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Eye tracking is a frequently used technique to collect data capturing users’ strategies and

behaviors in processing information. Understanding how programmers navigate through

a large number of classes and methods for bug locations is important to educators and

practitioners in software engineering. However, the contents in form of source code are

massive compared to traditional eye tracking data on one static page. The same content

may appear in different areas on the screen with users scrolling in an integrated devel-

opment environment (IDE). Hierarchically structured content and fluid method position

compose the two major challenges for visualization. In addition, in order to reflect and

compare users’ reading efficiency in their scanning paths, it is necessary to reflect efficiency

through path length with short path indicating a more efficient exploration.

We present a dual-space analysis approach to exploring eye tracking data by leverag-

ing the existing software visualization and a new graph embedding visualization. We use

the graph embedding technique to quantify the distance between two arbitrary methods,

which offers a more accurate visualization of distance with respect to the inherent rela-

tions, compared with the direct software structure and the call graph. Our visualization

offers both naturalness and readability showing time-varying eye movement data in both

the content space and the embedded space, and provides new discoveries in developers’

eye tracking behaviors.
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Chapter 1

Introduction

The cognitive process (e.g., code reading and debugging) of a software developer is often

related to multiple factors in software engineering (SE) such as programmer efficiency,

hierarchically organized software structures, relations among source code, and integrated

development environments (IDEs). The knowledge of such processes can lead to many

implications and benefits. For example, knowledge of efficient code reading processes

can be explicitly exposed to students in their SE learning.1–3 Knowing programmers’ code

viewing efficiency can also help project managers assign workload3 and intervene when

they see patterns of stress or evaluate task difficulties.4

To understand such a cognitive process, SE researchers use eye tracking devices to

keep track of the psycho-physiological states while performing debugging tasks using mea-

surements such as pupil dilation, fixation duration, and saccade frequency.3–6 By exam-

ining the time-varying data of participants’ visual attention to particular content or IDE

panes on a screen, researchers seek to identify patterns from the high-dimensional data

across time, content, or screen.

Compared with the conventional analytics of eye tracking data,7, 8 the increasing com-

plexity of software introduces unique challenges in exploring eye tracking data to identify

and compare individual user patterns. A software system is typically organized in a hier-
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archical tree structure (e.g., the organization of classes and methods and the dependency

relations between these elements). In addition, the system is associated with a call graph

where each node represents a method and each link represents a caller/callee relation.

Given a content space containing a software tree structure and an associated call graph,

different users may have different strategies to explore this space for code reading or de-

bugging tasks. Also, note that using iTrace 5 to collect eye tracking data during bug fixes

increases the complexity of the visualization since we are no longer limited to short code

snippets.

A common strategy is to directly visualize the software tree structure9 ,10 and/or the

call graph,11 and superimpose eye trajectories which can intuitively display the sequence

of user focus in the content space and qualitatively compare trajectories. However, these

existing visualization techniques cannot qualitatively reveal the distance among trajecto-

ries as the inherent semantic information of a software system may not be appropriately

displayed in the visualization.

We present a new dual-space approach to enhancing the analysis of eye tracking data

generated during users’ viewing or debugging a software system. First, we directly visu-

alize the content space by simultaneously depicting the hierarchical structure, the call

graph, and user eye trajectories for a software system. We leverage a radial layout and an

edge bundling algorithm to effectively depress visual clutter. The visualization in the con-

tent space allows users to intuitively examine the interplay between user trajectories, the

software hierarchy, and the call relations. Second, we create an embedded space by trans-

forming the call graph and/or the tree structure via graph embedding. The visualization

of user trajectories in the embedded space allows us to quantitatively measure distances

among trajectories. We link the visualizations in these two spaces and use our approach

with an eye tracking dataset of debugging processes.12 Our approach facilitates the study

of different user behaviors through different views and reveals some discoveries that have

not been identified in existing work.
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Chapter 2

Related Work

Though many studies consider software reviewing or debugging using eye tracking data,

they do not directly consider the graph structure in contents.3, 4, 13–15 As seen in the work

of Suliman et al.,16 graph is used to model the communication relationships between soft-

ware developers reading each other’s files and is what researchers try to learn from eye

tracking data. Our work focuses on understanding and evaluating reading and navigation

patterns through program files and how such patterns reflect, interact with, and deviate

from the underlying graphical software pattern defined by its tree structure and call rela-

tions. As our work spans two domains, i.e, eye tracking and software domain, we review

the corresponding studies.

2.1 Eye Tracking Analytics

Fixations and saccades are two fundamental metrics for describing behaviors of eye move-

ment. A complete sequence of fixations and saccades is a scanpath.6 There are two major

visualization tracks, direct visualization, and statistical analysis. The major difference is

whether it represents and visualizes individual features (e.g., location, duration, and gaze)

directly or use summary statistics such as saccade frequency to abstract individual features

for statistical analysis. Area of interest (AOI) is an important feature to capture readers’
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comprehension patterns. Formally, AOI can be any user-defined area that is quantified by

fixation and saccade data. How researchers define their AOI may not be explicit and can

be very different.3, 14

2.1.1 Direct visualization

Direct visualizations put fixation circles, color, and/or saccade lines directly over the con-

tent and give a user-friendly overview of gaze patterns. It is widely used in various areas not

limited to software,6 such as application stores,17 info-graphics design.18 The content-focus

overlay plot1, 3, 13, 19 exploits the uniformity between contents and screen, i.e, that contents

are static and fixed to a specific location on the paper, screen or objects. It is straightfor-

ward that the distance in contents can be directly represented by their position on a page

or screen. In this plot, we cannot infer about user viewing pattern along time. We cannot

distinguish from a user gazing less frequently for a longer duration from another gazing

more frequently but for a shorter time.

A timeline flow visualization can remedy this deficiency. Sharif et al. use a line and

time coordinate to plot the fixation points in time.1 This visualization gives the false im-

pression that there is no meaningful reading time because it shows only fixation points

rather than duration specific to each line. To overcome this shortness, Clark and Sharif

pioneered skyline visualization, which shows a user’s duration of fixation and saccade in

time.13 This visualization gives a clear correspondence between the focus in content with

the length of horizontal line signifying duration corresponding to that content. This work

follows the direction pointed by Clark and Sharif and studies scan patterns in reference to

control structures and programs with greater length and size.

2.1.2 Statistical analysis

The statistical analysis considers patterns in the features of interest to explain the variance

between groups who succeed and groups who failed the tasks. Typical research questions
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focus on whether code fixation time, focus on the specific type of code (e.g. logical, declara-

tion, and loops),14 behaviors such as switching windows, or using particular IDE panes (e.g.

variable, console, or code)3 or regression rate20 makes a significant predictor of debugging

success. While these studies yield important insights as to what features characterize effi-

cient code readers, it is insufficient to treat coding as natural text. If we compare methods

declaration and syntax to vocabularies of source codes, the structure is the grammar of

source code and is also essential for code comprehension. Since it is difficult to quantify

structure statistically, we adopt a visualization method to examine how different partici-

pants interact with the structure of source codes.

2.2 Software Visualization

Researchers proposed many metaphors to visualize hierarchical or tree software struc-

tures. For example, Andrian et al.9 present a 3D representation for software structures.

Wettel et al.10 visualize large-scale software system as a city. Holten presents an aesthetic

visualization to overcome the current issues associated with clustering in the rendering

of large complex graphs.11 A software program with classes of source codes, dependencies,

and call relations can be represented as a graph with inclusion relations and adjacency re-

lations. In his thesis,21 Mabakane designed a visualization of the call graph to help identify

performance bottlenecks in the execution of a parallel program. A limitation of these visu-

alization approaches is that the distance between nodes, which are usually perceived as the

length of the curve connecting the nodes, are mostly suggestive of connectivity. In other

words, one longer curve does not mean that the distance between a pair of nodes is longer

than another pair of nodes with a shorter curve. The requirement of distance measure

in our software visualization drives for a more meaningful graph representation, where

the distance between the nodes actually captures their semantic distance in the software

systems.
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Chapter 3

Visual Analytic Framework

3.1 Design Requirements

The requirements from the domain experts on analyzing eye tracking data on source code

mostly include:

R1. Identify user behavior according to their scanpath. Visualizations can help quali-

tatively understand how users read and navigate through the content space of both hierar-

chical and adjacent relations to locate bugs. More specifically, what patterns in visualiza-

tion can reveal the success or failure of bug locating, and any general differences between

those who located the bugs and those who did not.

R2. Interpret distance in both intuitive and meaningful ways. The semantic distance

between one method and another method is not as straightforward as the Euclidean dis-

tance between two points in a 2D plane. However, the visualization should represent and

layout methods in a meaningful way that preserves the distances.

R3. Support deeper analysis by visualizing the time dimension of scanning. Ideally,

the visualization should integrate multiple dimensions in addition to the content dimen-

sion: the time dimension indicating sequences of fixations or saccades, the duration of

fixations, and/or the repetitive pattern of back and forth reading. A reasonable assump-
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tion here is that if a method ma calls another method mb which further calls mc, then a

sequential saccade pattern of ma, mb, and mc may be more effective than a pattern of mb,

ma, and mc. The synthetic visualization with local visiting relation details can be extended

to study the transition of pattern in time with similarly structured relations.

3.2 Design Challenges

We identify four major challenges in the existing visualization approaches that lead to our

current research efforts: the absence of content structure, limited content space, lack of

meaningful distance representation in visualization, and separation or omission of time

data.

Existing literature highlighted the general trend for the stimulus material or object

using heatmap. The mapping of color directly onto the focused content is straightforward

and works effectively when the material is a static web page or an informatics design on a

poster. However, if the content space becomes much larger where there are tens or hun-

dreds of text files and thousands of lines per file, this direct mapping will fall apart as the

information becomes increasingly cluttered.

Another challenge with reading software systems is that the content have their own

structures. Typically, they follow a tree structure in organizing the file systems and a graph-

ical structure between the method calls. The visualization of human’s reading focus on

larger and structured contents has not been fully explored yet.

For traditional visualization of contents, given that the AOIs are static or fixed to

its screen or physical location, distance measure between AOIs corresponds directly to

their physical distances. However, for a software system rendered in an IDE, the distance

measure between a methodma in a file fb and another methodmc in a file fd is not intuitive.

Additionally, suppose we have ma and mb both in a class cc and suppose they are k lines

apart from each other; however,ma calls methodmb at some point, we can no longer simply
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use k as the sole measure of the distance between ma and mb. We need a better distance

measure capturing the cost of reading in hierarchically structured content space.

Finally, the heatmap based visualization failed to suggest the sequence of focus which

can be important in reading software systems. Readers who located an intermediate

method to the bug should be expected to locate the bug more easily than those who did

not. We can say safely that if a participant found the intermediate bug location (on the bug

path) but failed to locate the bug, he may not be experienced. However, if a participant did

not find any relevant methods, we are not so sure about his chances of locating the bug if

he indeed got to the intermediate bug location. Sequences like these suggest the reading

efficiency, logical reasoning, understanding of the structure and code, and familiarity with

the IDE.

3.3 Our Design

Figure 3.1 shows an overview of our approach. In this work, we study eye tracking data for

understanding user behaviors during their code reading and debugging. We take the eye

tracking data and the software program as the inputs to derive the trajectory data, the hier-

archical tree structure, and the call graph. The dataset is visualized using two linked views

in a content space and an embedded space to reveal different patterns of user behaviors.

3.3.1 Data collection and processing

We used an eye trace device to record 22 participants debugging 3 different tasks, rated

as either easy or difficult. Among the participants, 12 are labeled professional (i.e., the par-

ticipants 1-12), and 10 are labeled novice (i.e., the participants 22-31). For each participant,

the eye tracking data records time, duration, line, method, the file name of focus, pupil di-

latation, and coordinates in the screen for each task. Notice that the time interval between

recordings is not equal and the number of observations differs across participants based
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Figure 3.1: Overview of our approach

on their reading. In this paper, we extract the user trajectories from the eye tracking data.

One trajectory of a user consists of the sequence of methods that the user read, and the

time and the duration that the user spent on a method.

We extract the hierarchical tree structure and the call graph of the soft-

ware system using java-callgraph, an open source static analysis tool.22 The tree

structure is implied in the name of methods. For example, the method name

root.net.sf.jabref.EntryTable.addSelectionListener() suggests that the class EntryTable is

in the package root.net.sf.jabref and the method is addSelectionListener(). The call graph

indicates the caller/callee relations among the methods. With the hierarchical tree and

call graph combined, we are then ready to visualize users’ trajectories on the software

structure.

3.3.2 Content space analysis

We leverage different schemes to visualize the tree structure, the call graph, and the user

trajectories and reveal participants’ efficiency of reading in the content space. We choose
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the d3 library23 in our implementation.

First, we use a common tree visualization method, the radial layout,11 to visualize the

hierarchical structure where methods are visualized as leaves (rectangles along the inner

circle) and their parents are visualized as outer arcs. Both types of visual elements are

arranged in a radial manner. The detailed information of each method is displayed when

hovered over.

Second, we employ the hierarchical edge bundling method11 to visualize the call graph.

The method uses piece-wise cubic B-spline curves to draw edges, and similar shaped edges

are bundled together. Compared to other graph visualization methods, the edge bundling

method more effectively reduces visual clutter and is more visually distinct. The bundling

alpha value is set as 1 in our implementation. A higher alpha value gives a more bundling

effect and render a clearer and less clustered visualization.11 The curves of the call graph

are rendered in gray.

Third, we render user trajectories as curves laid over the gray curves of the call relations

in the software. We use a color scale for the trajectories to indicate the scanning sequence

with darker purple color as the beginning of the scan and lighter green color as the end.

Fewer colors in a trajectory indicate that less transitions between methods occurred.

Figure 3.2 shows an example of our visualization in the content space. We can see

that the tree structure of the software is suggested in the layout of the methods where the

methods of the same class are next to each other. Through the superposition of a group

of user trajectories and the calling relation graphs with edge bundling, we can clearly see

the relationships between the user scanning sequences and the caller/callee relations. We

note that other tree visualization techniques (e.g., rooted tree, radial tree, treemap, etc.)

can be also exploited with edge bundling11 to visualize the content space.
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Figure 3.2: An example of content space visualization. (a), each small box along the outer
orbit represents a method, where the detail of the method will be displayed on hover. (b),
each arc along the orbit represents a class. (c), the gray curves are the edge bundling re-
sults of the call graph, where each edge connects a caller and a callee. (d), the color curve
corresponds to a user trajectory. The color scalar indicates the scanning sequences.

3.3.3 Embedded space analysis

The visualization results in the content space can concisely and simultaneously show the

software hierarchical structure, call relations, and user trajectories. However, it cannot be

directly used to quantitatively measure the distance between the visual metaphors (e.g.,

the curves of the trajectories and the call graphs), as the semantic meaning of the graphs

is not fully preserved in the visualization.24

We employ graph embedding techniques to address this issue. Graph embedding

effectively converts a graph into a low dimensional space where the graph’s structural

information and properties are maximally preserved.24 In particular, we use the node2vec25
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graph embedding method to map graphs into a 2D embedded space while preserving the

underlying graph structure. This enables us to layout graph nodes (i.e., methods) with

meaningful distances to each other.

node2vec is a semi-supervised algorithm that learns a mapping of nodes to a low-

dimensional feature space. For the purpose of content space visualization, we decide to

embed the graph into a 2D space. The node2vec algorithm can preserve graph neighbor-

hoods of nodes in a 2D space such that two neighborhood nodes in a graph can be mapped

to two close 2D points. Different content spaces can be generated from different graphs.

In this work, we generate the content spaces using all three graphs that we investigate,

tree structure graph, call structure graph and tree-call combined structure graph.

Figure 3.3 shows an example of embedded results using a simple graph. The tree in

Figure 3.3(a) represents a simple hierarchical structure of a software program where the

blue curves represent the call relations. Figure 3.3(b) shows the result using the tree struc-

ture. We can clearly see that the distances among the nodes in the embedded space (b)

exactly correspond to the tree structure (a). For example, the nodes 3 and 4 are the children

of the node 1, and they are embedded closely in (b). Similarly, the nodes 2 and 5 are close to

each other in (b), while the node 0 is roughly at the center of the space. Figure 3.3(c) shows

the result using the call graph, where we can clearly see the nodes are distributed according

to their call relations (e.g., the group formed by the nodes 3, 4, and 5). In Figure 3.3(d), the

placement of the nodes is generated using the combined graph of the tree relations and

the call relations. For example, the nodes 3 and 4 are close to each other as they have the

same parent as well as the call relation. The node 5 becomes farther away from 2 compared

to the results in Figure 3.3(b). This is because the node 5 has more call relations to 3 and 4

even though 5 is the child of 2.

After we generate an embedded graph, we overlay user trajectories on the embedded

graph and also use juxtaposition for comparison between different users. The user trajec-

tories are colored using the same scale in the content space visualization. In this way, we
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(a) (b)

(c) (d)

Figure 3.3: A simple example of embedding a graph (a) into 2D space according to (b) the
tree, (c) the call graph, and (d) the combination of the tree and the call graph.

can examine if a user would scan the code according to the software structure and/or the

call relations.
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Chapter 4

Results

We documented participants solutions for the bugs they located and asked about their

confidence levels, comments, and evaluations of task difficulty. We also further evaluated

each solution to be either acceptable or not. For example, in Task 2, we have valid data from

20 participants, 5 out of 11 professional participants successfully fixed the bug and 3 out of 9

novice participants also fixed the bug. We use this evaluation as supplemental information

as well as ground truth for our analysis.

4.1 Content Space Results

The radial visualization presents an intuitive analysis of the participants’ scanning pattern

and whether they follow the tree structure and/or call relations. For example, Figure 4.1

shows the visualization results for participants 3 and 6. We can see that participant 3 mostly

follows the tree structure when reading methods in the same class, as represented by the

more aggregated local curves (e.g., the ones in the blue circles in Figure 4.1 (a)). Alterna-

tively, the participant 6 navigates through the code seemingly following the call relations,

as shown in the curves in the green circles in Figure 4.1 (b), which appear to overlap with

the underlying software relations in grey lines. Such uncertainty can be further examined

with the embedded call space (see Section 4.2.1).
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(a) (b)

Figure 4.1: The visualization results of the software structure, the call graph, and the tra-
jectory for the participants 3 (a) and 6 (b) in the content space. The participant 3 scans the
methods in a local tree structure, as the ones in the blue circles, while the participant 6 read
the code frequently along the call relations, as the ones in the green circles. The red circles
highlight an possible AOI that is shared by 3 and 6 and is also across most participants
(5 out of 7) who successfully fixed the bug. The name of the intermediate bug location is
setValues () in the class GroupsPrefTab.

We can further identify a possible AOI, corresponding to the method 228 Group-

sPrefTab.setValues (), in the red circles in both Figure 4.1 (a) and (b). Figure 4.2 gives the

trajectories for all 20 participants for task 2. Examining across the participants in Fig-

ure 4.2, we can find that participants 3, 4, 5, 6, 11, 25, 29, and 30 all show this pattern in

their trajectories of which 80% of these participants who are professionals successfully

fixed bugs (the participant 11 did not fix the bug). It is also interesting to observe that the

participants 29 and 30 did not fix the bug even when they are in this AOI. An alternative

interpretation is that getting to an intermediate bug location will give professionals more

of a guarantee to finding the final bug location than novice participants. The participants

29 and 11 shared almost identical scanning patterns and may have failed the task because

too much focus was put on the local files and did not relate to the bug problem well. In

addition, it is difficult to distinguish the participants 5 and 30 because they share almost
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Figure 4.2: The visualization results of the software structure, the call graph, and the tra-
jectory for all participants in the content space. The bottom color scale is used for all par-
ticipants, indicating starting time in deep purple and ending time in light green in the
sequence of scanning. Our survey-based evaluation suggests that the participants 3, 4, 5, 6,
9, 25, 27, and 31 have successfully located and fixed the bug.



17

(a) tree (b) call (c) combined

Figure 4.3: The two methods getText () and setText () are in the same FieldEditor class, and are
colored in red. They are plotted in the tree graph (a), the call graph (b), and the combined
graph (c).

Figure 4.4: An example illustrating more complex call relations. The rank of distance to
the method 163 from smallest to largest is 175, 171, and 159. This is because the method 175
features both direct and indirect calls to 163, and the methods 171 and 159 feature a direct
call and a indirect call to 163, respectively.

the same pattern as well in this visualization.

4.2 Embedded Space Results

4.2.1 Interpretation of embedded spaces

We embed the software tree structure, the call graph, and the combined graph of the tree

and call relations to understand how the embedding algorithm interprets the distance of

the software methods.



18

To understand the effect of different graphs (i.e., the tree, the call graph, and the com-

bined graph) in graph embedding, we first highlight the points of two methods getText ()

and setText () in red in Figure 4.3. Similar to the get and set methods in most programs, these

two methods are also defined in the same class and do not have direct call relations between

them. Intuitively, the distance between them should not be far as they are semantically

related even though there is no call relation. The distance shown in the embedded space of

the tree graph is indeed close, as shown in Figure 4.3 (a). However, the distance between

the two becomes very far in the embedded space of the call graph, as shown in Figure 4.3

(b). Figure 4.3 (c) shows a medium distance in the embedded space of the combined graph

of tree and call relations.

Figure 4.4 offers a more complex example with a method calling another both directly

and indirectly where more relations imply a closer distance and a shorter curve. For exam-

ple, the method 175 calls 163 directly and also indirectly through 171. The method 171 calls

163 only directly. Therefore, the method 175 appears closer to 163 than 171. For the method

159, since it calls 163 only indirectly, it shows as the most distant from 163 among the three

methods. The embedded call graph gives a distance according to two principles implied

here: 1) more paths of calling means a closer distance; and 2) direct calling is closer in

distance than indirect calling.

To demonstrate how different graph visualization results correspond to each other,

we first circle eight groups of methods, where each group is in the same subtree, as shown

in Figure 4.5 (a). The subtrees may be at different levels of depth. Methods in the same

subtree stay closely together as shown in Figure 4.5 (b). Figure 4.6 shows an example of

embedding the calling graph. Two subgraphs 4.6 (a) and 4.6 (b) are plotted into 4.6 (c). The

methods with close calling relations stays together (within a or b) and those with distant

calling relations (between a and b) are further away from each other.

Figure 4.7 illustrates further with the participant 6’s trajectories. For the listed meth-

ods in the figure, the user’s trajectories do not seem to be more effective in the call graph



19

(a) radial (b) tree

Figure 4.5: The visualization of embedded tree graph in correspondence with the radial
layout. Eight sample areas from (a) are selected. The methods within a circle represent the
leaf nodes in the same subtree. The methods in a circle in (a) belong in the cluster circled in
the same color in (b). These methods are also nearest in (b). Note that the two blue clusters
of methods in (a) share the same depth and are one level deeper than the methods in the
red and yellow circles, which causes the blue circled methods are distinct in (b). Similarly,
the red and yellow circled methods share the same depth, but the yellow circled methods
are more than twice the size of the other circled ones. The embedding algorithm can also
capture the structure of the subtree by its size and structure, and distinguish the yellow
and red circled methods in (b).

than those in the tree graph. However, if we examine the distance between the methods 67

and 72 and between the methods 239 and 253, the distance given by the tree graph becomes

much shorter. Therefore, the participant 6 mainly follows the tree structure while visiting

these methods. The result provides a more clear indication, compared with Figure 4.1(b).

4.2.2 General patterns

This section presents the results based on the general trends observed visually among all

participants. The first question we ask is whether or not any trajectories follow the call

graph more dominantly. Figure 4.8 shows the comparison results of the participants 1

and 11 using the different embedded graphs. We can see the busy and long lines in both

Figure 4.8 (a) and Figure 4.8 (c), implying that neither the call nor tree relations govern the
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(a) radial

(b) radial

(c) call

Figure 4.6: The visualization of embed call graph in correspondence with the radial layout.
Upon clicking a method node in the radial visualization, the methods with direct relations
get highlighted as shown in (a) and (b). For both (a) and (b), the methods with direct calling
relations show as close to each other in (c). But the distance of the methods between that
in (a) and that in (b) are much more distant.
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Figure 4.7: An example translating the participant 6’s trajectories in the radial layout (a, b)
into the embedded spaces of the tree (c) and the call graph (d). (c) reflects the tree relation
between methods. Note that the distance between 175 and 69 are similar to that between
239 and 253 in (d), even through the former looks much more distant than the later in radial
layout.

participant 1’s reading. By comparing Figure 4.8 (b) and (d), we can see that participant 11

paid more attention to the call relations than the tree relations. In addition, the participants

1 and 11’s call distances are average when compared across all participants as shown in

Figure 4.10. We identify 7 participants featuring this pattern. Considering both the tree

and call relations as shown in Figure 4.8 (e) and (f), we can observe seemingly more distant

lines in the participant 1. We no longer include analysis of the combined graph in this

subsection as the plotting resembles a straight line and causes serious overlapping of nodes

and trajectories.

Figure 4.9 and Figure 4.10 show the trajectories from all 20 participants in the embed-

ded tree graph and call graph, respectively. Based on the visual comparison across all the

trajectories, we summarized a few general patterns as shown in Figure 4.11. As shown in

Figure 4.9, the tree graph in the embedded space generally depicts a line-shaped plot of

blue points. We can identify a pattern c that approximately represents the middle cluster

along the line-shaped plot. These are the methods at the same depth level and with simi-
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(a) tree (b) tree

(c) call (d) call

(e) combined (f) combined

Figure 4.8: Comparison of the participants 1 (left) and 11 (right) in their reading patterns
across different embed graphs (i.e, the tree, the call graph, and the combined graph). We can
see clearly that the participant 11’s reading pattern mostly follows the tree graph. However,
the participant 1 does not show an obvious pattern following either tree or call graph.

lar community features. Using this pattern c as the cutting point, we can further identify

the patterns lt and rt that characterize the left and right position of methods along the

line-shaped plot, respectively. For the call graph as shown in Figure 4.10, the patterns show

up are l1, which represents a group of similar paths to the AOI (i.e, the method 228) and

its close neighborhood methods (e.g., 229 and 230 in Figure 4.5(a)). The other ends of the

paths are close the method 197.

Using the flag patterns in Figure 4.11, we characterize each participant by whether
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Figure 4.9: The visualization results of the tree graph. Some similar patterns in radial layout
become more distinct. For example, we can quickly identify participants 8, 9, 11, 27, 28, 29,
and 31 read most likely following the tree structure.

Table 4.1: Identifying groups with flag patterns. The participants marked with * have suc-
cessfully located and fixed the bug.

Distance long medium short
Participant 1 2 7 25∗ 3∗ 4∗ 5∗ 6∗ 10 23 24 26 30 8 9∗ 11 27∗ 28 29 31∗

l1 X X X X X X X X X X
lt X X X X X X X X
c X X X

they follow the patterns in Table 4.1. Note that rt is not included in Table 4.1, as we found

that rt is not noticeably helpful to differentiate the participants. In Table 4.1 the distance

column, long, medium, and short represent the participant’s trajectories in the tree graph

in Figure 4.9. Considering L as the longest distance in the distances between any pair of

methods, we categorize a trajectory according to the longest distance x among methods

traversed. The categories are long (x > L
2

), medium (L
4
≤ x ≤ L

2
), and short(x ≤ L

4
). We

observed that out of 7 participants with short trajectories, 3 were bug solvers. Note that
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Figure 4.10: The visualization results of the call graph, and the trajectories for all partici-
pants for in the embedded space using the same color scale as Fig. 4.2. Some similar pat-
terns in radial layout become more distinct. For example, if we compare the participant 30
with 5, we can see that the participant 30 1) is less active in exploring the codes (less color
in trajectory) and 2) shows a stroke (the tiny line in the bottom cluster) that are not found
in other participants.

the tiny trajectories, such as ones of the participant 31, do not necessarily mean poor code

coverage as methods of different classes may be clustered together as shown in Figure 4.5.

However, if we also consider the call graph which features fewer colors and nodes visited,

it is safe to conclude that a participant reads with less code coverage. The participants in

the group of short distances in tree graph are most likely tree structure followers.

In general, we can see a few patterns characterizing all trajectories in call graphs. For

example, the trajectories of the participants 2, 3, 4, 5, 7, 11, 25, 26, 29 and 30 are similar in that

they follow the flag pattern l1 as shown in Figure 4.11 (b). Table 4.1 shows detailed results of

grouping with different flag patterns. Examining whether participants traverse l1 or focus

on the central location c as shown in Figure 4.11 (a) gives a pool of 13 participants, among

whom 6 are the bug solvers. Only the bug solvers 6 and 9 do not have either pattern.
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(a) (b)

Figure 4.11: Flag patterns from the tree graph (a) and the call graph (b). In (a), we identify
three patterns, lt for left, c for center, and rt for right. In (b), we identify a line l1 that appears
frequently among the trajectories.

4.3 Deeper into the patterns

With help of AOI we can examine patterns in greater detail. The above visual analysis yields

a pool of 13 participants with 6 of them correctly fixing bugs, we still have 7 participants

(2, 7, 11, 26, 28, 29, and 30) who are false positives. The method 228 can be visited from its

close neighbor method 230 whose caller method is 156. Alternatively, it can be visited from

its callee method 163 which is called by the methods 239 and 249. Looking at individual

trajectory data and tracing how each come to visit the intermediate AOI, we can further

divide participants into three groups: a) reasonable landers (3, 4, 5, 6, 11, 25, 29), b) backward

travelers (30) who visited first from callee to caller in the sequence of visits, and c) missed

travelers (2, 7, 26, 27, 28) who did not visit the AOI.

As we have expected, sequences in scanning can reflect the developers’ reasoning.

If we examine the participants 11, 25, and 29 in Figure 4.2, though they have very similar

patterns related to the AOI around the method 228, the participant 25 who successfully

fixed the bug started his reading in the area distinct from the method 228 and searched

his way into the AOI at the end, whereas the other two were jumping right into the AOI

and then reading away from it and missed the bug.

In addition, the color changes of a trajectory offers more insight. For example, the

trajectories with more colors mean that the participants (e.g., 1, 2, 4, 6, 7, 25) went through
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more methods and potentially had better code coverage. For the professional participants,

their trajectories showed more colors (i.e., from purple to red to green) implying that the

scanpath is less repetitive. In tree graphs, we verify that bug solvers typically start with

longer purple curves and ended with shorter green curves, which indicates that they are

working to narrow down the space of searching.

4.3.1 Discussion

The embedded space results provide a more accurate depiction of distance, where neigh-

borhood methods, according to different relations, can be mapped to nearby 2D points.

Thus, we can compare user trajectories’ distances in a more meaningful way. However,

as we use a 2D embedded space, certain trajectory segments can overlap. For example, al-

though several participants show similar patterns in Figures 4.9 and 4.10, it is less direct to

tell whether or not the methods are visited in a similar sequence, thereby making it difficult

to perceive more detailed differences among trajectories. To address this issue, we plan to

investigate data in a 3D space26 by introducing a time axis additional to the 2D embedded

space to generate more comprehensive analytics results.
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Chapter 5

Conclusions and Future Work

In this paper, we leverage multiple visualization schemes for the analysis of participants’

patterns in reading and debugging software programs. We visualize the software program

with the software’s tree and call graphs in the content and embedded spaces and overlay

participants’ trajectories on the graphs using edge bundling techniques and color scales to

indicate the sequence of focus. Our visualization and clustering results provide an intuitive

and effective way of understanding reading patterns, such as whether participants follow

the tree or call graph structure and how participants generally navigate to the bug location

and in what sequence. Our visualization uses the eye trace of the software system as its

use case, but it has the potential of applications in other domains as well. For example,

in social science, we can visualize the pattern of a person getting himself into a social

network, suggesting his social skills or personality. Similarly, we can investigate the pattern

of how information or news gets spread. In this paper, we are primarily concerned with

eye tracking data for debugging patterns and efficiency. In our future work, we would like

to visualize multiple perspectives, such as psycho-physiological features and screen usage,

in an integrated way. The possible extra measurements (e.g., electrogastrographic data,

body movement data, facial expression, galvanic skin response, pupil dilation, etc.) may

be integrated into data analysis with user eye trajectories. In this way, we can not only
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identify more holistic user patterns but also gain a deeper understanding of the interplay

between software structures and user exploration and comprehension. Finally, we plan on

performing a user study to gain feedback on the visualization.
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