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On LMVDR Estimators for LDSS Models: Conditions for
Existence and Further Applications

Eric Chaumette , François Vincent , Benoit Priot , Gael Pages , and Arnaud Dion

Abstract—For linear discrete state-space models, under certain
conditions, the linear least mean squares (LLMS) filter estimate has
a recursive format, a.k.a. the Kalman filter (KF). Interestingly, the lin-
ear minimum variance distortionless response (LMVDR) filter, when
it exists, shares exactly the same recursion as the KF, except for the
initialization. If LMVDR estimators are suboptimal in mean-squared
error sense, they do not depend on the prior knowledge on the initial
state. Thus, the LMVDR estimators may outperform the usual LLMS
estimators in case of misspecification of the prior knowledge on the
initial state. In this perspective, we establish the general conditions
under which existence of the LMVDRF is guaranteed. An immedi-
ate benefit is the introduction of LMVDR fixed-point and fixed-lag
smoothers (and possibly other smoothers or predictors), which has
not been possible so far. Indeed, the LMVDR fixed-point smoother
can be used to compute recursively the solution of a generalization
of the deterministic least-squares problem.

Index Terms—Filtering, minimum mean-squared error (MSE)
upper bound, smoothing, state estimation, unbiased filter.

I. INTRODUCTION

We consider the general class of linear discrete state-space (LDSS)
models represented with the state and measurement equations,
respectively,

xk = Fk−1xk−1 + wk−1 (1a)

yk = Hk xk + vk (1b)

where the time index k ≥ 1, xk is the Pk -dimensional state vector,
yk is the Nk -dimensional measurement vector and the model matrices
Fk and Hk are known. The process noise sequence {wk } and the
measurement noise sequence {vk }, as well as the initial state x0 are
random vectors with known covariance and cross-covariance matrices.
The process and the measurement noise sequences have zero-mean
values. The objective is to estimate xk based on the measurements and
our knowledge of the model dynamics. If the estimate of xk is based on
measurements up to and including time l, we denote the estimator as
x̂k |l � x̂k |l (y1 , . . . ,yl ) and we use the term estimator to refer to the
class of algorithms that includes filtering, prediction, and smoothing.
A filter estimates xk based on measurements up to and including time
k. A predictor estimates xk based on measurements prior to time k.
A smoother estimates xk based on measurements prior to time k, at
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Toulouse 31055, France (e-mail:, eric.chaumette@isae.fr; francois.
vincent@isae.fr; benoit.priot@isae.fr; gael.pages@isae.fr; arnaud.dion
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time k, and later than time k. Since the seminal paper of Kalman [1],
it is known that, if {wk }, {vk } and x0 verify certain uncorrelation
conditions (lately extended in [2]) and are Gaussian, the minimum
variance or minimum mean squared error (MSE) filter estimate for
LDSS models has a convenient recursive predictor/corrector format,
∀k ≥ 1

x̂b
k |k = Fk−1 x̂b

k−1 |k−1 + Kb
k

(

yk − Hk Fk−1 x̂b
k−1 |k−1

)

(2)

where x̂b
0 |0 = E [x0 ], so-called the Kalman filter (KF).1 Even if the

noises are nonGaussian, the KF is the linear least mean squares (LLMS)
filter (LLMSF) estimate. As the computation of the KF depends on prior
information on the mean (E [x0 ]) and on the covariance matrix (Cx0 )
of x0 [3]–[5], the KF can be looked upon as an “initial state first and
second order statistics” matched filter [2]. However, in numerous ap-
plications E [x0 ] and/or Cx0 is unknown. A commonly used solution
to circumvent this lack of prior information is the Fisher initialization
[6], [7, Sec. II]. The Fisher initialization consists in initializing the
KF recursion at time k = 1 with the best linear unbiased estimator
(BLUE) of x1 associated to the measurement model (1b), where x1

is regarded as a deterministic unknown parameter vector. In the de-
terministic framework, the BLUE of x1 is also known as the linear
minimum variance distortionless response (LMVDR) estimator of x1

[8, Sec. 6], [9, Sec. 5.6], [10] and coincides with the weighted least
squares estimator (WLSE) of x1 [11]. If H1 and the covariance matrix
of v1 (Cv1 ) are full rank, the Fisher initialization yields

x̂b
1 |1 = Pb

1 |1H
H
1 C−1

v1
y1 , Pb

1 |1 =
(

HH
1 C−1

v1
H1
)−1

. (3)

A particularly noteworthy feature of this alternative initialization of the
KF (3) is that it may yield the stochastic LMVDR filter (LMVDRF),
which shares the same recursion as the KF, except at time k = 1.
Indeed, Chaumette et al. in [2] have lately shown that this property
holds for the restricted subset of LDSS models for which the state
matrices Fk , k ≥ 1, are invertible.

II. PROBLEM STATEMENT AND NOVELTY

Unfortunately, this restricted subset of LDSS models does not in-
clude fixed-point and fixed-lag smoothers, which are obtained by run-
ning the KF on augmented LDSS models [4, Sec. 9] incorporating at
least one noninvertible state matrix. To solve this issue, we show that
the invertibility of Fk , k ≥ 1, is actually not required. More specifi-
cally, by resorting to a different approach than the one previously used
in [2], we establish the general conditions, in terms of noises covariance
matrices and model matrices, under which existence of the LMVDRF
is guaranteed. In a nutshell, it is shown that provided that H1 is full
rank, the LMVDRF exists whenever the KF exists. If H1 is not full
rank, the LMVDRF may not exist, and if it exists, then its numerical

1The superscriptb is used to remind the reader that the value under consider-
ation is the “best” one according to a criterion previously defined.

https://orcid.org/0000-0002-7029-3019
https://orcid.org/0000-0002-7774-5428
https://orcid.org/0000-0001-7325-822X
https://orcid.org/0000-0001-8831-0684
https://orcid.org/0000-0002-1264-0879
mailto:eric.chaumette@isae.fr
mailto:francois.vincent@isae.fr
mailto:francois.vincent@isae.fr
mailto:benoit.priot@isae.fr
mailto:gael.pages@isae.fr
mailto:arnaud.dion@isae.fr
mailto:arnaud.dion@isae.fr


computation may be untractable. First, these results allows for a com-
parison between the LMVDRF and the information filter (IF) form of
the KF [4, Sec. 6.2], another well established solution to cope with
a lack of prior information on x0 . Second, LMVDR fixed-point and
fixed-lag smoothers are introduced (and possibly other smoothers or
predictors, which is left for future research), whose existence could not
be proven from [2].

On another note, LMVDR estimators may allow to derive unex-
pected results, as highlighted with the LMVDR fixed-point smoother.
Indeed, it is shown that the LMVDR fixed-point smoother can be used
to compute recursively the solution of a generalization of the deter-
ministic least-squares problem, that is a generalized WLSE (possibly
regularized).

III. NOTATIONS AND SIGNAL MODEL

The notational convention adopted is as follows: scalars, vec-
tors, and matrices are represented, respectively, by italic, bold low-
ercase, and bold uppercase characters. MC (N, P ) denotes the vec-
tor space of complex matrices with N rows and P columns. The
scalar/matrix/vector transpose conjugate is indicated by the superscript
H . 1N denotes a N -dimensional vector with components equal to 1. I
is the identity matrix. [AB] and

[A
B

]

denote the matrix resulting from
the horizontal and the vertical concatenation of A and B, respectively.
The matrix resulting from the vertical concatenation of k matrices
A1 , . . . ,Ak of same column number is denoted Ak . E [·] denotes the
expectation operator. If x and y are following two complex random
vectors:
1) Cx, Cy, and Cx,y are, respectively, the covariance matrices of x,

of y and the cross-covariance matrix of x and y;
2) if Cy is invertible, then Cx |y � Cx − Cx ,yC−1

y CH
x ,y .

As in [2], [3, Sec. 3], [9, Sec. 5.4], we adopt a joint proper2 (proper
and cross-proper) complex signals assumption for the set of vectors
(x0 , {wk } , {vk }), which allows to resort to standard estimation in the
MSE sense defined on the Hilbert space of complex random variables
with finite second-order moment. Moreover, any result derived with
joint proper complex random vectors are valid for real-random vectors
provided that one substitutes the matrix/vector transpose conjugate for
the matrix/vector transpose [3, Sec. 3.2.5], [9, Sec. 5.4.1].

First, as (1a) can be rewritten as, for k ≥ 2

xk = Bk ,1x1 + Gk wk−1 , Gk wk−1 =
k−1
∑

l=1

Bk ,l+1wl

Gk ∈ MC (Pk ,Pk−1 ) , Bk ,l =

∣

∣

∣

∣

∣

∣

Fk−1Fk−2 · · ·Fl , k > l
I , k = l
0 , k < l

(4)

where Pk =
∑k

l=1 Pl , an equivalent form of (1b) is as follows:

yk = Ak x1 + nk , Ak = Hk Bk ,1

nk = vk + Hk Gk wk−1 . (5a)

Second, let A1 = H1 and n1 = v1 ; then (1b) can be extended on a
horizon of k points from the first measurement as follows:

yk = Ak x1 + nk

yk ,nk ∈ MC (Nk , 1),Ak ∈ MC (Nk , Pk ),Nk =
k
∑

l=1

Nl . (5b)

2A proper complex random variable is uncorrelated with its complex conju-
gate [9].

IV. LLMSF FOR LDSS MODELS

In this section, first, the general assumptions required on LDSS
models to obtain a LLMSF satisfying the same predictor/corrector
format as the KF (2) (without extension of the state and measurement
equations) are introduced in a more comprehensible manner than in
[2], [12, Sec. II]. Second, under these general assumptions, we feature
an insightful breakdown of the MSE of linear filters, which allows not
only to derive easily the general form of the KF recursion released in
[2, (19a–c)], but also to prove that, whenever it exits, the LMVDRF
shares the same recursion as the KF except at initialization.

A. LLMSF for LDSS Models

It has been known for ages [9, Sec. 5.4.1], [13] that, if x and y are
two zero mean proper complex random vectors, then, provided that
Cy is invertible, the linear estimator of x which minimizes the error
covariance matrix w.r.t. the Löwner ordering [14, Sec. 7.7], so called
the LLMS estimator, is given by the following:

x̂b � Cx ,yC−1
y y, E

[

(

x̂b − x
) (

x̂b − x
)H
]

= Cx |y . (6)

Therefore, if E [x0 ] = 0, the LLMSF of xk based on measurements
up to and including time k, k ≥ 2 , is simply

x̂b
k |k = Kb

k yk =
[

J b
k−1 Kb

k

]

yk |
[

J b
k−1 Kb

k

]

Cy k
= Cxk ,y k

(7)

provided that Cy k
is invertible, where J b

k−1 ∈ MC (Pk ,Nk−1 ) and
Kb

k ∈ MC (Pk , Nk ). Thus, J b
k−1 and Kb

k are the solution of the system
of linear equations

{

J b
k−1Cy k −1 + Kb

k Cyk ,y k −1 = Cxk ,y k −1

J b
k−1Cy k −1 ,yk

+ Kb
k Cyk

= Cxk ,yk

which yields

J b
k−1 = Cxk ,y k −1 C

−1
y k −1

− Kb
k Cyk ,y k −1 C

−1
y k −1

.

Consequently, from (6), (7) can be rewritten as follows:

x̂b
k |k = J b

k−1yk−1 + Kb
k yk = x̂b

k |k−1 + Kb
k

(

yk − ŷb
k |k−1

)

(8)

which is the general form of the so-called predictor/corrector format of
the LLMSF. Moreover, as Cyk ,y k −1 = Hk Cxk ,y k −1 + Cvk ,y k −1 and
Cxk ,y k −1 = Fk−1Cxk −1 ,y k −1 + Cw k −1 ,y k −1 , then according to (6)

ŷb
k |k−1 = Hk x̂b

k |k−1 + v̂b
k |k−1

x̂b
k |k−1 = Fk−1 x̂b

k−1 |k−1 + ŵb
k−1 |k−1

and (8) can be recasted as follows:

x̂b
k |k =

(

I − Kb
k Hk

)

Fk−1 x̂b
k−1 |k−1 + Kb

k yk

+
(

I − Kb
k Hk

)

ŵb
k−1 |k−1 − Kb

k v̂
b
k |k−1 , k ≥ 2 (9)

a general form already released in [2, (16)] but at the expense of a
more complex derivation [12, Sec. II]. It is noteworthy that (9) has two
additional terms in comparison with the recursive predictor/corrector
form (2) introduced by Kalman [1]. Therefore, the general assumptions
required to obtain the Kalman form (2) of the LLMSF for LDSS (9)
are as follows:

Cy k
invertible, ∀yk−1 :

{

ŵb
k−1 |k−1 = 0

v̂b
k |k−1 = 0

, k ≥ 2 (10a)

that is

Cy k
invertible, Cw k −1 ,y k −1 = 0, Cvk ,y k −1

= 0, k ≥ 2. (10b)



B. Insightful Breakdown of the MSE of Linear Filters

Another noteworthy point is that under the general assumptions
(10b), the MSE of any linear filter x̂k |k = Kk yk , Kk = [Jk−1 Kk ],
where Jk−1 ∈ MC (Pk ,Nk−1 ) and Kk ∈ MC (Pk , Nk ), that is,

Pk |k (Kk ) = E
[

(

x̂k |k − xk

) (

x̂k |k − xk

)H
]

= Pk |k (Jk−1 ,Kk ) (11)

breaks down into

Pk |k (Jk−1 ,Kk ) = Qk−1 (Jk−1 ,Kk )

+ (I − Kk Hk )

(

Cw k −1 + Fk−1CH
w k −1 ,xk −1

+Cw k −1 ,xk −1 F
H
k−1

)

(I − Kk Hk )H

− (I − Kk Hk )Cxk ,vk
KH

k − Kk CH
xk ,vk

(I − Kk Hk )H

+ Kk Cvk
KH

k (12a)

where

Qk−1 (Jk−1 ,Kk ) = E
[

q̂k−1 q̂H
k−1

]

q̂k−1 = Jk−1yk−1 − (I − Kk Hk )Fk−1xk−1 (12b)

which is a key result in order to derive straightforwardly (in comparison
with [2], [12, Sec. II]) the general form of the KF recursion (without
extension of the state and measurement equations). The MSE break-
down (12a) is easily obtained from the combination of (10b) and the
next breakdown of the error

x̂k |k − xk = q̂k−1 + (Kk vk − (I − Kk Hk )wk−1 ) .

C. General Form of the KF Recursion

From (12a), it is obvious that

J b
k−1 = arg min

Kk −1
{Qk−1 (Jk−1 ,Kk )} (13a)

that is (6)

J b
k−1yk−1 = C(I−K k H k )F k −1 xk −1 ,y k −1 C

−1
y k −1

yk−1

= (I − Kk Hk )Fk−1 x̂b
k−1 |k−1 (13b)

leading to the general form of the Joseph stabilized version of the
covariance measurement update equation [2]

Pk |k
(

J b
k−1 ,Kk

)

= (I − Kk Hk )Pb
k |k−1 (I − Kk Wk )H

− (I − Kk Hk )Cxk ,vk
KH

k − Kk CH
xk ,vk

(I − Kk Hk )H

+ Kk Cvk
KH

k (14)

where

Pb
k |k−1 = Fk−1Pb

k−1 |k−1F
H
k−1 + Cw k −1

+ Fk−1CH
w k −1 ,xk −1

+ Cw k −1 ,xk −1 F
H
k−1

= E

[

(

x̂b
k |k−1 − xk

) (

x̂b
k |k−1 − xk

)H
]

since under (10a–b)

x̂b
k |k−1 = Fk−1 x̂b

k−1 |k−1 + ŵb
k−1 |k−1 = Fk−1 x̂b

k−1 |k−1 .

The solutionKb
k of the minimization of (14) can be computed according

to the following recursion [2] for k ≥ 2:

Pb
k |k−1 = Fk−1Pb

k−1 |k−1F
H
k−1 + Cw k −1

+ Fk−1CH
w k −1 ,xk −1

+ Cw k −1 ,xk −1 F
H
k−1 (15a)

Sb
k |k = Hk Pb

k |k−1H
H
k + Cvk

+ Hk CH
vk ,xk

+ Cvk ,xk
HH

k

Kb
k =

(

Pb
k |k−1H

H
k + CH

vk ,xk

) (

Sb
k |k
)−1

(15b)

Pb
k |k =

(

I − Kb
k Hk

)

Pb
k |k−1 − Kb

k Cvk ,xk
. (15c)

The above recursion is also valid for k = 1 provided that Pb
0 |0 =

Cx0 and x̂b
0 |0 = 0 [2]. The case of a nonzero mean initial state x0 is ad-

dressed by simply setting x̂b
0 |0 = E [x0 ]. Last, let us remind that x̂b

k |k−1

is also known as the a priori estimate of xk , and Sb
k |k = E[εb

k (εb
k )H ],

where εb
k = yk − Hk x̂b

k |k−1 = yk − ŷb
k |k−1 is the innovations vector.

V. LMVDRF FOR LDSS MODELS

In this section, we consider a completely different approach than
the one previously used in [2]. Indeed, we provide a general definition
of a distortionless filter in the context of LDSS models (16), which
encompasses the definition used in [2] . And, it is the combination of
this general definition with the MSE breakdown (12a) that allows to
prove that, whenever it exits, the LMVDRF shares the same recursion
as the KF except at initialization.

As in [2], we adopt the notation used in the deterministic framework
for the LMVDRF [8, Sec. 6], [9, Sec. 5.6] to stress the fact that the
LMVDRF is different from the LLMSF, a.k.a. the KF. Indeed, for
LDSS models one can define a “state-former” in the same way as a
beamformer in array processing or a frequency-bin former in spectral
analysis [8, Sec. 6], [9, Sec. 5.6], that is, Wk ∈ MC (Nk , Pk ) yielding

the state vector W
H

k yk , which can be recasted as (5b)

W
H

k yk =
((

W
H

k Ak

)

x1 + Gk wk−1

)

+ W
H

k nk − Gk wk−1 .

Therefore, according to (4), a filter Wk , k ≥ 2, is distortionless iff

W
H

k yk = xk + W
H

k nk − Gk wk−1 ⇔ W
H

k Ak = Bk ,1 (16)

which leads to the following definition of the best distortionless state-
former in the MSE sense, a.k.a. the LMVDRF:

W
b

k = arg min
W k

{

Pk |k
(

Wk

)}

s.t. W
H

k Ak = Bk ,1 (17)

Pk |k
(

Wk

)

= E

[

(

W
H

k yk − xk

) (

W
H

k yk − xk

)H
]

. (18)

Since Cy k
is invertible (10b), then provided that Ak is full rank,

W
b

k is analogous to a linearly constrained Wiener filter (LCWF) [15,
Sec. 2.5] whose batch form expression is given by [15, (2.113)]

W
b

k = C−1
y k

Cy k ,xk
+ C−1

y k
Ak

(

A
H

k C−1
y k

Ak

)−1
BH

k ,1

− C−1
y k

Ak

(

A
H

k C−1
y k

Ak

)−1
A

H

k C−1
y k

Cy k ,xk
. (19)



Since the KF is the solution of the following unconstrained minimiza-
tion problem (6–7) [1], [3]–[5]:

KbH
k = arg min

W k

{

Pk |k
(

Wk

)}

(20)

it follows that the LMVDRF (17) is suboptimal in MSE sense in com-
parison with the KF (20).

A. H1 is Full Rank

If H1 is full rank, then Ak (5b), k ≥ 2, is full rank as well and W
b

k

(19) exists. Let Wk =
[D k −1

W k

]

, Dk−1 ∈ MC (Nk−1 , Pk ) and Wk ∈
MC (Nk , Pk ). The MSE breakdown (12a–b) is also valid for any

distortionless state-former, provided that one substitutes D
H

k−1 for Jk−1

and WH
k for Kk , yielding

Qk−1
(

Dk−1 ,Wk

)

= E
[

q̂k−1 q̂H
k−1

]

q̂k−1 = D
H

k−1yk−1 − (I − WH
k Hk

)

Fk−1xk−1 .
(21)

It is also a key result in order to derive the recursive form of the LMV-
DRF (17), (19). Indeed, as shown in the following, the MSE breakdown
(12a) allows to breakdown the initial constrained minimization prob-
lem (17) into two separable minimization problems: a first constrained
minimization problem w.r.t. Dk−1 , namely

D
b

k−1 = arg min
D k −1

{

Qk−1
(

Dk−1 ,Wk

)}

s.t. W
H

k Ak = Bk ,1

(22a)
where D

b

k−1 � D
b

k−1 (Wk ), followed by a second unconstrained min-
imization problem w.r.t. Wk , namely

Wb
k = arg min

W k

{

Pk |k
(

D
b

k−1 ,Wk

)}

. (22b)

• Solution of (22a)
Since W

H

k Ak = D
H

k−1Ak−1 + WH
k Ak where Ak = Hk Bk ,1 =

Hk Fk−1Bk−1 ,1 , then

W
H

k Ak = Bk ,1 ⇔

D
H

k−1Ak−1 =
(

I − WH
k Hk

)

Fk−1Bk−1 ,1

and (22a) is equivalent to

D
b

k−1 = arg min
D k −1

{

E
[

q̂k−1 q̂H
k−1

]}

s.t. D
H

k−1Ak−1 =
(

I − WH
k Hk

)

Fk−1Bk−1 ,1 . (23)

If H1 is full rank, then Ak−1 , k ≥ 2, is full rank as well. Moreover,

since Cy k
is invertible, Cy k −1 is invertible as well. Therefore, D

b

k−1
(23) is a LCWF [15, Sec. 2.5] whose batch form expression can be
computed as [15, eq. (2.113)]

D
b

k−1 = W
b

k−1

((

I − WH
k Hk

)

Fk−1
)H

(24a)

W
b

k−1 = C−1
y k −1

Cy k −1 ,xk −1

+ C−1
y k −1

Ak−1

(

A
H

k−1C
−1
y k −1

Ak−1

)−1
BH

k−1 ,1

− C−1
y k −1

Ak−1

(

A
H

k−1C
−1
y k −1

Ak−1

)−1
A

H

k−1C
−1
y k −1

Cy k −1 ,xk −1

(24b)

where W
b

k−1 coincides with the LMVDRF at time k − 1. Indeed, (24b)
is the solution of (19)

W
b

k−1 = arg min
W k −1

{

Pk−1 |k−1
(

Wk−1
)}

s.t. W
H

k−1Ak−1 = Bk−1 ,1 . (24c)

Finally, ∀k ≥ 2

Qk−1

(

D
b

k−1 ,Wk

)

=
(

I − WH
k Hk

)

Fk−1

× Pk−1 |k−1

(

W
b

k−1

)

FH
k−1

(

I − HH
k Wk

)

.

(25)

• Solution of (22b)
According to (25), the solution D

b

k−1 � D
b

k−1 (Wk ) (24a) of the
first constrained minimization problem (22a) leads to the following:

Pk |k
(

D
b

k−1 ,Wk

)

=
(

I − WH
k Hk

)

Pb
k |k−1

(

I − HH
k Wk

)

− (I − WH
k Hk

)

Cxk ,vk
Wk − WH

k CH
xk ,vk

× (I − HH
k Wk

)

+ WH
k Cvk

Wk (26a)

Pb
k |k−1 = Fk−1Pb

k−1 |k−1F
H
k−1 + Cw k −1

+ Fk−1CH
w k −1 ,xk −1

+ Cw k −1 ,xk −1 F
H
k−1

(26b)

which is the general form of the Joseph stabilized version of the co-
variance measurement update (14), provided that one substitutes WH

k

for Kk . Therefore, the solution Wb
k of the minimization of (26a),

that is,

Wb
k = arg min

W k

{

Pk |k
(

D
b

k−1 (Wk ) ,Wk

)}

(27a)

can be computed according to (15a–c) provided that one substitutes
(

Wb
k

)H
for Kb

k , i.e.,

Pb
k |k−1 = Fk−1Pb

k−1 |k−1F
H
k−1 + Cw k −1

+ Fk−1CH
w k −1 ,xk −1

+ Cw k −1 ,xk −1 F
H
k−1 (27b)

Sb
k |k = Hk Pb

k |k−1H
H
k + Cvk

+ Hk CH
vk ,xk

+ Cvk ,xk
HH

k

Wb
k =

(

Sb
k |k
)−1 (

Hk Pb
k |k−1 + Cvk ,xk

)

(27c)

Pb
k |k =

(

I − WbH
k Hk

)

Pb
k |k−1 − WbH

k Cvk ,xk
. (27d)



• Summary
For k ≥ 2, according to (24a) and (27a), the LMVDRF (17) yields

the state-former

x̂b
k |k =

(

I − WbH
k Hk

)

Fk−1

(

W
bH

k−1yk−1

)

+ WbH
k yk

=
(

I − WbH
k Hk

)

Fk−1 x̂b
k−1 |k−1 + WbH

k yk (27e)

where Wb
k is given by the recursion (27b–d), similar to the gen-

eral form of the KF recursion (15a–c). At time k = 1: Wb
1 =

arg minW 1

{

P1 |1 (W1 )
}

s.t. WH
1 H1 = I, leading to x̂b

1 |1 =

Pb
1 |1H

H
1 C−1

v1
y1 , Pb

1 |1 =
(

HH
1 C−1

v1
H1
)−1

, which is the Fisher esti-
mate of x1 (3).

To summarize the derivation above, provided that H1 is full rank
and that Cy k

is invertible, then the Fisher initialization (3) of the
KF does not yield a LLMSF any longer but a LMVDRF. Since

Pb
k |k � Pk |k (W

b

k ) depends on neither E [x0 ] nor Cx0 , the LMV-
DRF is suboptimal in MSE sense in comparison with the KF whatever
the initial conditions E [x0 ] and Cx0 . Thus, the LMVDRF is an upper
bound on the performance of the KF whatever the initial conditions
E [x0 ] and Cx0.

B. Conditions of Existence When H1 is Not Full Rank

If H1 is not full rank, then the set of distortionless state-formers
may be empty. For instance, let us consider a time-invariant LDSS sys-
tem of the form: xk = xk−1 + wk−1 , yk = Hxk + vk . Then, Pk =
P , Nk = N , and (5b) becomes yk = Ak x1 + nk , Ak = 1k ⊗ H,
where ⊗ denotes the Kronecker product. Since rank (1k ⊗ H) =
rank (1k ) rank (H) [16, p. 235], therefore, rank

(

Ak

)

= rank (H).
Thus, if H is rank-deficient, so is Ak , and the distortionless constraints
(16) W

H

k Ak = Bk ,1 = I can not be satisfied. On the other hand, if
there exists a time q for which Aq is full rank, then the LMVDRF
exists and its batch form is given by (19)

W
b

q = C−1
y q

Cy q ,x q + C−1
y q

Aq

(

A
H

q C−1
y q

Aq

)−1
BH

q ,1

− C−1
y q

Aq

(

A
H

q C−1
y q

Aq

)−1
A

H

q C−1
y q

Cy q ,x q . (28)

However, W
b

q (28) can not be expressed in a recursive form, which does
not prevent from computing it theoretically, but may make its numerical
computation untractable if q is too large. If x̂b

q |q and Pb
q |q = E[(x̂b

q |q −
xq )(x̂b

q |q − xq )H ] are numerically computable, then x̂b
q+1 |q+1 , ... are

computed according to the standard LMVDRF recursion (27b–e).

C. Prior-Free Estimate of x1 via the IF Form of the KF

If one assumes that: Cx0 ,w k
= 0 , Cx0 ,vk

= 0, Cw l ,w k
= Cw k

δl
k ,

Cv l ,vk
= Cvk

δl
k , and Cw l ,vk

= 0, then (15a–c) become

Pb
k |k−1 = Fk−1Pb

k−1 |k−1F
H
k−1 + Cw k −1 (29a)

Sb
k |k = Hk Pb

k |k−1H
H
k + Cvk

Kb
k = Pb

k |k−1H
H
k

(

Sb
k |k
)−1

(29b)

Pb
k |k =

(

I − Kb
k Hk

)

Pb
k |k−1 . (29c)

If Cw k −1 and Cvk
are invertible, k ≥ 1, thus Pb

k |k and Pb
k |k−1 are

invertible, which allows to define the information matrices

Ik |k =
(

Pb
k |k
)−1

, Ik |k−1 =
(

Pb
k |k−1

)−1
. (30)

Then, the usual form of the KF recursion (29a–c) can be rewritten in
the following IF form [4, Sec. 6.2]:

Ik |k−1 = C−1
w k −1

− C−1
w k −1

Fk−1

(

Ik−1 |k−1 + FH
k−1C

−1
w k −1

Fk−1

)−1
FH

k−1C
−1
w k −1

(31a)

Ik |k = Ik |k−1 + HH
k C−1

vk
Hk (31b)

Kb
k = I−1

k |k H
H
k C−1

vk
(31c)

where I0 |0 = C−1
x0

and x̂b
0 |0 = E [x0 ]. If a very broad prior distribution

on x0 is assumed, i.e., in the limit case as Cx0 → ∞, then I0 |0 → 0,
leading to

I1 |0 = C−1
w 0

(

I − F0
(

FH
0 C−1

w 0
F0
)−1

FH
0 C−1

w 0

)

.

Moreover, if F0 is invertible, then I1 |0 = 0, I1 |1 = HH
1 C−1

v1
H1 , Kb

1 =
I−1

1 |1H
H
1 C−1

v1
, Kb

1H1 = I, and x̂b
1 |1 does not depend on x̂b

0 |0 = E [x0 ]
any longer, since (2)

x̂b
1 |1 = F0 x̂b

0 |0 + Kb
1

(

y1 − H1F0 x̂b
0 |0
)

= Kb
1y1 .

Thus, if F0 is invertible, the use of a prior-free estimate of x1 , obtained
via the IF form (31a–c) coincides with the LMVDRF which does not
depend neither on E [x0 ] nor on Cx0. However, if F0 if not full rank,
provided that x̂b

0 |0 = E [x0 ] is known and that the IF form (31a–c)
exists, it should be used instead of the LMVDRF in absence of prior
knowledge on Cx0. Indeed, in this instance, I−1

1 |1 ≤ (HH
1 C−1

v1
H1
)−1 =

Pb
1 |1 (w.r.t. the Löwner ordering [14, Sec. 7.7]), which implies that the

MSE matrix of the IF will be less or equal than the MSE matrix of the
LMVDRF at time k ≥ 2 as well. Last, if Cw 0 is known and E [x0 ] is
unknown, then x̂b

1 |1 can not be computed via the IF form, whereas the
LMVDRF of x1 exists (if H1 is full rank). In a nutshell, in comparison
with the IF form, the LMVDRF exists under more general assumptions
(10b), which do not require Cw k −1 and Cvk

to be invertible. Moreover,
the knowledge of F0 , Cw 0 , E [x0 ], and Cx0 is not required either.

D. Illustration of LMVDRF Properties

For the sake of illustration of the key properties of the LMVDRF,
in the general case where Fk , ∀k, is not invertible, we consider the
following simple time varying LDSS model:

∣

∣

∣

∣

∣

x2k+1 = F2k x2k + w2k

y2k+1 = x2k+1 + v2k+1
(32a)

∣

∣

∣

∣

∣

x2k+2 = F2k+1x2k+1 + w2k+1

y2k+2 = x2k+2 + v2k+2
(32b)

where F2k = 110 and F2k+1 = (0.01, 0.22,−0.62, −0.08,
−0.33 − 0.35, 0.29, 0.08, 0.22,−0.44) are not invertible. The noise
process, the measurement noise, and the initial state x0 are uncorre-
lated. Moreover, assume that E [x0 ] = −1, Cx 0 = 1, Cw 2 k

= σ2
w I,

Cw 2 k + 1 = σ2
w , σ2

w = 10−4 , Cv2 k + 1 = σ2
v I, Cv 2 k

= σ2
v , σ2

v = 100.
Fig. 1 highlights the consequence of a misspecification on
{Cx 0 , E [x0 ]} when one initializes the KF with wrong assumed
values {Cx 0 = 510−2 , E [x0 ] = 0}. The empirical MSE of the
various filters considered, namely the LMVDRF, the IF form of the
KF and the KF, are assessed with 5 × 104 Monte-Carlo trials and are
denoted “... (Simu).” The theoretical MSE of the LMVDRF and the IF
are computed, respectively, from (27b–d) and (31a–c), and are denoted
“... (Theo).” A very broad prior distribution on x0 is assumed for the



Fig. 1. Comparison of MSE of filters of x1 = x2k+2 and x1 =
(x2k+1 )1 .

IF (I0 |0 = 0). The software used to produce Fig. 1 is MATLAB. Fig. 1
clearly shows that, although the LMVDRF is suboptimal in terms
of MSE when {Cx0 , E [x0 ]} are perfectly known, in the presence
of uncertainties on {Cx0 , E [x0 ]}, the LMVDRF may offer better
performance than a KF wrongly initialized. Moreover, if F0 is not full
rank (F0 = 110 ), provided that the IF exists and E [x0 ] is known, its
use instead of the LMVDRF yields a lower (or equal) MSE.

VI. LMVDR FIXED-POINT AND FIXED-LAG SMOOTHERS

Let us recall that the standard fixed-point smoother x̂b
l |k is ob-

tained by running the KF on the following augmented LDSS
model [4, Sec. 9.2]:

k ≤ l

∣

∣

∣

∣

∣

xk = Fk−1xk−1 + wk−1

yk = Hk xk + vk

k = l + 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

xl+1

κl+1

)

=
[

Fl

I

]

xl +
(

wl

0

)

yl =
[

Hl 0
]

(

xl

κl

)

+ vl

k ≥ l + 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

xk

κk

)

=
[

Fk−1 0
0 I

](

xk−1

κk−1

)

+
(

wk−1

0

)

yk =
[

Hk 0
]

(

xk

κk

)

+ vk

(33a)

leading to x̂b
l |k = κ̂

b
k |k for k ≥ l + 1. Obviously, at time l + 1, the state

matrix of the augmented state is always non invertible, whatever Fl

is invertible or not. Likewise, the standard fixed-lag smoother x̂b
k−N |k

[4, Sec. 9.3] is obtained by running the KF on an augmented system
which state matrix is always noninvertible [4, eq. (9.41)]

k ≤ N

∣

∣

∣

∣

xk = Fk−1xk−1 + wk−1

yk = Hk xk + vk

k > N

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

zk+1 =

⎡

⎢

⎢

⎢

⎣

Fk 0 . . . 0
I 0 . . . 0
...

. . .
. . .

...
0 . . . I 0

⎤

⎥

⎥

⎥

⎦

zk +

⎛

⎜

⎜

⎜

⎝

wk

0
...
0

⎞

⎟

⎟

⎟

⎠

yk =
[

Hk 0 . . . 0
]

zk + vk

(33b)

where zT
k =

(

xT
k+1 ,x

T
k+1 ,1 , . . . ,x

T
k+1 ,N +1

)

, and x̂b
k+1 ,1 |k = x̂b

k |k ,

x̂b
k+1 ,2 |k = x̂b

k−1 |k , . . . , x̂b
k+1 ,N +1 |k = x̂b

k−N |k . Note that the condi-
tions (10b) are satisfied for both the augmented LDSS models (33a–b)
once they are satisfied for the initial LDSS model (1a–b). As a con-
sequence, a major benefit of the relaxation on the conditions of exis-
tence of LMVDRF introduced here is the proof of the existence of the
LMVDR fixed-point and fixed-lag smoothers [obtained by initializing
the KF associated with (33a–b) with (3)], which cannot be proved with
the result previously introduced in [2].

A. Generalization of the Deterministic Least-Squares Problem

In deterministic parameters estimation, one of the most studied esti-
mation problem is that of identifying the components of measurements
(y1 ) formed from a linear superposition of individual signals (x1 ) to
noisy data (v1 ): y1 = H1x1 + v1 , where the model matrix H1 and
the noise covariance matrix Cv1 are known, a.k.a. the linear regres-
sion problem. As mentioned in Section I, in this setting, the WLSE
of x1 [11] coincides with the BLUE (a.k.a. the LMVDRE ) of x1

[17]. These results still hold if k measurements of x1 are available:
yl = Hlx1 + vl , 1 ≤ l ≤ k, 2 ≤ k, and the measurement noise se-
quence {vl}k

l=1 is temporally white. Indeed, the equivalent measure-
ment model ( 5b) then becomes simply

yk = Hk x1 + vk (34)

leading to the WLSE of x1 [3, Sec. 2.2.2]

x̂b
1 (k) = arg min

x1

{

(

yk − Hk x1
)H

C−1
v k

(

yk − Hk x1
)

}

= arg min
x1

{

k
∑

l=1

(yl − Hlx1 )
H C−1

v l
(yl − Hlx1 )

}

(35)

which batch form solution is given by the following:

x̂b
1 (k) = Hk

(

H
H

k C−1
v k

Hk

)−1
H

H

k C−1
v k

yk . (36)

Moreover, if the measurement noise sequence {vl}k
l=1 is Gaussian, the

WLSE of x1 (35) coincides with the maximum-likelihood estimator
[8] of x1 as well. As shown in [2], since usual assumptions on the recur-
sive WLSE verify: wk = 0 and Cv l ,vk

= Cvk
δl

k , they verify (10b) as
well, and (36) can also be computed recursively since it is a special case
of the LMVDRF [2]. The importance of the linear regression problem
stems from the fact that a wide range of problems in communications,
array processing, and many other areas can be cast in this form [3], [4],
[8], [15]. In the standard WLSE, the individual signals x1 are assumed
to remain perfectly constant during the k measurements. However, in
a real-life experiment, some experimental factors may prevent from
observing perfectly constant individual signals x1. For instance, in any
problem dealing with signal transmission involving a transmitter device
and a propagation medium, the transmitter noise may not be negligible
and the fluctuation of the propagation medium are sometime unavoid-
able during the whole measurement time interval. These factors, and
others, can be taken into account globally by introducing a random
fluctuation from measurement to measurement

xl = Fl−1xl−1 + wl−1 , 2 ≤ l ≤ k

yielding a generalized form of (34), which consists of the class of LDSS
models defined as follows:

k ≥ 1 :
∣

∣

∣

∣

xk = Fk−1xk−1 + wk−1

yk = Hk xk + vk
(37a)

Cx0 = 0, Cw 0 = 0, F0 = I, x1 = x0 = E [x0 ] . (37b)



In this setting, (34) becomes (5b), that is, yk = Ak x1 + nk , which
leads to the generalized WLSE of x1 (GWLSE) defined as [8, Sec. 6],
[9, Sec. 5.6]

x̂b
1 (k) = arg min

x1

{

(

yk − Ak x1
)H

C−1
n k

(

yk − Ak x1
)

}

whose batch form solution is given by the following:

x̂b
1 (k) = Pb

1 (k)A
H

k C−1
n k

yk , Pb
1 (k) =

(

A
H

k C−1
n k

Ak

)−1
(38)

where Pb
1 (k) denotes the MSE matrix of the GWLSE x̂b

1 (k). If the
batch form (38) has the merit of offering a closed-form expression,
it nevertheless suffers from two significant drawbacks. First, if nk is
not block diagonal, then the determination of C−1

n k
becomes computa-

tionally prohibitive as the number of observations k increases. Second,
(38) is not compatible with real-world applications [4], [18] where the
observations become available sequentially and, immediately upon re-
ceipt of new observations, it is desirable to determine new estimates
based upon all previous observations (including the current ones). For-
tunately, a recursive form of x̂b

1 (k) (38) exists provided that (10b) are
satisfied. Indeed, x̂b

1 (k) (38) coincides with the LMVDR fixed-point
smoother of x1 as shown hereinafter.

First, let us consider the augmented LDSS model (33a), where l = 1,
which can be recasted in a more compact form as follows:

∣

∣

∣

∣

x′
1 = x1

y1 = H′
1x

′
1 + v1

,

∣

∣

∣

∣

∣

x′
l = F′

l−1x
′
l−1 + w′

l−1

yl = H′
lx

′
l + vl

(39)

where H′
1 = H1 , and (5a) becomes

yl = A′
lx1 + n′

l , A′
l = H′

lB
′
l ,1 ,

∣

∣

∣

∣

∣

n′
1 = v1

n′
l = vl + H′

lG
′
lw

′
l−1

.

By definition

B′
l ,1 = F′

l−1 · · ·F′
2F

′
1 =

[

Bl ,2 0
0 I

] [

F1

I

]

=
[

Bl ,1

I

]

A′
l = H′

lB
′
l ,1 =

[

Hl 0
]

[

Bl ,1

I

]

= HlBl ,1 = Al .

Moreover, since G′
lw′

l−1 =
∑l−1

q=1 B′
l ,q+1w

′
q =

(G l w l−1
0

)

, then

n′
l = vl + H′

lG
′
lw′

l−1 = vl + HlGlwl−1 = nl .

Second, since H′
1 and Cy k

are full rank, if we consider the LDSS
model (39), the LMVDRF of x′

k exists and is defined by (17)

W
b

k = arg min
W k

{

Pk |k
(

Wk

)}

s.t. W
H

k A
′
k = B′

k ,1 (40a)

where Pk |k
(

Wk

)

= E[(W
H

k yk − x′
k )(W

H

k yk − x′
k )H ], which,

according to (16), is equivalent to

W
b

k = arg min
W k

{

E
[

r̂k r̂H
k

]}

s.t. W
H

k A′
k = B′

k ,1

r̂k = W
H

k n′
k − G′

k w′
k−1 , Wk =

[

W
x
k W

κ

k

]

. (40b)

Since W
b

k is analogous to a LCWF [15, Sec. 2.5], its batch form is
given by [15, Sec. 2]

Cn ′
k
W

b

k = A′
k

(

A′H
k C−1

n ′
k
A′

k

)−1 (
B′

k ,1

)H

+
(

I − A′
k

(

A′H
k C−1

n ′
k
A′

k

)−1
A′H

k C−1
n ′

k

)

Cn ′
k ,G ′

k
w ′

k −1

(41a)

that is, as n′
k = nk and A

′
k = Ak

Cn k
W

b

k = Ak

(

A
H

k C−1
nk

Ak

)−1 [
BH

k ,1 I
]

+
(

I − Ak

(

A
H

k C−1
nk

Ak

)−1
A

H

k C−1
nk

)

[

Cn k ,G k w k −1 0
]

.

(41b)

Therefore, (40a–b) yields the following separable solutions:
(

W
x
k

)b

= C−1
n k

Ak

(

A
H

k C−1
n k

Ak

)−1
BH

k ,1

+ C−1
n k

(

I − Ak

(

A
H

k C−1
n k

Ak

)−1
A

H

k C−1
n k

)

Cn k ,G k w k −1

(

W
κ

k

)b

= C−1
n k

Ak

(

A
H

k C−1
n k

Ak

)−1
(42)

leading to

κ̂
b
k |k =

(

A
H

k C−1
n k

Ak

)−1
A

H

k C−1
n k

yk = x̂b
1 (k) (43a)

E

[

(

κ̂
b
k |k − κ̂k |k

) (

κ̂
b
k |k − κ̂k |k

)H
]

=
(

A
H

k C−1
nk

Ak

)−1

� Pb
1 (k) . (43b)

Third, if the LDSS models associated to the GWLSE (37a–b) satisfies
the conditions (10b), then the solution of (40a–b) can also be computed
recursively as follows:

x̂b
1 (k) = [0 I] ̂x′b

k |k , Pb
1 (k) = [0 I]Pb

k |k

[

0
I

]

(44)

where ̂x′b
k |k and Pb

k |k follow the LMVDRF’s recursion (27b–d). Last,
the extension of this result to a regularized GWLSE (RGWLSE)

x̂b
1 (k) = arg min

{

(c − x1 )
H Λ−1

0 (c − x1 )

+
(

yk − Ak x1
)H

C−1
n k

(

yk − Ak x1
)

}

where Λ0 is an Hermitian invertible matrix is simply obtained by
adding a fictitious measurement at time k = 0

y0 = H0x0 + v0 , Cv0 = Λ0 , y0 = c, H0 = I

k ≥ 1 : Cv0 ,vk
= 0, Cv0 ,w k −1 = 0

and by starting the fixed-point smoother recursion (33a) at time k = 0

x̂b
0 |0 = Pb

0 |0H
H
0 C−1

v0
y0 = c, Pb

0 |0 =
(

HH
0 C−1

v0
H0
)−1

= Λ0

instead of time k = 1.
1) Illustrative Example: We consider the reception by a uni-

form linear array of N sensors equally spaced at half-wavelength of
an impinging signal of amplitude x1 (which includes the transmission
power, the propagation loss, and signal processing gains of the re-
ceivers) with broadside angle θ, embedded in a spatially and temporally
white noise. In a stationary propagation medium, the N received signals
can be modeled at the output of the Hilbert filter as [8]: yl = h (θ) x1 +
vl , 1 ≤ l ≤ k, hT (θ) =

(

1, ej π sin(θ ) , . . . , ej π (N−1) sin(θ )
)

. However,
if x1 is transmitted via a nonstationary propagation medium, fluctuat-
ing randomly from measurement to measurement, then the N received
signals can be modeled (to first-order) as follows:

xl = xl−1 + wl−1 , yl = h (θ) xl + vl , 1 ≤ l ≤ k (45)

where the fluctuation noise sequence {wl}k−1
l=1 is white and uncorrelated

with the measurement noise sequence {vl}k
l=1 . In Fig. 2, we consider



Fig. 2. MSE of the GWLSE of x1 for σ2
w ∈
{

10−5 , 10−4 , 10−3
}

.

the scenario where N = 10, x1 = (1 + j) /
√

2, Cv l
= I, θ = 1/4

and k = 1000. We superimpose on Fig. 2 both the theoretical MSE of
the GWLSE of x1 denoted “...(Theo)” and the empirical MSE assessed
with 5 × 104 Monte-Carlo trials and denoted “...(Sim).” The empirical
GWLSE x̂b

1 (k) of x1 and its theoretical MSE Pb
1 (k) are computed

recursively according to ( 44) where the fluctuation noise sequence has a
constant variance σ2

w l
= σ2

w ∈ {10−5 , 10−4 , 10−3} from observation
to observation. The software used to produce Fig. 2 is MATLAB.
Fig. 2 exemplifies the nonnegligible impact of a slight fluctuation of
the unknown parameter on the WLSE asymptotic performance which
introduces a lower limit in the achievable MSE. From a practical point
of view, the existence of this lower limit shows that, if the unknown
parameter is not perfectly constant during the k measurements, there
exists an optimal number of observations that can be combined in order
to estimate it with the minimum (or almost minimum) achievable MSE.

VII. CONCLUSION

By relaxing the conditions of existence of LMVDRFs, the existence
of the LMVDR fixed-point and fixed-lag smoothers has been proved
(and possibly of other smoothers or predictors, which is left for future
research). From a general perspective, although the LMVDR estimators
are suboptimal in terms of MSE, they have two merits, which are as
follows:
1) They do not depend on the prior knowledge on x0 .

2) They may outperform the usual LLMS estimators in case of mis-
specification of the prior knowledge on x0 .

These features are quite interesting for filter/smoother/predictor per-
formance analysis and design since they allow to synthesize infinite
impulse response distortionless estimators which performance are ro-
bust to an unknown initial state. On another note, LMVDR estima-
tors may allow to derive unexpected results, as highlighted with the
link between the LMVDR fixed-point smoother and a generalized
WLSE.
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