4.1].

B. Equivalent Linear Observation Model

Here, Fk−1 ∈ MC(P, P ) and Hk ∈ MC(N,P ). First, as (1a) can
be rewritten as

xk = Bk,0x0 +
k−1∑
l=0

Bk,l+1wl,Bk,l =

∥∥∥∥∥∥
Fk−1Fk−2 . . .Fl, k > l

I , k = l
0 , k < l

an equivalent form of (1b) is

yk=Akx0+nk,Ak=HkBk,0,nk=
k−1∑
l=0

HkBk,l+1wl+vk. (2)

Second, (2) can be extended on a horizon of k points from the first
observation as

yk=

⎛⎜⎝y1

...
yk

⎞⎟⎠=

⎡⎢⎣A1

...
Ak

⎤⎥⎦x0+

⎛⎜⎝n1

...
nk

⎞⎟⎠=Akx0 + nk (3)

where yk,nk ∈ MC(Nk, 1) and Ak ∈ MC(Nk,P ).

III. BACKGROUND ON LINEAR/AFFINE ESTIMATORS

Let us recall that the hypothesis of zero-mean process and measure-
ment noise sequences is equivalent to the assumption of nonzero but
known mean values.3 it suffices to center the random variables before
processing. Since this transformation is reversible, there is no loss of
information in making such a preprocessing [2, p84].

A. Linear Least-Mean-Squares Estimator (LLMSE)

Let us consider two complex random vectors x and y. The error
between the signal x and the affine estimator x̂ � x̂(y) = Ky + a,
K ∈ MC(dim(x),dim(y)), a ∈ MC(dim(x), 1), is e � e(y,x) =
x̂(y)− x and the error covariance matrix is

P(K,a) = E[eeH ] = E
[
(x̂(y)− x) (x̂(y)− x)H

]
. (4)

2 The case where (x0, {wk}, {vk}) are improper complex random vector
or hybrid vector (real and complex components) is addressed in Section V-D.

3 The case of unknown or unavailale mean values is addressed Section V-C.



As

e = K(y−my)− (x−mx) + (a− (mx −Kmy)) (5)

then, if Cy is invertible, (4) can be rewritten as [8, p. 121]

P(K,a) = Cx|y +
(
K−Cx,yC

−1
y

)
Cy

(
K−Cx,yC

−1
y

)H
+ (a− (mx −Kmy)) (a− (mx −Kmy))

H . (6)

This quadratic form in a is positive semidefinite, so P(K,a) ≥
Cx|y + (K−Cx,yC

−1
y )Cy(K−Cx,yC

−1
y )H with equality for

ab = argmin
a

{P(K,a)} = mx −Kmy (7)

yielding

P(K,ab) = Cx|y +
(
K−Cx,yC

−1
y

)
Cy

(
K−Cx,yC

−1
y

)H
where the superscript b is used in the following to remind the reader
that the value under consideration (scalar, vector, matrix) is the
“best” one according to an unambiguous criterion previously defined
(here the MSE). Then (5) reduces to e = K(y−my)− (x−mx)
leading to

Kb= argmin
{
P(K, ab)

}
=Cx,yC

−1
y , ab= mx−Kbmy (8)

and4:

x̂b −mx = x̂−mx
b
= Cx,yC

−1
y (y−my) (9)

where

P(Kb,ab) = Cx|y (10)

As Kb (8) is also the solution of the linear LMSE after the centering
of x and y (9), we follow [2] hereinafter and only use the term linear
to designate both linear and affine LMSE.

B. LMVDR Estimator (LMVDRE)

We adopt the notation used in the deterministic framework
for the LMVDRE [7, §6], [8, §5.6] to stress the fact that the
LMVDRE is different from the LLMSE. Let us consider three
complex random vectors x, y and v verifying: y = Hx+ v,
where H ∈ MC(dim(y),dim(x)) is full rank. The error between
the signal x and the affine estimator x̂ � x̂(y) = WHy+ a,
W ∈ MC(dim(y),dim(x)), a ∈ MC(dim(x), 1), is e � e(y,x) =
x̂(y)− x and the error covariance matrix is given by (4). In this
setting, W can be seen as a “state-former” in the same way as a
beamformer in array processing or a frequency-bin former in spectral
analysis [7, §6], [8, §5.6]. We look for a distortionless “state-former”,
that is Wb and ab such that

{Wb,ab} = argmin
{
P(WH ,a)

}
s.t. WHH = I. (11)

Since (7) is valid whatever K = WH , then e (5) reduces to

e =WH(y−my)− (x−mx)

= (WHH− I)(x−mx) +WH(v −mv)

=WH(v−mv)

4 Note that if x and y are (proper) normal complex random vectors, then x̂b

is the mean value of x given y, i.e., the minimum MSE estimator.

leading to the following well-known solution of (11) [3, p. 83],
[8, §5.6]:

Wb =C−1
v H

(
HHC−1

v H
)−1

, ab = −(Wb)Hmv (12)

P(Wb,ab) =
(
HHC−1

v H
)−1

. (13)

Additionally, since we have restricted W to the subset satisfying
WHH = I, we can assert that

P(Wb,ab) ≥ P(Kb,ab). (14)

Then again, as Wb (12) is also the solution of the linear MVDRE after
the centering of x, y and v, we only use the term linear to designate
both linear and affine MVDRE.

IV. LINEAR FILTERS FOR LDSS MODELS

A. LLMSF for LDSS Models

It has been known for ages [1], [19] that when x0 is also zero-mean,
the LLMSE of xk based on measurements up to and including time k
is simply (8)

x̂k|k =
[
Gb

k−1 Kb
k

]
yk |

[
Gb

k−1 Kb
k

]
= Cxk,yk

C−1
yk

(15)

where Gb
k−1 ∈ MC(P,N(k − 1)) and Kb

k ∈ MC(P,N). What is
less known, to the best of our knowledge (and not disclosed in recent
monographs [2–5] or papers [14–17]), is the following general form of
the LLMSF [18, Section II]:

x̂k|k =Fk−1x̂k−1|k−1 +Kb
k(yk −HkFk−1x̂k−1|k−1)

+
(
I−Kb

kHk

) (
Cwk−1,yk−1,

C−1
yk−1

)
yk−1

−Kb
k

(
Cvk,yk−1

C−1
yk−1

)
yk−1 (16)

for k ≥ 2, where Kb
k is given by [18, (13)] (Kb

k = WH
k ). One can

notice that (16) has two additional terms in comparison with the
recursive predictor/corrector form

x̂k|k = Fk−1x̂k−1|k−1 +Kb
k(yk −HkFk−1x̂k−1|k−1) (17)

introduced by Kalman [1]. Therefore, the general assumptions required
to obtain the Kalman form (17) of the LLMSF for LDSS are

Cwk−1,yk−1
= 0, Cvk,yk−1

= 0, k ≥ 2. (18)

For any LDSS model satisfying (18), then the associated LLMSF has
a recursive predictor/corrector format (17), aka the KF, where Kb

k

must be computed according to the following recursion for k ≥ 1
[18, Section II]:

Pk|k−1 =Fk−1Pk−1|k−1F
H
k−1 +Cwk−1

+Fk−1C
H
wk−1,xk−1

+Cwk−1,xk−1
FH

k−1

Sk|k =HkPk|k−1H
H
k +Cvk

+HkC
H
vk,xk

+Cvk,xk
HH

k

(19a)

Kb
k =

(
Pk|k−1H

H
k +CH

vk,xk

)
S−1
k|k (19b)

Pk|k =
(
I−Kb

kHk

)
Pk|k−1 −Kb

kCvk,xk
(19c)



provided that P0|0=Cx0
and x̂0|0=0.5 Let us remind that

Pk|k−1= E[(x̂k|k−1 − xk)(x̂k|k−1−xk)
H ]=Cxk|yk−1

, x̂k|k−1 =

Fk−1x̂k−1|k−1, is the a priori estimate of xk, and Sk|k = E[εkε
H
k ] =

Cyk|yk−1
, εk = yk −Hkx̂k|k−1, is the innovations vector. Note

that the so-called “standard LDSS model” mentioned in monographs
[2, §9.1], [3, §7.1], and [4, §8.2], which satisfies

Cx0,wk
=0, Cx0,vk

= 0, Cwl,wk
= Cwk

δlk

Cvl,vk
=Cvk

δlk, Cwl,vk
= Cwk−1,vk

δl+1
k (20)

and which has been regarded so far as leading to the general form of
the KF (without extension of the state and measurement equations)
including correlated process and measurement noise, is in fact a
special case of (18) yielding the following simplified expressions of
(19a)–(19c):

Pk|k−1 =Fk−1Pk−1|k−1F
H
k−1 +Cwk−1

Sk|k =HkPk|k−1H
H
k +Cvk

+HkC
H
vk,wk−1

+Cvk,wk−1
HH

k

Kb
k =

(
Pk|k−1H

H
k +CH

vk,wk−1

)
S−1
k|k

Pk|k =
(
I−Kb

kHk

)
Pk|k−1 −Kb

kCvk,wk−1
.

However, a thorough characterization of the subset of LDSS models
compliant with (18) is out of the scope of the paper and is left for
future research.

B. LMVDRF for LDSS Models

1) Initial State Estimation: From (3), the LMVDRE of the
initial state x0 is given by (12), (13) for k ≥ 2

x̂d
0|k =

[
Db

k−1

Wb
0|k

]H
yk |

[
Db

k−1

Wb
0|k

]
= C−1

nk
AkP

d
0|k

Pd
0|k =

(
A

H

k C−1
nk

Ak

)−1

where Db
k−1 ∈ MC(N(k − 1), P ), Wb

k ∈ MC(N,P ) and the super-
script d is used to remind the reader that the estimator is a “distor-
tionless” estimator. Actually, x̂d

0|k has a recursive predictor/corrector

format [18, Section III-A] if and only if Cnk−1,nk
∈ Span(Ak−1),

i.e., for k ≥ 2

x̂d
0|k = x̂d

0|k−1 +
(
Wb

0|k
)H (

yk −Akx̂
d
0|k−1

)
⇔ (21)

Cnk−1,nk
= −Ak−1λk−1. (22)

Then Wb
0|k and Pd

0|k satisfy as well for k ≥ 2

Sd
0|k =AkP

d
0|k−1A

H
k +Cnk

+Akλk−1 + λH
k−1A

H
k

Wb
0|k =

(
Sd
0|k
)−1 (

AkP
d
0|k−1 + λH

k−1

)
Pd

0|k =
(
I−

(
Wb

0|k
)H

Ak

)
Pd

0|k−1 −
(
Wb

0|k
)H

λH
k−1.

For k = 1, provided that H1 is full rank, (12), (13) simply yield

x̂d
0|1 = Pd

0|1H
H
1 C−1

v1
y1, P

d
0|1 =

(
HH

1 C−1
v1

H1

)−1
. (23)

5 From (8), it is straightforward to prove [2], [3] that the case of a nonzero
mean initial state x0 is addressed by simply setting x̂0|0 = mx0 .

If at first sight assumption (22) seems rather obscure, it is, however,
a key property to derive the main contribution of the present paper
introduced in the next section.

2) Current State Estimation: It appears that condition (22)
is fulfilled under the general conditions of existence (18) of the KF
for a fairly general class of LDSS models. Indeed, let us consider
the following equivalent form of (3), provided that Fk, k ≥ 1, are
invertible

yk =A′
kxk + n′

k, A′
k =

[
A′

k−1F
−1
k−1

Hk

]

n′
k =

(
n′

k−1 −A′
k−1F

−1
k−1wk−1

vk

)
∀k ≥ 2 (24)

and y1 = y1 = A′
1x1 + n′

1, A
′
1 = A′

1 = H1, n′
1 = n′

1 = v1.
Then, according to (12), (13), the LMVDRE of the current state xk

is given by

x̂d
k|k =

[
Db

k−1

Wb
k|k

]H
yk |

[
Db

k−1

Wb
k|k

]
= C−1

n′
k
A′

kP
d
k|k (25a)

Pd
k|k =

(
A′H

k C−1

n′
k
A′

k

)−1

. (25b)

However, we can reparameterize the equivalent observation model
(24), formally, as

yk =

(
yk−1

yk

)
= Akx0 + nk (26a)

where ∣∣∣∣∣∣∣∣∣∣
Ak �

[
Ak−1

Ak

]
=

[
A′

k−1F
−1
k−1

Hk

]
nk �

(
nk−1

nk

)
=

(
n′

k−1 −Ak−1wk−1

vk

)
x0 � xk

(26b)

and compute x̂d
k|k and Pd

k|k according to (see previous section)

x̂d
k|k �x̂d

0|k = Pd
k|k

(
C−1

nk
Ak

)H

yk (27a)

Pd
k|k �Pd

0|k =
(
A

H

k C−1
nk

Ak

)−1

. (27b)

Then, according to (26a), (26b)

Cnk−1,nk
= Cn′

k−1,vk
−Ak−1Cwk−1,vk

.

However, (18) applied to (24) leads to

Cyk−1,vk
= A′

k−1Cxk−1,vk
+Cn′

k−1,vk
= 0.

Thus, under (18)

Ak−1Fk−1Cxk−1,vk
+Cn′

k−1,vk
= 0.

Therefore, under (18)

Cnk−1,nk
= −Ak−1Fk−1Cxk−1,vk

−Ak−1Cwk−1,vk

that is

Cnk−1,nk
= −Ak−1λk−1, λk−1 = Cxk,vk

which is a sufficient condition (22) to obtain a predictor/corrector
format for the LMVDRE of the current state (21)

x̂d
k|k � x̂d

0|k = x̂d
0|k−1 +

(
Wb

0|k
)H (

yk −Akx̂
d
0|k−1

)
(28)



where Ak = Hk (26b). Moreover, some additional calculus detailed
in [18, Section III-B] allow to show that under (18) x̂d

0|k−1 =

Fk−1x̂
d
k−1|k−1, (28) finally becoming for k ≥ 2

x̂d
k|k = Fk−1x̂

d
k−1|k−1 +

(
Wb

k|k
)H (

yk −HkFk−1x̂
d
k−1|k−1

)
(29)

where

Pd
k|k−1 =Fk−1P

d
k−1|k−1F

H
k−1 +Cwk−1

+Fk−1Cxk−1,wk−1
+CH

xk−1,wk−1
FH

k−1 (30)

Sd
k|k =HkP

d
k|k−1H

H
k +Cvk

+HkCxk,vk
+CH

xk,vk
HH

k

Wb
k|k =

(
Sd
k|k
)−1 (

HkP
d
k|k−1 +CH

xk,vk

)
(31a)

Pd
k|k =

(
I−

(
Wb

k|k
)H

Hk

)
Pd

k|k−1−
(
Wb

k|k
)H

CH
xk,vk

. (32)

For k = 1, provided that H1 is full rank, then (23)

x̂d
1|1 =Pd

1|1H
H
1 C−1

v1
y1 (33a)

Pd
1|1 =

(
HH

1 C−1
v1

H1

)−1
. (33b)

It is a bit of a surprise to obtain exactly the same recursion for the KF
and the LMVDRF under the same conditions of existence (18), since
the two solutions (8) and (12) do not look that similar in the general
case. Anyway, this result highlights the key role of the initial condition
at k = 1 for a recursive predictor/corrector filter. Indeed, despite they
share the same recursion, the two filters have different properties:

• the LMVDRF is suboptimal in the MSE sense (14): ∀{mx0
,

Cx0
} : Pk|k ≤ Pd

k|k;
• since Pd

k|k (32), (33b) does not depend on {mx0
,Cx0

}, there-

fore Pd
k|k is an upper bound on the KF performance;

• as the LMVDRF does not depend on the prior knowledge on the
initial state x0 (first- and second-order statistics), its behaviour
can be assessed in advance and it can be pre-computed.

Thus, it is worth having in mind that anytime a KF is initialized
with a WLSE as in (33a) and (33b) because Cx0

and mx0
are

not known, it becomes a LMVDRF. However, the awareness of this
implicit filter change is less important if the LDSS model is time-
invariant, since Pd

k|k−1 and Pk|k−1 shares the same discrete algebraic
Riccati equation (DARE). Therefore, for the standard LDSS model
(20), if (F, H) is detectable and (F−Cw,vC

−1
v H) is stabilizable

[3, §7.3], the LMVDRF and the KF share the same steady-state gain
and performance.

Last, for completeness, let us recall that for the standard LDSS
model (20), (33a) and (33b) are also the asymptotic expressions of x̂1|1
and P1|1 in the KF when Cx0

= αC and α tends to infinity [2, §3.4.2],
i.e., a KF with “no a priori knowledge” is actually a LMVDRF.

V. LMVDR PREDICTOR, SMOOTHER AND FURTHER

CONSIDERATIONS

A. LMVDR Predictor and Smoother

If the KF and the LMVDRF can share the same convenient recursive
predictor/corrector format (17), it is first because this format propa-
gates both (global) unbiasedness and distortionless properties. Indeed,
it is known that rewriting (17) as [3]

x̂k|k − xk =
(
I−Kb

k|kHk

)
Fk−1(x̂k−1|k−1 − xk−1)

−
(
I−Kb

k|kHk

)
wk−1 +Kb

k|kvk

allows to check the unbiasedness property propagation

E[x̂k−1|k−1 − xk−1] = 0 ⇒ E[x̂k|k − xk] = 0. (34)

In the LMVDRF case, let us remind that (25a)

x̂k−1|k−1 = W
H

k−1yk−1 = xk−1 + v′
k−1

where (24) yk−1 = A′
k−1xk−1 + n′

k−1, v′
k−1 = W

H

k−1n
′
k−1 and

W
H

k−1A
′
k−1 = I. Therefore (17) can be rewritten as

x̂k|k =
(
Wb

k|k
)H

Hkxk +
(
Wb

k|k
)H

vk

+
(
I−

(
Wb

k|k
)H

Hk

)
Fk−1(xk−1 + v′

k−1)

= xk + v′
k

where

v′
k =

(
Wb

k|k
)H

vk

+
(
I−

(
Wb

k|k
)H

Hk

) (
Fk−1v

′
k−1 −wk−1

)
demonstrating the distortionless property propagation

x̂k−1|k−1 = xk−1 + v′
k−1 ⇒ x̂k|k = xk + v′

k. (35)

By noticing that the KF and the LMVDRF both satisfy

x̂k|k − xk = Kb
k|kvk

+
(
I−Kb

k|kHk

) (
Fk−1(x̂k−1|k−1 − xk−1)−wk−1

)
they both can be derived as(

Wb
k|k
)H

= Kb
k|k = argmin

{
Pk|k(Kk)

}
where

Pk|k(Kk) = (I−KkHk)Pk|k−1(I−KkHk)
H

−(I−KkHk)Cxk,vk
KH

k −KkC
H
xk,vk

× (I−KkHk)
H +KkCvk

KH
k (36)

and Pk|k−1 is given by (19a), leading to general form of the Joseph
stabilized version of the covariance measurement update equation.

1) Standard LDSS Model: As the LMVDRF only differs from
the KF in the initial values of x̂1|1 and P1|1, the LMVDRF can always
be regarded as a particular instantiation of the KF for the follow-
ing initial conditions: mx0

= 0, Cv1,w0
= −H1(H

H
1 C−1

v1
H1)

−1,
F0Cx0

FH
0 +Cw0

= 2(HH
1 C−1

v1
H1)

−1, since, then

S1|1 = Cv1
,Kb

1 =
(
HH

1 C−1
v1

H1

)−1
HH

1 C−1
v1

, x̂1|1 = Kb
1|1y1.

Therefore, for the standard LDSS model, the two filters share:
a) the same possible extensions: colored process noise, colored mea-
surement noise, prediction, smoothing, filtering with fading memory,
constrained filtering, . . ., b) the same alternate formulations: informa-
tion filtering, innovations approach, . . . [2], [3]. It seems likely that the
two filters also share the same drawbacks as sensitivity to modelling
error [3, §10], [10] or uncertainties in the system matrices [12], [13].
However, a thorough comparison of the robustness [3, §10.4], [11] of
the two filters is far beyond the scope of this paper and is left for future
research.



2) Non-Standard LDSS Model: As mentioned in Section IV-A,
(18) defines the general assumptions required to obtain the filter
recursive predictor/corrector format (without extension of the state and
measurement equations) for LDSS models and encompass the standard
LDSS model (20). To the best of our knowledge, the innovations
process properties has been derived only for the standard LDSS model
[2, §9] and for the standard linear continuous space state model
[2, §16], [20]:

y(t) = z(t) + v(t), z(t) = H(t)x(t)

·
x(t) =F(t)x(t) +w(t)

where t ≥ 0, x(0), z(t), v(t), w(t) are zero mean process verifying

Cx,w(0, t) =0,Cw(t, s) = Cw(t)δ(t− s)

Cv(t, s) =Cv(t)δ(t− s),Cw,v(t, s) = Cw,v(t)δ(t− s)

∀s < t : Cv,z(t, s) = 0, ∀s < t : Cw,y(t, s) = 0

and Cx,y(t, s) = E[x(t)y(s)H ]. Therefore, generalization of the in-
novations process properties to (18) can not easily be drawn from
existing results and is not addressed in the present paper. However,
some straightforward extensions are available, at least the ones that
are based on an explicit use of the predictor/corrector format (17),
(19a)–(19c), (36) such as augmented system techniques, forward-
backward recursion, . . ., [3] allowing to take into account colored
process noise, colored measurement noise, prediction, smoothing,
filtering with fading memory, constrained filtering, reduced order-
filtering, . . .

B. The Deterministic Least-Squares Problem

If xk = xk−1 = · · · = x0 where x0 is deterministic and unknown,
then the LMVDRE and the WLSE are identical (duality) [2, §3.4],
[4, §4], that is

x̂d
0|k = argmin

{
(yk −Akx0)

HC−1
nk

(yk −Akx0)
}

(37)

Then one can easily notice that usual assumptions on the recursive
WLSE [2, §2.2.2], [5, §4.12], [6]

wk = 0, Cvl,vk
= Cvk

δlk (38)

leads to (2)

nk = vk, Cnk−1,nk
= Cvk−1,vk

= 0

which is a particular case of (22) and can be regarded as an alternative
proof of the recursive predictor/corrector format of the WLSE in that
particular case, i.e.,

x̂d
0|k = argmin

{
k∑

l=1

(yl −Alx0)
HC−1

vl
(yl −Alx0)

}

= x̂d
0|k−1 +

(
Wb

0|k
)H (

yk −Akx̂
d
0|k−1

)
where

Wb
0|k =

(
AkP

d
0|k−1A

H
k +Cvk

)−1
AkP

d
0|k−1

Pd
0|k =

(
I−

(
Wb

0|k
)H

Ak

)
Pd

0|k−1.

The extension of this result to the regularized WLSE (RWLSE)
[2, §2.4], [6]

x̂d
0|k = argmin

{
(x0 − c)HΛ−1

0 (x0 − c)

+
k∑

l=1

(yl −Alx0)
HC−1

vl
(yl −Alx0)

}

where Λ0 is an Hermitian invertible matrix, is simply obtained by
adding a fictitious observation at time k = 0

y0 = H0x0 + v0, Cv0
= Λ0, y0 = c, H0 = I

and by starting the recursion at time k = 0

x̂d
0|0 = Pd

0|0H
H
0 C−1

v0
y0 = c, Pd

0|0 =
(
HH

0 C−1
v0

H0

)−1
= Λ0

instead of time k = 1 (23). In light of the above, the RWLSE is
primarily a special case of the LMVDRE, and its relation to the KF
highlighted in [6] is actually purely formal.

C. Unknown Mean Values

So far, we have followed the didactic approach usually adopted
in monographs dealing with linear filtering [2, §3.2.4], [3], [4],
[5, §4] which assumes that the mean values of (x0, {wk}, {vk}) are
available (theoretically known or estimated). However an analysis of
the benefits of the knowledge of the mean values in term of estimation
performance is of some interest for LDSS systems design. Indeed,
on the one hand, the knowledge of the mean values allows to move
from linear LMS/MVDR estimators to affine LMS/MVDR estimators
in order to reduce the minimum attainable MSE (10), (13). On the other
hand, in some systems, the centering of signals has a cost in terms of
mean values estimation (DC offsets for instances) and of hardware or
software implementation.

First, when the mean values of (x0, {wk}, {vk}) are not known,
the following modification of the usual definition of proper complex
random variables is required:

• a proper complex random variable x is orthogonal with its
complex conjugate x∗, i.e., E[x(x∗)H ] = E[xxT ] = 0.

• x and y are joint proper if: E[xxT ] = 0, E[yyT ] = 0 and
E[xyT ] = 0.

Second, all the results introduced in Section IV hold provided one
replaces covariance matrices for correlation matrices and set x̂(y) =
Ky or x̂(y) = WHy. Then, a measure of the loss in MSE sense
that occurs, if one does not take the mean values into account for the
synthesis of the LLMSE, is [18, Section IV]

ΔP = Rx|y −Cx|y =
(
1 +mH

y C−1
y my

)−1
ab(ab)H . (39)

As intuitively expected ΔP ≥ 0 with equality if and only if mx =
Kbmy, what is unlikely to be true in the general case. Therefore in
the general case, the diagonal element of ΔP are strictly positive
which is an evidence of the soundness of the centering if we are
interested in the estimation of x only. Indeed, it is worth noting that
ΔP is a rank one positive matrix and that the improvement only
occurs along span{ab}, which means that for any linear combination
of x : λTx | λ ∈ span{ab}⊥, there is no performance gain obtained
by centering the random vectors. As dim(span{ab}⊥) = P − 1, if one
is primarily interested only in some linear combinations of {λT

l x}, it is
worth checking if {λl} ∈ span{ab}⊥, especially if the random vectors
centering is costly.



Last, the common recursive predictor/corrector format for the KF
and the LMVDRF (x̂d

k|k � x̂k|k, W
b
k|k � (Kb

k)
H) is still

x̂k|k = Fk−1x̂k−1|k−1 +Kb
k(yk −HkFk−1x̂k−1|k−1)

and is obtained for LDSS satisfying

Rwk−1 ,yk−1
= 0, Rvk,yk−1

= 0, k ≥ 2 (40)

where

Pk|k−1 =Fk−1Pk−1|k−1F
H
k−1 +Rwk−1

+ Fk−1R
H
wk−1,xk−1

+Rwk−1,xk−1
FH

k−1 (41a)

Sk|k =HkPk|k−1H
H
k +Rvk

+HkR
H
vk,xk

+Rvk,xk
HH

k

Kb
k =

(
Pk|k−1H

H
k +RH

vk,xk

)
S−1
k|k (41b)

Pk|k =
(
I−Kb

kHk

)
Pk|k−1 −Kb

kRvk,xk
(41c)

with initial conditions

KF: x̂0|0 =0, P0|0 = Rx0
(42a)

LMVDRF: x̂1|1 =P1|1H
H
1 R−1

v1
y1, P1|1 =

(
HH

1 R−1
v1

H1

)−1

(42b)

and a KF MSE loss (39) given by (k ≥ 1)

ΔPk|k =(1 + ek)
−1ab

k

(
ab
k

)H
ab
k =uk −Kb

kδk, ek = ek−1 + δH
k S−1

k|kδk

uk =Fk−1a
b
k−1 +mwk−1

, δk = Hkuk +mvk
(43)

with initial conditions ab
0 = mx0

and e0 = 0.

D. On the Use of Complex Signals

It is worth reminding that complex LDSS models (1a), (1b) are
simply the compact form of an equivalent real LDSS models(

xr
k

xi
k

)
=

[
Fr

k−1 −Fi
k−1

Fi
k−1 Fr

k−1

](
xr
k−1

xi
k−1

)
+

(
wr

k−1

wi
k−1

)
(
yr
k

yi
k

)
=

[
Hr

k −Hi
k

Hi
k Hr

k

](
xr
k

xi
k

)
+

(
vr
k

vi
k

)
where ar , ai, Ar and Ai denotes respectively the real and imaginary
part of a and A. Therefore, handling proper complex random vec-
tors simply offers the capability of a computation burden reduction
without loss of estimation performance in the MSE sense [2, §3.2.5],
[8, §5.4.1], since the complex LDSS models manipulates vectors with
twice less elements and matrices with four time less elements (but
twice more additions and multiplications). If the checking of the
“proper” property is problematic, one can always use a real LDSS
models and all the results released in the present paper provided
that one substitutes the matrix/vector transpose conjugate for the
matrix/vector transpose.

VI. AN ILLUSTRATIVE EXAMPLE

Consider the problem of the estimation of a bias from noisy mea-
surements based on the following time invariant LDSS model:

xk = xk−1 +wk−1, yk = xk + vk (44)

where the noise process, the measurement noise and the initial state
x0 are Gaussian and uncorrelated (20): Cx0,wk

= 0, Cx0,vk = 0,

Fig. 1. Comparison of
√

P d
k|k (32) and

√
Pk|k (19c) for σ2

x0
∈ {10−2, 1,

102, 104} and σ2
w = 1/4.

Fig. 2. Comparison of
√

P d
k|k (32) and

√
Pk|k when σ2

x0
is unknown

and σ2
w = 10−4.

Cwl,wk
= σ2

wδ
l
k , Cvl,vk = σ2

vδ
l
k, Cwl,vk = 0. Moreover, assume that

x0 = 0 and σ2
v = 100.

Fig. 1 displays the root-MSE (RMSE) of the LMVDRF, that is√
P d
k|k (32), and the RMSEs of the KF, that is

√
Pk|k (19c), for

Cx0
= σ2

x0
∈ {10−2, 1, 102, 104}, when σ2

w = 1/4. Fig. 1 illustrates
the properties of the LMVDRF mentioned in Section IV-B:

• the LMVDRF is suboptimal in the MSE sense Pk|k ≤ P d
k|k;

• P d
k|k is an upper bound on the KF performance;

• if the LDSS model is time-invariant, the LMVDRF and the KF
share the same steady-state performance;

• when σ2
x0

tends to infinity the KF tends to the LMVDRF.

As already mentioned, although the LMVDRF is suboptimal in
terms of MSE, its performance does not depend on the prior knowledge
(first- and second-order statistics) on the initial state, which can be
a valuable feature as illustrated on Fig. 2. Indeed, in Fig. 2, we
assume that the true value of σ2

x0
(σ2

x0
= 1) is not available and

that one has to initialize the KF recursion with an assumed value
σ̂2
x0

∈ {10−2, 10−1, 1, 10, 102}. In the case of Fig. 2, σ2
w = 10−4,√

P d
k|k is given by (32) and the empirical

√
Pk|k is assessed with 105

Monte-Carlo trials. Thus, in the presence of uncertainties regarding



the prior knowledge on the initial state, the LMVDRF may offer better
performance than a KF wrongly initialized.

VII. CONCLUSION

For LDSS models, we have identified the general assumptions
required to obtain, without extension of the state and measurement
equations, a recursive predictor/corrector format of the LLMSF, aka
the KF. We have shown that these assumptions, for a fairly general
subset of LDSS models, allow the LMVDRF to share exactly the
same recursion as the KF, except at time k = 1. Interestingly enough,
numerous users of the KF, without knowing it, have used a LMVDRF
each time they have initialized a KF at time k = 1 with a WLSE
because the first- and second-order statistics of the initial state x0 were
not available. Indeed, it is worth being aware of this result since the
LMVDRF is suboptimal in MSE sense and is an upper bound on the
performance of the KF whatever the first- and second-order statistics of
the initial state. In the light of the above, the KF can be looked upon as
a “initial state first- and second-order statistics” matched filter whereas
the LMVDRF is a mismatched filter. Once known, theses features are
quite interesting for estimation performance analysis and design of a
LDSS system since they allows to synthesize an IIR distortionless filter
which performance does not depend on the unknown initial state. The
LMVDRF may not be the best filters, but its behavior can be assessed
in advance and it can be pre-computed. Additionally we have shown
that for the standard LDSS model, the LMVDRF properties (upper
bound and pre-computation) can be extended to LMVDR predictors
and LMVDR smoothers.
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