
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Theses, Dissertations, and Student Research from
Electrical & Computer Engineering Electrical & Computer Engineering, Department of

8-2019

COOPERATIVE LEARNING FOR THE
CONSENSUS OF MULTI-AGENT SYSTEMS
Qishuai Liu
University of Nebraska - Lincoln, qishuai.liu@huskers.unl.edu

Follow this and additional works at: https://digitalcommons.unl.edu/elecengtheses

Part of the Computer Engineering Commons, and the Other Electrical and Computer
Engineering Commons

This Article is brought to you for free and open access by the Electrical & Computer Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Theses, Dissertations, and Student Research from Electrical & Computer Engineering by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Liu, Qishuai, "COOPERATIVE LEARNING FOR THE CONSENSUS OF MULTI-AGENT SYSTEMS" (2019). Theses,
Dissertations, and Student Research from Electrical & Computer Engineering. 107.
https://digitalcommons.unl.edu/elecengtheses/107

https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/electricalengineering?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/278?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/elecengtheses/107?utm_source=digitalcommons.unl.edu%2Felecengtheses%2F107&utm_medium=PDF&utm_campaign=PDFCoverPages

COOPERATIVE LEARNING FOR THE CONSENSUS OF MULTI-AGENT SYSTEMS

by

Qishuai Liu

A DISSERTATION

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Doctor of Philosophy

Major: Electrical Engineering

Under the Supervision of Professor Qing Hui

Lincoln, Nebraska

August, 2019

COOPERATIVE LEARNING FOR THE CONSENSUS OF MULTI-AGENT SYSTEMS

Qishuai Liu, Ph.D.

University of Nebraska, 2019

Adviser: Qing Hui

Due to a lot of attention for the multi-agent system in recent years, the consensus algorithm

gained immense popularity for building fault-tolerant systems in system and control theory.

Generally, the consensus algorithm drives the swarm of agents to work as a coherent group

that can reach an agreement regarding a certain quantity of interest, which depends on

the state of all agents themselves. The most common consensus algorithm is the average

consensus, the final consensus value of which is equal to the average of the initial values. If

we want the agents to find the best area of the particular resources, the average consensus will

be failure. Thus the algorithm is restricted due to its incapacity to solve some optimization

problems.

In this dissertation, we want the agents to become more intelligent so that they can

handle different optimization problems. Based on this idea, we first design a new consensus

algorithm which modifies the general bat algorithm. Since bat algorithm is a swarm

intelligence method and is proven to be suitable for solving the optimization problems, this

modification is pretty straightforward. The optimization problem suggests the convergence

direction. Also, in order to accelerate the convergence speed, we incorporate a term related to

flux function, which serves as an energy/mass exchange rate in compartmental modeling or a

heat transfer rate in thermodynamics. This term is inspired by the speed-up and speed-down

strategy from biological swarms. We prove the stability of the proposed consensus algorithm

for both linear and nonlinear flux functions in detail by the matrix paracontraction tool and

the Lyapunov-based method, respectively.

Another direction we are trying is to use the deep reinforcement learning to train the

agent to reach the consensus state. Let the agent learn the input command by this method,

they can become more intelligent without human intervention. By this method, we totally

ignore the complex mathematical model in designing the protocol for the general consensus

problem. The deep deterministic policy gradient algorithm is used to plan the command of

the agent in the continuous domain. The moving robots systems are considered to be used

to verify the effectiveness of the algorithm.

iv

Table of Contents

List of Figures vii

List of Tables ix

Nomenclature x

1 Introduction 1

1.1 Motivation . 1

1.2 Overview . 4

2 Literation Review 7

2.1 Consensus Protocol . 7

2.2 Application of the Consensus Protocol . 9

2.3 Privacy Protection . 11

2.4 Deep Reinforcement Learning . 12

3 The Bio-Inspired Cooperative Learning Consensus under Suggested Convergence

Direction: Linear Case 14

3.1 Introduction . 14

3.1.1 Swarm-Intelligence-Inspired Consensus 16

3.1.2 Mathematical Preliminaries . 21

3.2 Cooperative Learning Consensus . 32

v

3.2.1 Quadratic Monotone Convergence via Matrix Paracontraction . . . 34

3.2.2 Orthant Invariant Convergence via Nonnegative Matrices 37

3.3 Simulation . 39

3.3.1 Verification . 39

3.3.2 Comparison . 45

3.4 Conclusion . 46

4 The Bio-Inspired Cooperative Learning Consensus under Suggested Convergence

Direction: Nonlinear Case 49

4.1 Introduction . 49

4.2 Bat-Inspired Consensus . 50

4.3 Convergence Analysis of Bat-Inspired Consensus 55

4.4 Bat-Inspired Consensus with Disturbances 63

4.5 Simulation . 69

4.6 Conclusion . 73

5 The Bat-Inspired Consensus Protocols with Differential Privacy 76

5.1 Introduction . 76

5.2 Bat-Inspired Consensus and Differential Privacy 79

5.2.1 Bat-Inspired Consensus . 80

5.2.2 Differential Privacy . 84

5.3 Convergence Analysis . 87

5.4 Simulation . 96

5.5 Conclusion . 97

6 The Formation Control of Multi-agent with Deep Reinforcement Learning 100

6.1 Introduction . 100

vi

6.2 Background . 103

6.2.1 Formation Control . 103

6.2.2 Markov Decision Processes . 105

6.2.3 Deep Q-Networks . 106

6.2.4 Policy Gradient Algorithms . 106

6.3 Algorithm . 108

6.4 Experiment . 110

6.5 Conclusion . 114

7 Conclusion and Future Work 119

7.1 Conclusion of This Dissertation . 119

7.2 Contributions of This Dissertation . 121

7.3 Recommendation for Future Research . 122

Bibliography 123

A List of Publications 141

vii

List of Figures

3.1 Convergence of cooperative learning consensus when minimizing F1(x) =

|x1 − x2|+ |x3 − x1|: Theorem 4. 41

3.2 Convergence of cooperative learning consensus when minimizing F2(x) =

max{x1, x2, x3} −min{x1, x2, x3}: Theorem 4. 42

3.3 Convergence of the cooperative learning consensus protocol when minimizing

F1(x) = |x1 − x2|+ |x3 − x1|: Theorem 5. 43

3.4 Convergence of the cooperative learning consensus protocol when minimizing

F2(x) = max{x1, x2, x3} −min{x1, x2, x3}: Theorem 5. 44

4.1 Convergence of the cooperative learning consensus protocol when minimizing

F1(x) = |x1 − x2|+ |x3 − x1| without disturbances: Theorem 6. 71

4.2 Convergence of the cooperative learning consensus protocol when minimizing

F2(x) = max{x1, x2, x3} −min{x1, x2, x3} without disturbances: Theorem 6. 72

4.3 Convergence of the cooperative learning consensus protocol when minimizing

F1(x) = |x1 − x2|+ |x3 − x1| with disturbances: Theorem 7. 73

4.4 Convergence of the cooperative learning consensus protocol when minimizing

F2(x) = max{x1, x2, x3} −min{x1, x2, x3} with disturbances: Theorem 7. . . 74

5.1 x1 of all agents versus time for the differential privacy consensus algorithm. . . 98

5.2 x2 of all agents versus time for the differential privacy consensus algorithm. . . 98

viii

5.3 x3 of all agents versus time for the differential privacy consensus algorithm. . . 99

6.1 The formation control of four robots forming a rectangle. 101

6.2 The learning curve for the formation control problem. The curve shows the

mean of the average reward of 1000 episode. 113

6.3 The x direction trajectory of each robot . 114

6.4 The y direction trajectory of each robot . 115

6.5 The velocity of x direction trajectory of each robot 116

6.6 The velocity of y direction trajectory of each robot 117

6.7 The trajectory of each robot with kinematics constraints 117

6.8 The initial position for all of the robots . 118

6.9 The robots are avoiding each other to prevent the collision 118

6.10 The final position of all of the robots . 118

ix

List of Tables

3.1 Comparison of the proposed cooperative learning consensus and average consensus

for F1(x) after 30 run times . 45

3.2 Comparison of the proposed cooperative learning consensus and average consensus

for F2(x) after 30 run times . 46

6.1 Parameters Used in the Algorithm . 111

6.2 Some Parameters Used in the Experiment . 116

x

NOMENCLATURE

∩ intersectioin

∪ union

δij 1 if i = j, 0 if i 6= j

∈ is an element of

λi(A) ith eigenvalue of A ∈ Rn×m

λmin(A), λmax(A) minimum, maximum eigenvalues of the matrix A

lim supn→∞ f(x) limit superior of f(x)

log logarithm with base e

‖A‖∞ maxi,j|Ai,j|

|x|1 L1 norm

‖x‖2 Euclidean norm of x

‖·‖ vector or matrix norm

Z+ set of nonnegative integers

Cn Cn×1 complex column vectors

xi

E expectation

N nonnegative integers

P probability taken over the coin-flips

R real number

Rn Rn×1 real column vectors

Rn×m n×m matrics

Z integers

N set of neighbors of the node

min,max minimum, maximum

∇ gradient

6∈ is not an element of

⊗ Kronecker product

∏
product operator

ρ(P) specturm radius of A

⇒ uniform convergence

σi(A) ith largest singular value of A ∈ Rn

⊂ is a proper subset of

⊆ is a subset of

∑
summation operator

xii

coli(A) ith column of A

detA determinant of A

diag(a1, . . . , an) a diagonal matrix whose ith diagonal entry is ai

exp exponential function

ker(A) kernel of the matrix A

ker(A)⊥ orthogonal complement of ker(A)

rankA rank of A

ran(A) range space of A

rowi(A) ith row of A

sgn signum function

span(A) span of the matrix A

trA trace of A

, equals by definition

{} set

A ≥ 0 nonnegative definite matrix

A∗ the complex conjugate of A

AT transpose of A

Ai,j (i, j) entry of A

E(i,j) elementary matrix with unity in the (i, j)

xiii

f : x 7−→ y f is a function with domain x and codomain y

In, I n× n identity matrix

Lap Laplace distribution

x× y cross product of vectors x, y ∈ Rn

xi ith component of x ∈ Rn

mod modulo operation

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

The multi-agent systems (MAS) generally refers to a group of autonomous agents which can

operate in a networked environment. A MAS is a system composed of multiple interacting

intelligent agents which can communicate with each other, such that they can finish a general

work together. MAS usually is used to solve some difficult problems which are not easy

or sometimes impossible for a single agent or a monolithic system to solve. Intelligence

generally includes some methodical, functional, procedural or algorithmic procedure to

find the processing approaches which can be used to make an agent to finish its work more

efficiently. In this area, some research methods related to the MAS are performed, an on-line

trading method was studied in [1], disaster response was studied in [2], and modeling social

structures was studied in [3].

The definition of the agent can be found in [4], where the concept of multi-agent systems

is presented as well as its application. According to the authors, some of the characteristics

of the agent can be defined as:

• Reactivity capabilitity: An agent has the ability to satisfy its own goal.

• Autonomy: An agent is at least partially autonomous.

• Perception: An agent can perceive its environment.

2

• Local view: An agent should not have the global view of the whole system, or the

system is too complex such that the agent can only use partial understand of the whole

knowledge.

• Communication capabilitity: An agent can be communicated with other agents in the

same system.

A MAS often is composed of an environment, agents, and relationship between them.

The general objective is to finish certain tasks through the agent performing operations to the

environment. As a result, the environment is changed and the goal is finally achieved. MAS

often is used to address the problem in automatic control, computer science, distributed

computation, game theory, and social science. In these cases, a multi-agent system may

include computer’s agents, human teams and agent-human teams.

The MAS problems are studied widely in automatic control, specifically the system is

consisted with multiple agents. These agents are supposed to equip with several sensors

and actuators to perform a coordinated task. This is an important and challenging research

area, which is motivated by a large number of applications. These applications include

surveillance, collaborative search and rescue, environmental monitoring, and distributed

reconfigurable sensor networks. In order to make these applications perform well, different

cooperative control methods have been proposed and analyzed, such as formation control,

rendezvous, attitude alignment, flocking, congestion control for different connected networks,

air traffic control, coverage and cooperative search. In most cases, a multi-agent system can

be seen as a group of nodes which denote different entities such as vehicles, sensors, and

plants, etc. These entities can exchange their own information in a communication network

in order to achieve the final goal. From this view, the MAS can be represented by a network

of nodes which are connected through a communication topology. This communication

topology can be represented by the graph theory.

3

Some of the classical objectives of the MAS include but are not limited to:

• Consensus and average consensus: this often refers to an agreement to which the value

of the state can be reached by the multi-agent system. For the average consensus, the

final state value of all the agents is the average of the initial state value if they follow

the agreement protocol.

• Synchronization: If the state of all the agents reach the same point asymptotically, then

the MAS reached synchronization. This is similar to the consensus algorithm, however,

synchronization is generally applied in the mainfolds with particular symmetries.

• Formation control: The agents in the network are designed according to a particular

configuration, where the objectives of all the agents are to achieve to a common goal.

There are several formation control strategies in order to make the agents converge to

the designed configuration or maintain the inter-agent distance.

• Exploration and coverage: By exploring the environment, all the agents can collect

the information around the area of interest. Especially, the coverage is a collaborative

task for all the agents to finish. They may reach the optimal state status in order to

maximize their own interested area.

For all of these topics, consensus algorithms receive wide attention. Among those,

average consensus is a popular distributed algorithm which can be used to compute the

arithmetic mean of the state value of all the agents {xi}Ni=1, where the state value for agent i

is xi for all of the agents N . The average consensus is used to compute the average state

value of all the agents, 1
N

∑N
i=1 xi, in the distributed way.

The consensus problems of multi-agent systems have gained a lot of attention from

various scientific communities in recent years. With the development of the artificial

intelligence in recent years, it is desired that each agent can handle different situations for

4

the general algorithm. That means the agents can have a better cooperation and collaboration

among them, thus the whole group can be driven to find a better state. In this process,

information sharing, ideas generating, and decision making are better communicated

between these agents and the whole group will reach a better decision when compared

with previous methods. Thus the multi-agent learning algorithms are studied to demonstrate

the need for a comprehensive understanding of the dynamic environment. The learning

ability in mulit-agent system is not only related with the field of artificial intelligence but

also studied extensively in game theory and economics as well.

1.2 Overview

This dissertation focuses on three aspects of designing consensus algorithm. First is to

design the consensus algorithm based on the bat inspired swarm algorithm, which makes

the proposed protocol more intelligence, meanwhile the flux function is incorporated in the

protocol to accelerate the convergence rate. The second is to explore the privacy preserving

for the proposed protocol. The last is to use deep reinforcement learning based method to

reach the consensus.

In Chapter 2, a comprehensive review of the consensus and its application are provided.

In Chapter 3, a bat-inspired consensus algorithm is proposed based on the bat optimization.

The bat optimization is proven to be suitable for solving the optimization problem and thus

the proposed consensus algorithm can get this ability while reaching the consensus. In order

to accelerate the convergence rate, a linear vector-valued flux function is considered to be

incorporated into the algorithm. The proposed protocol uses a double-check technique to

ensure that the minimum value can be found in each iteration. After that, the stability

of the algorithm is proven by using the matrix paracontraction technique, which is a

nonexpansive property and generally used for studying the convergence of linear iterations.

5

The stability of the proposed protocol can be regarded as the linear matrix problem such

that the paracontraction can be used to solve it.

In Chapter 4, the nonlinear flux function is incorporated into the proposed consensus

algorithm. In this chapter, since the flux function is nonlinear, we cannot transform the

protocol in the matrix form. Under this condition, the Lyapunov-based method is used to

analyze the stability of the proposed consensus algorithm. We also consider the performance

of the consensus algorithm with some small disturbances. In this case, the stability of the

protocol is studied. In order to show the effectiveness of the proposed protocol, two different

optimization problems are presented and solved by this protocol. Meanwhile, all the agents

can reach the consensus state at the same time. The final consensus state is the solution of

the optimization problem.

In Chapter 5, the privacy characteristics of the proposed protocol is investigated. For

this case, in each iteration, each agent may not want to share its own full state to others

outside of the network. Instead, they can transmit its own state information encrypted. In

this chapter, we consider to add noise to the state information transmitted for each agent.

The ε-differential privacy of the proposed consensus algorithm is defined. With the help of

d-accurate, we prove that the proposed consensus algorithm is ε-differential privacy. Finally,

the convergence of the consensus algorithm is analyzed. The simulation result is presented

to show that the proposed differential privacy consensus algorithm is effective.

In Chapter 6, we focus on another way to make the agent more intelligent. The deep

reinforcement learning method is used to train the agent to reach the consensus state. By

using this method, the agent can become more intelligent. They can learn different strategies

to handle different problems. The deep deterministic policy gradient (DDPG) algorithm is

used to train the agent since it can handle the continuous domain case for the input command

of the agent. We use the mobile robots to test the proposed algorithm.

Finally, the conclusion is given in Chapter 7. The contribution of this research is also

6

shown. Moreover, the comments for future research work are discussed.

7

CHAPTER 2

LITERATION REVIEW

This chapter provides a comprehensive literature review of the state-of-the-art consensus

protocol. The applications of the consensus protocol are also reviewed. After that, the privacy

protection methods for the network are then reviewed. Finally, the deep reinforcement

learning methods for consensus are summarized.

2.1 Consensus Protocol

One of the origins for cooperative learning in multiagent systems is from biomimicry

of animal swarm behaviors, such as bird flocking and fish schooling [5, 6]. There is

a long history of people being fascinated by these stunning behaviors demonstrated by

many creatures when they aggregate together to achieve a common goal. Biologists [7, 8],

physicists [6,9], and mathematicians [10] have constructed mathematical models to simulate

these bio-inspired collective behaviors. These models always consist of constant local

interaction and information exchange among individual subsystems to form a collective

system. Although simulation of the collective system reveals quite a few intrinsic, surprising

phenomena that are not exhibited by individual subsystems, no clear interpretation or little

rigorous analysis of these phenomena was given at the inception of the models. See a recent

survey related to this topic in [11]. Later, many control researchers took on this issue and

developed several rigorous control-theoretic frameworks, using various mathematical tools,

8

such as nonnegative matrix analysis [12], algebraic graph theory [13], convex analysis [14],

and Lyapunov-based stability tools [15, 16], to explain why these interconnected systems

can exhibit such bizarre group behaviors. All of these results ended with the same problem

named after the consensus or agreement problem. It turns out that this problem has appeared

in different contexts or fields, for example, stochastic algorithms [17], random processes [18],

game theory [19], load balancing [20], etc.

The summary of recent progress about the consensus of multiagent systems can be

found in [21, 22]. Moreover, the authors in [23] develop a mean field game to study the

consensus behavior of agents, where the initial states of the agents are not necessarily

Gaussain distribution. Finite-time consensus for agents having the integrator-like continuous

dynamic model is proposed in [16,24,25], where semistability theory is introduced in [16,24]

to guarantee its convergence while the communication network in [25] exists directional

link failure. In [26], a Nussbaum-type function is used to design the control law such that

the agents can seek the unknown control direction, therefore these agents can achieve the

consensus cooperatively. The consensus behavior of agents, whose dynamics are modeled

by diffusion partial differential equations, is studied in [27], where the agents dynamics are

corrupted by additive persistent disturbances. In this case, a sliding mode based consensus is

proposed. The author in [28] studies the consensus protocol among agents with antagonistic

interactions, where the necessary and sufficient conditions are proposed to guarantee the

consensus. This result is extended by authors in [29], where they study the opinion dynamics

in social groups with ubiquitous competition and distrust between some pairs of agents.

Parallel with this advance in control research communities, researchers in computational

intelligence also used similar biomimetic inspiration to develop highly successful swarm-inte-

lligence-based optimization approaches during the last two decades. Among them, the most

celebrated approaches involve ant colony optimization [30], particle swarm optimization

[31], and differential evolution [32]. Although many of them are heuristic, they appear to

9

be very successful in solving complicated optimization problems in critical infrastructures,

such as power distribution management [33]. Due to the simple update formula of those

algorithms, swarm-intelligence-based optimization algorithms can handle complex optimiza-

tion algorithms with higher efficiency [33], which is hard to achieve by use of conventional

optimization methods. Moreover, since usually no derivative or gradient operation is

involved in the swarm-intelligence-based algorithms, they are able to solve more general

optimization problems, such as mixed-integer, discontinuous optimization problems [34].

Of these swarm-intelligence-based optimization algorithms, the bat searching (BS)

algorithm [35], based on the echolocation behavior of bats, gains our attention due to

its striking analogue to the consensus problem for multiagent systems in control systems

engineering. More specifically, BS uses a frequency-tuning technique to increase the

diversity of the solutions in the population when solving an unconstrained optimization

problem. Automatic zooming is used to balance exploration and exploitation during the

search process for an optimal solution by mimicking the variations of pulse emission rates

and loudness of bats. The BS algorithm has shown significant improvement compared to

other swarm intelligence algorithms, such as particle swarm optimization, when solving

unconstrained optimization problems whose objective functions are given by some standard

test functions [35].

2.2 Application of the Consensus Protocol

Many apparently different problems that involve inter information exchange of the dynamical

systems in various areas are closely related to consensus problems for MAS. Some of these

problems are shown below.

• Firstly, the synchronization of coupled oscillators has attracted numerous engineers

and scientists from diverse fields [36–38]. The general coupled neural oscillators

10

system is the synchronous oscillations. The generalized Kuramoto model of coupled

oscillators can be modeled as follows:

θ̇i = κ
∑
j∈Ni

sin(θj − θi) + ωi

where θi and ωi are the phase and frequency of the ith oscillator. In [39], the authors

show that if the parameter κ is sufficient large, then synchronization to the aligned

state of the network with all-to-all links is globally achieved for all initial states. Other

references such as [40] study the synchronization of networked oscillators under

variable time-delays. The spectral properties of graph Laplacians can be used to

analyze the convergence of the oscillator network.

• The flocks of mobile agents equipped with sensing and communication devices is

another application for the consensus protocol. These mobile robots can serve as

mobile sensor networks for distributed sensing in an environment [41]. A design and

analysis of flocking algorithms for mobile robots with obstacle-avoidance capabilities

can be found in [42]. Generally, the consensus algorithm can make the agent in

flocking to achieve velocity matching with respect to its neighbors.

• Another application of the consensus is the rendezvous activity. This is equivalent

to reaching a consensus in position with an interaction topology graph in [43]. This

problem is challenging under the switching of the network topology.

• Moreover, the distributed sensor fusion in sensor networks also uses the principle of

the consensus protocol. Implementing some methods such as Kalman filter [44] by

the consensus manner for various sensors, a distributed sensor fusion can be done.

11

2.3 Privacy Protection

In some applications, such as surveillance and monitoring network, the designer of the

network would not want the information collected by the network to be leaked. In this

scenario, the participating agents in the network would not want to release more information

about its initial value than strict necessary to reach the consensus agreement. Thus, the

privacy protection is important for the consensus protocol.

A privacy preserving average consensus algorithm is proposed in [45], where the

algorithm can compute the exact average of the initial values. Meantime, it can ensure that

the initial value of each agent cannot be perfectly inferred by other participating agents. In

this method, the agent needs to design a correlated noise process to ensure that the noise

does not affect the consensus result. In order to converge to the exact average, the noise

is designed to be decaying. Thus, the asymptotic sum of the noise needs to be 0 to avoid

affecting the results.

Another choice is to use the differential privacy technique. The concept of the differential

privacy comes from the database literature [46]. After that, a popular adopted differentially

private mechanism is to be used in the database query to guarantee that the data stored from

a wide users will be protected from the external observer. Recently, this notation is borrowed

by the dynamical system. In [47], by adding white Gaussian perturbations to the dynamical

system, a differentially private filter is designed. The differentially private mechanisms

randomize the responses to dataset analysis requests and guarantee that whether or not an

individual chooses to contribute his data only marginally changes the distribution over the

outputs. Consequently, the adversary who can acquire these outputs cannot infer much

more information of the individuals after the publication of the outputs. Then, a differential

private Kalman filter is proposed to release the output of the dynamical system while

preserving differential privacy for the inputs. They also consider the systems processing as

12

a single integer-valued signal describing the occurrence of events originating from different

participants. The differential private version of the iterative averaging algorithm is proposed

in [48], where the private consensus problem is studied. The agents need to preserve the

privacy of their initial values from an adversary who can access all the messages exchanged

and these agents finally reach the agreement. This algorithm can protect the initial value of

the agent instead of its participation status.

2.4 Deep Reinforcement Learning

Reinforcement learning (RL) formalizes control problems generally as finding a policy π

that can maximize expected future rewards. Value functions V (s) is important to the RL, and

they can catch the utility of any state s in achieving the agent’s overall objective. Recently,

value functions have also been generalized as V (s, g) in order to represent the utility of

state s for achieving a given goal g ∈ G [49]. When the environment provides delayed

rewards, we adopt a strategy to first learn ways to achieve intrinsically generated goals, and

subsequently learn an optimal policy to chain them together. Each of the value function

V (s, g) can be used to generate a policy that terminates when the agent reaches the goal

state g. A collection of these policies can be hierarchically arranged with temporal dynamics

for learning or planning within the framework of semi-Markov decision processes [50]. In

some high-dimensional problems, these value functions can be approximated by neural

networks as V (s, g : θ).

Recently, the advancement in function approximation with deep neural networks has

shown promise in handling high-dimensional sensory input. Deep Q-Networks and its

variants have been successfully applied to various domains including Atari games [51] and

Go [52].

However, for some challenging physical control problems that involve complex multi-joint

13

movements, unstable and rich contact dynamics, the DQN is not sufficient to solve it. Thus,

the actor-critic approach with insights from the DQN is developed. By doing so, the network

is trained off-policy with samples from a replay buffer to minimize the correlation between

samples and the network is trained with a target Q network to give consistent targets during

temporal difference backups.

The nature of interaction between agents can be cooperative is considered in some DRL

algorithm. Most studies stress the strategies such as Q function update [53], which assume

that the actions of other agents made can improve collective reward. Another method is to

indirectly arrive at cooperation via sharing of policy parameters [54], however, this method

needs the requirement that the agent is homogeneous.

In [55], the authors propose a DRL framework by using policy gradient method with

a centralized critic, and test their approach on a StarCraft micromanagement task. This

method can learn a single centralized critic for all agents. Moreover, they combine recurrent

policies with feed-forward critics.

14

CHAPTER 3

THE BIO-INSPIRED COOPERATIVE LEARNING CONSENSUS

UNDER SUGGESTED CONVERGENCE DIRECTION: LINEAR

CASE

3.1 Introduction

While the consensus problem for multiagent systems has drawn a great attention in recent

years in different areas, it was until recently that some analogy between this problem

and swarm intelligence algorithms, such as particle swarm optimization, has been noticed

by [33,56]. This similarity has inspired us to improve the performance of swarm intelligence

algorithms by modifying them using some techniques from the various consensus protocols

in the literature. Such a combination from a control problem and a computational intelligence

algorithm offers a brand new perspective to design efficient swarm intelligence algorithms,

not just from the bio-inspired direction, but also from the control-theoretic methodology,

leading to a one-way exploration from control theory to swarm optimization. Now the

question lies in the other direction: Is it possible to design consensus protocols for multiagent

systems using some techniques or concepts from swarm intelligence, so that the state

convergence direction of these systems can be guided, but not completely given, for

flexibility? This is the question we will address in this chapter, and an affirmative answer

will be given to this question. Hence, a two-way, positive feedback of mutual exploration

15

and interplay is unraveled between networked control theory and swarm optimization based

algorithms, based on the result in this chapter and the results in [33, 56].

We will address the above question by designing new consensus protocols with two

additional attributes of agents being “smart” to data transmission and their state convergence

direction being totally guidable but not totally controllable. In this chapter, motivated by

the multiagent coordination optimization (MCO) algorithm [33, 56] and the bat searching

algorithm [35], a new bat-inspired consensus protocol is proposed. More specifically,

by incorporating a separate, unrelated optimization problem into the protocol, our new

consensus algorithm can fully guide its state convergence direction leaning toward the best

solution (i.e., the optimal solution among the population of candidate solutions) to this

separate, unrelated optimization problem. At the same time, although the optimal solution

to this optimization problem may always exist (e.g., convex optimization), its best solution

form may not be precisely calculated or numerically found. Hence, such an issue actually

creates an uncertainty for exactly predicting the final state convergence direction, which

turns out to be a good merit for protecting multiagent systems from adversaries. Moreover,

the proposed consensus algorithm further takes advantage of the mechanism behind the

BS algorithm to enhance agents’ data transmission capability so that they become “smart”

enough to not only process the neighboring and their own data, but also relay the processed

data among agents in a multi-hop way.

Thus, the most notable feature of the proposed cooperative learning consensus protocols

is their ability to simultaneously solve an optimization problem and a consensus problem

altogether. The embedded optimization problem serves as a suggested convergence direction

for the consensus problem. When the proposed cooperative learning consensus protocols

run in a convergence way, both problems obtain their solutions accordingly. This feature

is particularly appealing in high performance computing in which multitask jobs are quite

common in many parallel computing problems. Hence, the proposed method paves a

16

way to develop corresponding algorithms for parallel solutions to multitask computing

and optimization problems. A detailed convergence analysis of the proposed cooperative

learning consensus protocols will be presented in this chapter. In the end, the numerical

comparison between the proposed cooperative learning consensus protocols and the average

consensus [12, 13] is provided to show the features of the proposed ones. Specifically, not

only do the proposed consensus protocols converge under certain conditions like the average

consensus [12, 13], but also the proposed consensus protocols optimize a direction function

during the convergence process.

3.1.1 Swarm-Intelligence-Inspired Consensus

To begin with, we define some time-dependent, algebraic, graph-related notations to describe

our cooperative learning consensus protocols. Specifically, let G(t) = (V , E(t)) denote a

dynamic directed graph (or dynamic digraph) with the set of vertices V = {v1, v2, . . . , vq}

and E(t) ⊆ V × V representing the set of edges, where t ∈ Z+ = {0, 1, 2, . . .}. The

time-varying matrix A(t) ∈ Rq×q with nonnegative adjacency elements ai,j(t) associated

with E(t) serves as the adjacency matrix of G(t), where R denotes the set of real numbers, Rn

denotes the set of n-dimensional real column vectors, and Rn×m denotes the set of n-by-m

real matrices. The node index of G(t) is denoted as a finite index set N = {1, 2, . . . , q}. An

edge of G(t) is denoted by ei,j(t) = (vi, vj), and the adjacency elements associated with

the edges are positive. We assume ei,j(t) ∈ E(t) if and only if ai,j(t) = 1, ei,j(t) 6∈ E(t)

if and only if ai,j(t) = 0, and ai,i(t) = 0 for all i ∈ N . The set of neighbors of the node

vi is denoted by N i(t) = {vj ∈ V : (vi, vj) ∈ E(t), j = 1, 2, . . . , |N |, j 6= i}, where |N |

denotes the cardinality of N . In many cases, for brevity, we simply take V = N . The

degree matrix of a dynamic digraph G(t) is defined as D(t) = [di,j(t)]i,j=1,2,...,|N |, where

di,j(t) =

∑|N |

j=1 ai,j(t), if i = j,

0, if i 6= j.
The Laplacian matrix of the dynamic digraph G(t) is

17

defined by L(t) = D(t)−A(t). If L(t) = LT(t), where (·)T denotes the transpose operation,

then G(t) is called a dynamic undirected graph (or simply dynamic graph). If there is a

path from any node to any other node in a dynamic digraph, then the dynamic digraph

is called strongly connected. From now on, we use short notations, At, Dt, Lt,Gt,N i
t , to

denote A(t), D(t), L(t),G(t),N i(t), respectively.

Consider a group of q bats (agents) who have directional communications via a communi

cation digraph topology Gt at each time instant t. Each node k in Gt corresponds to a

labeled bat k, k = 1, . . . , q. Throughout this chapter, we make the following two standing

assumptions. The first one is about the connectivity of Gt.

Assumption 1. The communication digraph Gt is strongly connected.

The second one is about a separate optimization problem embedded in the proposed

consensus protocol.

Assumption 2. The minimization problem minx∈Rn F (x) has a solution, where F : Rn → R.

The original BS algorithm was based on the echolocation or bio-sonar characteristics

of microbats [35]. More specifically, the bats can update their position information by

following the below position-velocity rules to find their “prey”, which tends to be the best

solution to an optimization problem minx∈Rn F (x):

fi(t) = fmin + (fmax − fmin)βi, (3.1)

vi(t+ 1) = vi(t) + [xi(t)− p(t)]fi(t), (3.2)

xi(t+ 1) = xi(t) + vi(t+ 1), i = 1, . . . , q (3.3)

where xi(t) ∈ Rn and vi(t) ∈ Rn are the position and velocity of Bat i at each time instant t,

respectively, fi(t) ∈ R is the frequency information for Bat i at time instant t, fmin and fmax

are the lower bound and upper bound of the frequency for Bat i, respectively, βi ∈ [0, 1] is

18

a random coefficient drawn from a uniform distribution, and p(t) ∈ Rn is the current best

global solution at time instant t, i.e., p(t) = arg min1≤i≤q,0≤s≤t F (xi(s)).

Based on this algorithm, we propose a cooperative learning consensus protocol for this

group of q bats. The scenario we are considering here is that all of the bats have the same

constant speed, but with different heading angles. From the control-theoretic perspective, a

consensus protocol for heading angles of the bats is a semi-distributed control algorithm

used to asymptotically achieve a common heading angle among all of the bats. Using this

concept, the proposed cooperative learning consensus protocol for heading angles of the bats,

under a given minimization problem minx∈Rn F (x) as its suggested convergence direction,

is given as follows:

θ1,min(t) = θ1(t), (3.4)

θk+1,min(t) = arg min{F (θk,min(t)), F (θk+1(t))}, k = 1, . . . , 2q − 2 (3.5)

θ2q,min(t) = θ2q−1,min(t), (3.6)

θi(t+ 1) = θi(t) + fi(t)

{
arg min

θ∈Rn

∑
j∈N it

[θj(t)− θ]TΦi,j(θj(t)− θ)− θi(t)
}

+ fi(t)µi(t)[θq+i,min(t)− θi(t)], (3.7)

fi(t) = fmin + βi(t)(fmax − fmin), i = 1, . . . , q (3.8)

where t ∈ Z+, θi(t) = θq+i(t) ∈ Rn denotes the heading angle vector of Bat i at iteration

t, respectively, fi(t) > 0 is the frequency of Bat i, fmin > 0 is a given lowerbound of

the frequency, fmax > 0 is a given upperbound of the frequency, Φi,j : Rn → Rn is a

vector-valued flux function satisfying Φi,j(x) = 0 if and only if x = 0 and xTΦi,j(x) ≥ 0

for every x ∈ Rn and every i, j = 1, . . . , q, i 6= j, 0 ≤ βi(t) ≤ 1 is a normalized range

parameter for the frequency, 0 < µmin ≤ µi(t) ≤ µmax is the zooming parameter for

Bat i, i = 1, . . . , q, t ∈ Z+, θ ∈ Rn is a vector variable, and θq+i,min(t) is defined as

19

arg min1≤i≤q F (θi(t)), which denotes the suggested convergence direction.

For brevity, we use the short notations βit , f
i
t , and µit to denote βi(t), fi(t), and µi(t) for

every i = 1, . . . , q, respectively.

The flux function Φi,j(·) can be interpreted as an energy/mass exchange rate in compartm-

ental modeling [15, 57] or a heat transfer rate in thermodynamics [58]. Furthermore, Φi,j(·)

is not necessarily convex or not necessarily continuous. Next, the original BS algorithm does

not have the interconnected term arg minθ∈Rn
∑

j∈N it
[θj(t)− θ]TΦi,j(θj(t)− θ) in (3.7).

The addition of this term is motivated by the speed-up and speed-down strategy derived

from biological swarms [59]. This term is calculated through a multihop relay protocol [60]

based on the communication ring routing path. More specifically, it consists of the following

two steps:

1) Bat k + 1 can receive the information of θk,min(t) from Bat k at time instant t, k =

1, . . . , q−1. At the same time, Bat k+1 determines θk+1,min(t) = arg min{F (θk,min(t))

, F (θk+1(t))} and serves as a router to send θk+1,min(t) to the next bat.

2) After θq,min(t) is determined by Bat q, this information is passed to Bat (q+1 mod q),

which is essentially Bat 1, where mod denotes the modulo operation. Bat (k

mod q), k = q+1, . . . , 2q−1, again determines θk,min(t) = arg min{F (θk−1,min(t)),

F (θ(k mod q)(t))} and serves as a router to send θk,min(t) to Bat (k + 1 mod q) by

sequentially following the directed communication path

Bat q → Bat (q + 1 mod q)→ Bat (q + 2 mod q)

→ · · · → Bat (2q − 1 mod q)

20

which is equivalent to

Bat q → Bat 1→ Bat 2→ · · · → Bat q − 1

.

Note that we used a “double-check” technique in these two steps to obtain

arg min1≤i≤q F (θi(t)). It is clear that after Step 1, θq,min(t) obtained by Bat q is indeed

arg min1≤i≤q F (θi(t)). Hence, in Step 2, θq+i,min(t) obtained by Bat i is identical to θq,min(t)

for every i = 1, . . . , q − 1. However, we still let Bat i perform the comparison operation

θq+i,min(t) = arg min{F (θq+i−1,min(t)), F (θi(t))} in Step 2 to ensure that we end up with

the correct arg min1≤i≤q F (θi(t)).

Hence, the proposed cooperative learning consensus protocol is distinct from the

existing consensus protocols in the literature. Moreover, the proposed cooperative learning

consensus protocol is a semi-distributed, localized algorithm by determining θq+i,min(t) =

arg min1≤i≤q F (θi(t)) locally, unlike the BS algorithm which computes arg min1≤i≤q

F (θi(t)) in a global manner in the sense that all of the bats’ position information is shared

in the group.

A fundamental question regarding the cooperative learning consensus protocol (3.4)–(3.8)

is about its (absolute) convergence property. How can we guarantee the convergence of

(3.4)–(3.8) for a given minimization problem minx∈Rn F (x) and arbitrary initial condition?

Here, the precise meaning of (absolute) convergence is that limt→∞ θ1(t) = · · · = limt→∞

θq(t) exists for (3.4)–(3.8) with any initial condition θi(0) ∈ Rn, i = 1, . . . , q. To answer

this question for (3.4)–(3.8), we first need to study the form or the property of Φi,j(·). The

most commonly used one is the linear form

Φi,j(x) = x. (3.9)

21

Other forms include the signum form Φi,j(x) = sgn(x), where sgn denotes the signum

function and sgn(x) denotes an elementwise operation for the vector x. In this chapter, we

consider both the linear form (3.9) and some nonlinear form for Φi,j(·).

The basic idea of conducting convergence analysis for (3.4)–(3.8) under the linear

form of Φi,j(·) is to convert the proposed iterative algorithm into a discrete-time linear

time-varying system and then to discuss its convergence property using some matrix analysis

tools. It is motivated by some recent works done in semistable control and paracontraction

analysis [61,62]. More specifically, we consider the discrete-time linear time-varying system

given by the form

X(t+ 1) = W (t)X(t), t ∈ Z+ (3.10)

whereX(t) = [θT1 (t), . . . ,θTq (t)]T ∈ Rn×· · ·×Rn = Rnq. Then in this case the cooperative

learning consensus protocol given by (3.4)–(3.8) can be rewritten as the compact form (3.10)

by defining a corresponding W (·) appropriately. The frequency equation (3.8) stands alone

with the rest of the equations, and it can be viewed as a time-dependent parameter in the

cooperative learning consensus protocol. Thus, the convergence analysis of the proposed

cooperative learning consensus protocol can be converted into a convergence problem of

a discrete-time linear time-varying system given by the form (3.10). Here two different

approaches will be used for the convergence analysis of (3.10): the matrix paracontraction

approach [63] and the nonnegative matrix approach [64].

3.1.2 Mathematical Preliminaries

Paracontraction is a nonexpansive property for a class of linear operators which can be

used to study convergence of linear iterations [63, 65], communication protocols [66],

and biomimetic models [67]. In this chapter, we will use this idea to derive sufficient

22

convergence conditions for (3.10). To this end, some new results on matrix paracontraction

will be developed in this section. These new results play a key role to derive simple

sufficient conditions to guarantee the convergence of the proposed cooperative learning

consensus protocol. They also disclose some interesting properties for paracontraction that

have not been discovered before and complement many existing paracontraction results

in the literature [62, 63, 65, 67]. The following definition, due to [63], gives the notion of

paracontracting matrices.

Definition 1 ([63]). LetW ∈ Rn×n. W is called paracontracting if for any x ∈ Rn,Wx 6= x

is equivalent to ‖Wx‖ < ‖x‖, where ‖ · ‖ denotes the (vector and matrix) 2-norm.

Next, we introduce the following fact needed later in the chapter.

Lemma 1. Let W ∈ Rq×q. Then ‖W‖ ≤ 1 if and only if WTW ≤ Iq, where Iq denotes the

q-by-q identity matrix. Furthermore, ‖W‖ ≤ 1 if and only if WWT ≤ Iq.

Proof. First, it follows from Proposition 9.4.9 of [68, p. 609] that ‖W‖ = σmax(W), where

σmax(W) denotes the maximum singular value of W . Next, it follows from Fact 5.11.35

of [68, p. 358] that σmax(W) ≤ 1 if and only if WTW ≤ Iq. The second conclusion is a

direct consequence of the first one by noting that ‖W‖ = ‖WT‖.

The following result, motivated by Lemma 3.5 of [62], connects paracontraction with

the singular value decomposition.

Lemma 2. Let W ∈ Rq×q and r = rank(W), where rank(W) denotes the rank of W .

Suppose that the singular value decomposition of W is given by W = V

 Σ 0

0 0

UT,

where Σ = diag(σ1(W), . . . , σr(W)) ∈ Rr×r, diag(X) denotes a diagonal matrix whose ith

diagonal entry is the ith component of X , U = [u1, . . . , uq] ∈ Rq×q and V = [v1, . . . , vq] ∈

Rq×q are orthogonal matrices, ui ∈ Rq, and vi ∈ Rq. Define m to be the positive

integer satisfying ‖W‖ = σ1(W) = · · · = σm(W) > σm+1(W) ≥ · · · ≥ σr(W) >

23

0. Then ker(WTW − ‖W‖2Iq) = span{u1, . . . , um} and ker(WWT − ‖WT‖2Iq) =

span{v1, . . . , vm}, where ker(A) denotes the kernel of A and spanS denotes the span of S .

Proof. For every x ∈ ker(WTW − ‖W‖2Iq), let x =
∑q

i=1 αiui, where αi ∈ R. It follows

from the singular value decomposition of W that W =
∑r

i=1 σi(W)viu
T
i . Hence, WTW =∑r

i=1 σ
2
i (W)uiu

T
i and xTWTWx =

∑r
i=1 σ

2
i (W)α2

i . Note that xTx =
∑q

i=1 α
2
i . Thus,

‖Wx‖2 − ‖W‖2‖x‖2 = 0 if and only if
∑r

i=1 σ
2
i (W)α2

i −
∑q

i=1 ‖W‖2α2
i = 0. Note that

0 =
∑r

i=1 σ
2
i (W)α2

i −
∑q

i=1 ‖W‖2α2
i =

∑r
i=1[σ

2
i (W) − ‖W‖2]α2

i −
∑q

j=r+1 ‖W‖2α2
j =∑r

i=m+1[σ
2
i (W)− ‖W‖2]α2

i −
∑q

j=r+1 ‖W‖2α2
j . Since σi(W) < ‖W‖ for every i = m+

1, . . . , r, this equality holds if and only if αs = 0 for every s = m+ 1, . . . , q. This implies

that x =
∑m

i=1 αiui for arbitrary αi ∈ R, i = 1, . . . ,m. Hence, ker(WTW − ‖W‖2Iq) =

span{u1, . . . , um}.

Analogously, for every y ∈ ker(WWT − Iq), let y =
∑q

i=1 βivi, where βi ∈ R. Using

W =
∑r

i=1 σi(W)viu
T
i , WWT =

∑r
i=1 σ

2
i (W)viv

T
i , ‖WT‖ = ‖W‖, and the similar

arguments as above, it follows that ker(WWT − ‖WT‖2Iq) = span{v1, . . . , vm}.

The next result is due to Proposition 3.2 of [62].

Lemma 3. Let W ∈ Rq×q and r = rank(W). Suppose that the singular value decomposition

of W is given by W = V

 Σ 0

0 0

UT, where Σ = diag(σ1(W), . . . , σr(W)) ∈ Rr×r,

and U ∈ Rq×q and V ∈ Rq×q are orthogonal matrices. Define m to be the positive integer

satisfying ‖W‖ = σ1(W) = · · · = σm(W) > σm+1(W) ≥ · · · ≥ σr(W) > 0. Then

‖W‖ ≤ 1 and ker(WTW − Iq) = ker(WWT − Iq) if and only if W is paracontracting.

Proof. It follows from Proposition 3.2 of [62] that W is paracontracting if and only if

‖W‖ ≤ 1 and ui = vi, i = 1, . . . ,m, where ui, vi, andm are defined in Lemma 2. If ‖W‖ =

‖WT‖ = 1, then it follows from Lemma 2 that ker(WTW − Iq) = span{u1, . . . , um}

and ker(WWT − Iq) = span{v1, . . . , vm}. Hence, the conclusion holds. Otherwise, if

24

‖W‖ = ‖WT‖ < 1, then 1 is not an eigenvalue of W and WT. Hence, ker(WTW − Iq) =

{0} = ker(WWT − Iq).

For a matrix W ∈ Rq×q whose 2-norm is less than or equal to 1, the following result

says that its complement W − Iq is range symmetric.

Lemma 4. Let W ∈ Rq×q and ‖W‖ ≤ 1. Then ker(W − Iq) = ker(WT − Iq).

Proof. If 1 is not an eigenvalue of W , then both W − Iq and WT − Iq are nonsingular.

In this case, ker(W − Iq) = {0} = ker(WT − Iq). Now, we assume that 1 is an

eigenvalue of W . Note that for nonzero x ∈ ker(W − Iq), we have x = Wx. Now

it follows from the Cauchy-Schwarz inequality and ‖WT‖ = ‖W‖ ≤ 1 that ‖x‖2 =

xTx = (Wx)Tx = xTWTx ≤ ‖x‖‖WTx‖ ≤ ‖x‖‖WT‖‖x‖ = ‖W‖‖x‖2 ≤ ‖x‖2, which

implies that xTWTx = ‖x‖‖WTx‖. This equality holds if and only if WTx = λx for

some λ ∈ C, where C denotes the set of complex numbers. Since ‖WT‖ = ‖W‖ ≤ 1,

it follows that |λ| ≤ 1. Next, it follows from WTx = λx and x = Wx that λ∗xTx =

(WTx)Tx = xTWx = xTx, which implies that λ = λ∗ = 1, where λ∗ denotes the complex

conjugate of λ. Hence, WTx = x, which indicates that x ∈ ker(WT − Iq), leading to

ker(W − Iq) ⊆ ker(WT − Iq). Similarly, for nonzero x ∈ ker(WT − Iq), it follows from

the similar arguments as above that Wx = x, and hence, x ∈ ker(W − Iq), leading to

ker(WT − Iq) ⊆ ker(W − Iq). Thus, ker(WT − Iq) = ker(W − Iq).

Remark 1. An alternative, equivalent statement of Lemma 4 is that if ker(W − Iq) 6=

ker(WT − Iq) for some square matrix W ∈ Rq×q, then ‖W‖ > 1. �

Now we have a series of necessary and sufficient conditions for paracontraction based

on Lemmas 1–4.

Theorem 1. Let W ∈ Rq×q. Then the following statements are equivalent:

i) W is paracontracting.

25

ii) WT is paracontracting.

iii) ‖W‖ ≤ 1 and ker(WTW − Iq) = ker(W − Iq).

iv) ‖W‖ ≤ 1 and ker(WWT − Iq) = ker(WT − Iq).

v) WTW ≤ Iq and ker(WTW − Iq) = ker(WWT − Iq).

vi) WWT ≤ Iq and ker(WWT − Iq) = ker(W − Iq).

Proof. The equivalence between i) and iii) follows directly from Lemma 3.2 of [62].

Likewise, the equivalence between ii) and iv) follows from Lemma 3.2 of [62] as well.

Next, it follows from Lemma 3 that i) is equivalent to ‖W‖ ≤ 1 and ker(WTW − Iq) =

ker(WWT − Iq). By Lemma 1, ‖W‖ ≤ 1 is equivalent to WTW ≤ Iq. Hence, i) is

equivalent to v).

To show the equivalence between i) and iv), note that we have shown the equivalence

between i) and iii), the equivalence between ii) and iv), and the equivalence between i) and

v). Hence, if i) holds, then by v), WTW ≤ Iq and ker(WTW − Iq) = ker(WWT − Iq).

On the other hand, if i) holds, it follows from iii) and Lemma 3 that ker(WTW − Iq) =

ker(W − Iq) = ker(WWT − Iq). In this case, by Lemma 4, ker(WTW − Iq) = ker(W −

Iq) = ker(WWT − Iq) = ker(WT − Iq). Hence, if i) holds, then iv) holds.

Alternatively, if iv) holds, then it follows from the equivalence between ii) and iv)

that ii) holds. Now it follows from the equivalence between i) and v) that if ii) holds,

then WWT ≤ Iq and ker(WWT − Iq) = ker(WTW − Iq). By Lemma 1, WWT ≤ Iq

is equivalent to ‖W‖ ≤ 1. In this case, it follows from Lemma 4 that ker(WT − Iq) =

ker(W − Iq). Thus, if iv) holds, then ‖W‖ ≤ 1 and ker(WWT − Iq) = ker(WT − Iq) =

ker(WTW − Iq) = ker(W − Iq). Finally, it follows from the equivalence between i) and

iii) that if ‖W‖ ≤ 1 and ker(WTW − Iq) = ker(W − Iq), then i) holds.

Finally, the equivalence between iv) and vi) is immediate from Lemmas 1 and 4.

26

Next, we present a matrix analysis result to connect null spaces of two matrices with

their ranks.

Lemma 5. Let A ∈ Rm×n and C ∈ Rl×n. Then ker(A) = ker(C) if and only if rank(A) =

rank(C) = rank

A
C

.

Proof. Note that both ker(A) and ker(C) are subspaces. Then it follows from Lemma 6

in [20] that ker(A) = ker(C) if and only if ker(A)⊥ = ker(C)⊥, where ker(A)⊥ denotes

the orthogonal complement of ker(A). Next, it follows from Theorem 2.4.3 of [68, p. 103]

that ker(A)⊥ = ran(AT) and ker(C)⊥ = ran(CT), where ran(A) denotes the range space

of A. Hence, ker(A) = ker(C) if and only if ran(AT) = ran(CT). Now it follows from

Fact 2.11.5 of [68, p. 131] that ran(AT) = ran(CT) if and only if rank(AT) = rank(CT) =

rank

[
AT CT

]
. Since rank(K) = rank(KT) for any matrix K, the conclusion follows

immediately.

Motivated by Theorem 1 and Lemma 5, we have the following rank results for paracont-

raction.

Theorem 2. Let W ∈ Rq×q. Then the following statements are equivalent:

i) W is paracontracting.

ii) ‖W‖ ≤ 1 and

rank(WTW − Iq) = rank(W − Iq) = rank

WTW − Iq

W − Iq

 . (3.11)

iii) ‖W‖ ≤ 1 and

rank(WWT − Iq) = rank(W − Iq) = rank

[
WWT − Iq W − Iq

]
. (3.12)

27

Proof. It follows from Lemma 5 that (3.11) holds if and only if ker(WTW−Iq) = ker(W−

Iq). Likewise, (3.12) holds if and only if ker(WWT − Iq) = ker(WT − Iq). Now the

equivalence between i) and ii) in this result follows from the equivalence between i) and

iii) in Theorem 1. Also, the equivalence between i) and iii) in this result follows from the

equivalence between i) and iv) in Theorem 1 by noting that rank(WT−Iq) = rank(W −Iq)

and rank

WWT − Iq

WT − Iq

 = rank

[
WWT − Iq W − Iq

]
.

Based on Theorem 2 above and the proof of Theorem 5 in [67], we have the following

convergence result for sequences of paracontracting matrix functions.

Theorem 3. Let Σ be a finite index set and D ⊆ Rn be open and nonempty. Consider a

matrix function W : Σ×D → Rq×q. Assume that W (p, ·) is continuous for every p ∈ Σ.

Furthermore, assume that for every z ∈ Σ × D , ‖W (z)‖ ≤ 1 and rank(W (z)WT(z) −

Iq) = rank(W (z)− Iq) = rank

[
W (z)WT(z)− Iq W (z)− Iq

]
. For any compact subset

M ⊂ Σ×D and any sequence {zk}∞k=0 ⊆M , if there exists a constant matrix W∞ ∈ Rq×q

such that limk→∞ rank(W (zk) − Iq) = rank(W∞ − Iq) = limk→∞ rank

W (zk)− Iq

W∞ − Iq

,

then the sequence {xk}∞k=0 defined by xk+1 = W (zk)xk has a limit as k →∞.

Proof. First we claim that for every z ∈M , W (z) is paracontracting. In fact, Theorem 2

has shown that for every z ∈M , W (z) is paracontracting if and only if ‖W (z)‖ ≤ 1 and

rank(W (z)WT(z) − Iq) = rank(W (z) − Iq) = rank

[
W (z)WT(z)− Iq W (z)− Iq

]
for every z ∈ M . Next, we claim that if x 6∈ ker(W (z) − Iq) for any z ∈ M , then

maxz∈M ‖W (z)x‖ < ‖x‖. To see this, note that M is compact, W (z) is paracontracting

for every z ∈ M , and ‖W (z)y‖ is upper semicontinuous at z ∈ M for any y ∈ Rq.

Then it follows from Theorem 2.12 in [69, p. 44] that there exists z∗ ∈ M such that

maxz∈M ‖W (z)x‖ = ‖W (z∗)x‖ < ‖x‖ provided that W (z∗)x 6= x.

28

Note that xk+1 = (
∏k

i=0W (zk−i))x0 for every k ≥ 0. To show that limk→∞ xk exists, it

suffices to show that limk→∞
∏k

i=0W (zk−i) exists. First, we claim that if limk→∞ rank

(W (zk)−Iq) = rank(W∞−Iq) = limk→∞ rank

W (zk)− Iq

W∞ − Iq

, then there exists a positive

integer N such that ker(W (zk)− Iq) = ker(W∞ − Iq) for all k ≥ N . To see this assertion,

it follows from the limit definition that for any given ε ∈ (0, 1), there exists a positive integer

N1 = N1(ε) such that |rank(W (zk) − Iq) − rank(W∞ − Iq)| < ε < 1 for every k ≥ N1.

Since rank(W (zk)− Iq) and rank(W∞ − Iq) are both nonnegative integers, the inequality

|rank(W (zk) − Iq) − rank(W∞ − Iq)| < 1 holds if and only if rank(W (zk) − Iq) =

rank(W∞ − Iq) for every k ≥ N1. Similarly, there exists a positive integer N2 = N2(ε)

such that rank

W (zk)− Iq

W∞ − Iq

 = rank(W∞−Iq) for every k ≥ N2. LetN = max{N1, N2}.

Then it follows that rank(W (zk)− Iq) = rank(W∞ − Iq) = rank

W (zk)− Iq

W∞ − Iq

 for every

k ≥ N . Now it follows from Lemma 5 that ker(W (zk) − Iq) = ker(W∞ − Iq) for all

k ≥ N . Thus, ker(Iq −W (zN)) = ker(Iq −W (zm)) for every m ≥ N . Note that it follows

from paracontraction of W (·) that ker(Iq −W (zN)) 6= {0q×1}. Let {e1, e2, . . . , er} be an

orthonormal basis for ker(Iq −W (zN)) and let R = [e1, e2, . . . , er] ∈ Rq×r. By definition

of R, we have (Iq −W (zm))R = 0q×r for every m ≥ N .

Next, it follows from Lemma 4 that ker(Iq −WT(zm)) = ker(Iq −W (zm)) for every

m ≥ N . Now (Iq − WT(zm))R = 0q×r for every m ≥ N . Hence, RTW (zm) =

(WT(zm)R)T = RT. Therefore, for every i ≥ N , we have (W (zi+1) − RRT)(W (zi) −

29

RRT) = W (zi+1)W (zi)−RRT. By induction,

m∏
i=0

W (zm−i)−RRT

N−1∏
i=0

W (zN−1−i)

=

(m−N∏
i=0

W (zm−i)−RRT

)N−1∏
i=0

W (zN−1−i)

=

(m−N∏
i=0

(
W (zm−i)−RRT

))N−1∏
i=0

W (zN−1−i)

We show that limm→∞
∏m

i=0W (zm−i) = RRT
∏N−1

i=0 W (zN−1−i). To this end, it suffices

to show that for any x ∈ Rq, limm→∞(
∏m−N

i=0 (W (zm−i)−RRT))(
∏N−1

i=0 W (zN−1−i))x =

0q×1. Suppose, conversely, that there exists x ∈ Rq such that (
∏m−N

i=0 (W (zm−i)−RRT))

(
∏N−1

i=0 W (zN−1−i))x does not converge to 0q×1 as m→∞. First we claim that W (zk)−

RRT is paracontracting for every k ≥ N . To see this, let span{er+1, er+2, . . . eq} =

span{e1, e2, . . . , er}⊥ and let Q = [er+1, er+2, . . . eq] ∈ Rq×(q−r), where S⊥ denotes the

orthogonal complement of S. Next, let x 6∈ ker(W (zk) − RRT − Iq), k ≥ N . Then

x = Ry1+Qy2, where y1 ∈ Rr×1 and y2 ∈ R(q−r)×1. Note thatW (zk)R = R for all k ≥ N .

Then it follows that (W (zk)−RRT)x = W (zk)Qy2. Hence, x 6∈ ker(W (zk)−RRT − Iq)

if and only if W (zk)Qy2 6= Ry1 + Qy2, or, equivalently (W (zk) − Iq)Qy2 6= Ry1. Since

W (zk) is paracontracting, it follows from Proposition 3.2 of [65] that W (zk) is discrete-time

semistable. Then it follows from vi) of Proposition 11.10.2 of [68, p. 735] that Iq −W (zk)

is group invertible. Hence, by Corollary 3.5.8 of [68, p. 191], ran(Iq −W (zk)) ∩ ker(Iq −

W (zk)) = {0q×1}. Since (W (zk)−Iq)Qy2 ∈ ran(Iq−W (zk)) andRy1 ∈ ker(Iq−W (zk)),

it follows that (W (zk) − Iq)Qy2 6= Ry1 if and only if either (W (zk) − Iq)Qy2 6= 0q×1 or

Ry1 6= 0q×1.

If (W (zk) − Iq)Qy2 6= 0q×1, then it follows from the paracontraction of W (zk) that

‖W (zk)Qy2‖2 < ‖Qy2‖2 ≤ ‖Ry1‖2+‖Qy2‖2 = ‖Ry1+Qy2‖2, i.e. ‖(W (zk)−RRT)x‖ <

30

‖x‖. Hence,W (zk)−RRT is paracontracting for every k ≥ N . Alternatively, ifRy1 6= 0q×1,

then ‖Ry1‖ > 0. Since ‖W (zk)‖ ≤ 1, it follows that ‖W (zk)Qy2‖2 ≤ ‖Qy2‖2 < ‖Ry1‖2 +

‖Qy2‖2 = ‖Ry1 + Qy2‖2, i.e., ‖(W (zk) − RRT)x‖ < ‖x‖. Hence, W (zk) − RRT is

paracontracting for every k ≥ N .

Now we have

∥∥∥∥(m−N∏
i=0

(
W (zm−i)−RRT

))(N−1∏
i=0

W (zN−1−i)

)
x
∥∥∥∥

≤
(m−N∏

i=0

‖W (zm−i)−RRT‖
)(N−1∏

i=0

‖W (zN−1−i)‖
)
‖x‖ ≤ ‖x‖

Thus, (
∏m−N

i=0 (W (zm−i) − RRT))(
∏N−1

i=0 W (zN−1−i))x is a bounded sequence on Rq for

every m ≥ N . It follows from Bolzano-Weierstrass Theorem (Theorem 2.3 of [69, p. 27])

that there exists a subsequence {mk}∞k=0 ⊆ {N,N + 1, N + 2, . . .} such that

lim
k→∞

(mk−N∏
i=0

(W (zmk−i)−RRT)

)(N−1∏
i=0

W (zN−1−i)

)
x = w 6= 0q×1.

Let (
∏mk−N

i=0 (W (zmk−i)−RRT))(
∏N−1

i=0 W (zN−1−i))x = skw+dk, where dk ∈ span{w}⊥.

Note that wT(
∏mk−N

i=0 (W (zmk−i)−RRT))(
∏N−1

i=0 W (zN−1−i))x = sk‖w‖2 and dT
k (
∏mk−N

i=0

(W (zmk−i)−RRT))(
∏N−1

i=0 W (zN−1−i))x = ‖dk‖2. Taking the limit on both sides of these

two equations yields limk→∞ sk = 0 and limk→∞ dk = 0q×1.

Next, we claim that ker(Iq −W (zi) + RRT) = {0q×1} for every i ≥ mk and every

k = 0, 1, 2, If x ∈ ker(Iq − W (zi) + RRT) for every i ≥ mk, then W (zi)x =

(Iq + RRT)x for every i ≥ mk. Since ‖W (zi)x‖2 = ‖x‖2 + 2‖RTx‖2 + ‖RRTx‖2 and

W (zi) is paracontracting, it follows that RTx = 0r×1. Hence, W (zi)x = x, which implies

that x ∈ ker(Iq −W (zi)) for every i ≥ mk. Since mk ≥ N and the column vectors of

R form an orthonormal basis for ker(Iq −W (zN)) = ker(Iq −W (zi)) for every i ≥ mk,

31

it follows that there exists y ∈ Rr such that x = Ry. Since RTx = 0r×1, it follows that

RTRy = 0r×1, and hence, Ry = 0q×1. Finally, x = Ry = 0q×1.

Since w 6= 0q×1, it follows that w 6∈ ker(Iq −W (zi) +RRT) for every i ≥ mk. Hence,

for every k = 0, 1, 2, . . ., there exists j > mk such that w 6∈ ker(Iq −W (zj) +RRT). Let

nk = min{j : j > mk,w 6∈ ker(Iq −W (zj) +RRT)}. Then it follows that

(nk−N∏
i=0

(
W (znk−i)−RRT

))(N−1∏
i=0

W (zN−1−i)

)
x

=

(nk−mk−1∏
i=0

(
W (znk−i)−RRT

))(mk−N∏
i=0

(
W (zmk−i)−RRT

))

×
(N−1∏

i=0

W (zN−1−i)

)
x

= sk

(
W (znk)−RRT

)
w +

(nk−mk−1∏
i=0

(
W (znk−i)−RRT

))
dk.

Taking the norm on both sides of this equation yields ‖(
∏nk−N

i=0 (W (znk−i)−RRT))(
∏N−1

i=0

W (zN−1−i))x‖ ≤ |sk|maxznk∈M ‖(W (znk)−RRT)w‖+ ‖dk‖.

We claim that if x 6∈ ker(W (znk)−RRT−Iq), then maxznk∈M ‖(W (znk)−RRT)x‖ <

‖x‖. Note that we have shown that x 6∈ ker(W (znk)−RRT − Iq) if and only if (W (znk)−

Iq)Qy2 6= 0q×1 or Ry1 6= 0q×1, where x = Ry1 + Qy2. If (W (znk) − Iq)Qy2 6=

0q×1, then it follows from the paracontraction of W (zk) and compactness of M that

maxnk∈M ‖W (znk)Qy2‖ ≤ maxz∈M ‖W (z)Qy2‖ = ‖W (z∗)Qy2‖ < ‖Qy2‖ ≤ (‖Ry1‖2 +

‖Qy2‖2)1/2 = ‖Ry1 + Qy2‖ for some z∗ ∈ M , i.e., maxnk∈M ‖(W (znk) − RRT)x‖ <

‖x‖. Alternatively, if Ry1 6= 0q×1, then ‖Ry1‖ > 0. Note that we have shown that if

x 6∈ ker(W (z) − Iq) for any z ∈ M , then maxz∈M ‖W (z)x‖ < ‖x‖. Thus, it follows

that maxznk∈M ‖W (znk)Qy2‖ ≤ ‖Qy2‖ < (‖Ry1‖2 + ‖Qy2‖2)1/2 = ‖Ry1 + Qy2‖, i.e.,

maxznk∈M ‖(W (znk)−RRT)x‖ < ‖x‖.

Since w 6∈ ker(Iq−W (znk)+RRT), it follows that maxznk∈M ‖(W (znk)−RRT)w‖ <

32

‖w‖. Hence,

lim sup
k→∞

∥∥∥∥(nk−N∏
i=0

(
W (znk−i)−RRT

))(N−1∏
i=0

W (zN−1−i)

)
x
∥∥∥∥

≤ lim sup
k→∞

|sk| max
znk∈M

‖(W (znk)−RRT)w‖+ lim sup
k→∞

‖dk‖

≤ max
znk∈M

‖(W (znk)−RRT)w‖ < ‖w‖.

Note that ‖(
∏nk−N

i=0 (W (znk−i)−RRT))(
∏N−1

i=0 W (zN−1−i))x‖ is monotonically decreasing

in terms of k. Then it follows that limk→∞ ‖(
∏nk−N

i=0 (W (znk−i)−RRT))(
∏N−1

i=0 W (zN−1−i))

x‖ = ‖w‖. Consequently, for any subsequence {sk}∞k=0 of {nk}∞k=0, limk→∞ ‖(
∏sk−N

i=0

(W (zsk−i) − RRT))(
∏N−1

i=0 W (zN−1−i))x‖ = ‖w‖. On the other hand, it follows from

lim supk→∞ ‖(
∏nk−N

i=0 (W (znk−i) − RRT))(
∏N−1

i=0 W (zN−1−i))x‖ < ‖w‖ that there exists

a subsequence {qk}∞k=0 of {nk}∞k=0 such that

lim
k→∞

∥∥∥∥(qk−N∏
i=0

(
W (zqk−i)−RRT

))(N−1∏
i=0

W (zN−1−i)

)
x
∥∥∥∥ < ‖w‖.

This is a contradiction. Therefore, limm→∞
∏m

i=0W (zm−i) = RRT
∏N−1

i=0 W (zN−1−i).

3.2 Cooperative Learning Consensus

In this section, we present some theoretic results on the convergence of the cooperative

learning consensus protocol (3.4)–(3.8) with (3.9) by means of matrix paracontraction

techniques and nonnegative matrix tools. In particular, we view the proposed cooperative

learning consensus protocol with (3.9) as a discrete-time, linear time-varying system and

then use Theorems 1–3 in Section 3.1.2 and Theorem 1 in [64] to rigorously show its

convergence under two different sufficient conditions.

33

First, note that with (3.9), we have

arg min
θ∈Rn

∑
j∈N kt

[θj(t)− θ]TΦk,j(θj(t)− θ) = arg min
θ∈Rn

∑
j∈N kt

‖θj(t)− θ‖2

=
1

|N k
t |
∑
j∈N kt

θj(t), k = 1, . . . , q. (3.13)

Hence, substituting (3.13) into (3.7) yields

θk(t+ 1) = θk(t) +
fk(t)

|N k
t |
∑
j∈N kt

[θj(t)− θk(t)] + fk(t)µk(t)[θq,min(t)− θk(t)], (3.14)

k = 1, . . . , q

where we used the fact that θq+k,min(t) = θq,min(t) = arg min1≤i≤q F (θi(t)).

Next, to convert the above forms into (3.10), we define a series of matrices Rk ∈ Rq×q,

Uk ∈ Rq×q, and A[j]
k ∈ Rq×q, j = 1, . . . , q, k = 0, 1, 2, . . ., throughout the chapter as

follows: Rk = diag(f 1
k , . . . , f

q
k), Uk = diag(µ1

k, . . . , µ
q
k), andA[j]

k is given by

A
[j]
k = RkUk(1q×1 ⊗ E[j]

1×q − Iq)−RkD
−1
k Lk (3.15)

where ⊗ denotes the Kronecker product, 1m×l denotes the m-by-l matrix whose entries are

all ones, and E[j]
l×lq ∈ Rl×lq denotes a block-matrix whose jth block-column is Il and the rest

of the block-elements are all zero matrices, i.e., E[j]
l×lq = [0l×l, . . . , 0l×l, Il, 0l×l, . . . , 0l×l],

where 0m×l denotes the m-by-l matrix whose entries are all zeros, j = 1, . . . , q.

Using these notations, the cooperative learning consensus protocol (3.14) can be written

as (3.10) with W (t) = Inq − (RtD
−1
t Lt) ⊗ In + ((RtUt) ⊗ In)(1q×1 ⊗ E[jt]

n×nq − Inq) =

Inq +A
[jt]
t ⊗ In = (Iq +A

[jt]
t)⊗ In, jt ∈ {1, . . . , q}, t ∈ Z+.

34

3.2.1 Quadratic Monotone Convergence via Matrix Paracontraction

In this subsection, we focus on using Theorems 1–3 in Section 3.1.2 to study the monotone

convergence of the proposed cooperative learning consensus protocol with respect to a

quadratic function of its state. This type of the convergence is named after quadratic

monotone convergence (QMC).

Lemma 6. Consider A[j]
k defined by (3.15), j = 1, . . . , q, k = 0, 1, 2, Then for every

j = 1, . . . , q, k = 0, 1, 2, . . ., rank(A
[j]
k) ≤ q − 1 and span{1q×1} ⊆ ker(A

[j]
k). If in

addition rank(A
[j]
k) = q − 1, then ker(A

[j]
k) = span{1q×1}.

Proof. First, note that (1q×1 ⊗ E
[j]
1×q − Iq)1q×1 = 0q×1 and Lk1q×1 = 0q×1. Hence,

A
[j]
k 1q×1 = 0q×1. This implies that rank(A

[j]
k) ≤ q − 1 and span{1q×1} ⊆ ker(A

[j]
k).

Finally, if rank(A
[j]
k) = q−1, then dim ker(A

[j]
k) = 1, and hence, ker(A

[j]
k) = span{1q×1},

where dimS denotes the dimension of a subspace S.

It follows from Lemma 6 that 0 is an eigenvalue ofA[j]
k for every j = 1, . . . , q and every

k ∈ Z+. Hence, 1 is an eigenvalue of Iq +A
[j]
k . The next result gives the exact value to the

2-norm or maximum singular value for Iq +A
[j]
k under certain conditions.

Lemma 7. Consider the matrices A[j]
k defined by (3.15), j = 1, . . . , q, and k = 0, 1, 2,

Assume that for every j = 1, . . . , q and every k = 0, 1, 2, . . ., the following linear matrix

inequality holds:

−A[j]
k − (A

[j]
k)T A

[j]
k

(A
[j]
k)T Iq

 ≥ 0. (3.16)

Then for every j = 1, . . . , q and every k = 0, 1, 2, . . ., ‖Iq +A
[j]
k ‖ = 1.

35

Proof. First, it follows from Lemma 6 that 0 is an eigenvalue of A[j]
k and hence, 1 is an

eigenvalue of Iq +A
[j]
k , which implies that ‖Iq +A

[j]
k ‖ ≥ 1. Thus, to prove ‖Iq +A

[j]
k ‖ = 1,

it suffices to show that ‖Iq + A
[j]
k ‖ ≤ 1. Note that by Lemma 1, ‖Iq + A

[j]
k ‖ ≤ 1 if

and only if (Iq +A
[j]
k)(Iq +A

[j]
k)T ≤ Iq, or equivalently, A[j]

k (A
[j]
k)T +A

[j]
k + (A

[j]
k)T is

negative-semidefinite, which is equivalent to (3.16) by the Schur complement.

Remark 2. Using the Schur complement, it can be seen that (3.16) is also equivalent to

[RkUk(1q×1 ⊗ E[j]
1×q − Iq)−RkD

−1
k Lk][RkUk(1q×1 ⊗ E[j]

1×q − Iq)−RkD
−1
k Lk]

T

≤ RkD
−1
k Lk + LT

kD
−1
k Rk +RkUk(Iq − 1q×1 ⊗ E[j]

1×q) + (Iq − 1q×1 ⊗ E[j]
1×q)

TUkRk.

�

Remark 3. One could also use the matrix (A
[j]
k)TA

[j]
k + (A

[j]
k)T +A

[j]
k to derive a similar

condition as (3.16) to guarantee its negative-semidefiniteness. �

Now we have the QMC result for the proposed cooperative learning consensus protocol.

Theorem 4. Consider (3.4)–(3.8) with (3.9). Assume that Assumptions 1 and 2 hold.

Furthermore, assume that for every k ∈ Z+ and every j = 1, . . . , q, the following conditions

hold:

Q1) (3.16) holds.

Q2) rank(A
[j]
k) = rank[A

[j]
k (A

[j]
k)T +A

[j]
k + (A

[j]
k)T]

= rank

[
A

[j]
k (A

[j]
k)T + (A

[j]
k)T A

[j]
k

]
= q − 1.

Then limk→∞ θi(k) = θ† for every θi(0) ∈ Rn and every i = 1, . . . , q, where θ† =

limk→∞ arg min1≤i≤q F (θi(k)). Furthermore, this convergence is QMC, that is, V (θ1(t+

1), . . . ,θq(t+1)) ≤ V (θ1(t), . . . ,θq(t)) for all k ∈ Z+, where V (θ1, . . . ,θq) =
∑q

i=1 ‖θi‖2.

36

Proof. Let X(t) = [θT1 (t), . . . ,θTq (t)]T ∈ Rnq. Note that (3.4)–(3.8) with (3.9) can be

rewritten as the compact form (3.10), where W (t) = Inq +A
[jt]
t ⊗ In = (Iq +A

[jt]
t)⊗ In,

jt ∈ {1, . . . , q}, t ∈ Z+. Then it follows from Assumption Q1) and Lemma 7 that

‖Inq+A
[j]
k ⊗In‖ = 1. Note that it follows from the matrix column elementary operation that

rank

[
A

[j]
k (A

[j]
k)T + (A

[j]
k)T +A

[j]
k A

[j]
k

]
= rank

[
A

[j]
k (A

[j]
k)T + (A

[j]
k)T A

[j]
k

]
. Hence,

it follows from Assumption Q2) that rank[A
[j]
k (A

[j]
k)T +A

[j]
k + (A

[j]
k)T]

= rank

[
A

[j]
k (A

[j]
k)T + (A

[j]
k)T +A

[j]
k A

[j]
k

]
= rank(A

[j]
k), that is,

rank[(A
[j]
k (A

[j]
k)T +A

[j]
k + (A

[j]
k)T)⊗ In]

= rank

[
(A

[j]
k (A

[j]
k)T + (A

[j]
k)T +A

[j]
k)⊗ In A

[j]
k ⊗ In

]
= rank(A

[j]
k ⊗ In).

By iii) of Theorem 2, Inq +A
[j]
k ⊗ In is paracontracting. Next, it follows from Assumption

Q2) and Lemma 6 that ker(A
[j]
k) = span{1q×1} for any j = 1, . . . , q and every k ≥ 0.

Hence, ker(A
[j]
k) = ker(A

[1]
0) for any j = 1, . . . , q and every k ≥ 0. By Lemma 5, we

have rank(A
[j]
k) = rank(A

[1]
0) = rank

A[j]
k

A
[1]
0

 for any j = 1, . . . , q and every k ≥ 0. Let

W∞ = Inq + A
[1]
0 ⊗ In. Then it follows that rank(W (t) − Inq) = rank(W∞ − Inq) =

rank

W (t)− Inq

W∞ − Inq

 for every t ∈ Z+. Now, it follows from Theorem 3 that limt→∞X(t)

exists. The consensus of the limiting state follows directly from Assumption Q2) and

Lemma 6 on ker(A
[j]
k). Finally, since limk→∞ θi(k) = θ†, it follows from (3.14) that

limk→∞ θq,min(k) = limk→∞ θi(k) = θ†, which means that θ† = limk→∞ arg min1≤i≤q

F (θi(k)). The monotone property
∑q

i=1 ‖θi(k + 1)‖2 ≤
∑q

i=1 ‖θi(k)‖2 follows from the

fact that ‖W (t)‖ = 1 and ‖X(t+ 1)‖ = ‖W (t)X(t)‖ ≤ ‖W (t)‖‖X(t)‖ = ‖X(t)‖.

37

3.2.2 Orthant Invariant Convergence via Nonnegative Matrices

In this subsection, we use Theorem 1 in [64] to study the invariant convergence of the

cooperative learning consensus protocol (3.14) within the nonnegative or nonpositive orthant.

This type of the convergence is named after orthant invariant convergence (OIC). Recall

from [57] that a matrixA ∈ Rn×n is called nonnegative if all the entries ofA are nonnegative.

Lemma 8. Consider A[j]
k defined by (3.15), j = 1, . . . , q, k = 0, 1, 2, If for every

i = 1, . . . , q and k = 0, 1, 2, . . ., f ik(1 + µik) ≤ 1, then Iq +A
[j]
k is nonnegative for every

j = 1, . . . , q and k = 0, 1, 2,

Proof. It follows from (3.14) that

θk(t+ 1) = [1− fk(t)− fk(t)µk(t)]θk(t) +
fk(t)

|N k
t |
∑
j∈N kt

θj(t) + fk(t)µk(t)θq+k,min(t).

(3.17)

Hence, if 1− fk(t)− fk(t)µk(t) ≥ 0, then Iq +A
[j]
k is nonnegative for every j = 1, . . . , q

and k = 0, 1, 2,

The following result is due to Theorem 1 of [64].

Lemma 9 ([64]). Consider (3.10) where X(t) ∈ Rm and W (t) ∈ Rm×m, t ∈ Z+. Assume

that W (t) is nonnegative and W (t)1m×1 = 1m×1 for every t ∈ Z+. Define E (t) as the set of

ordered pairs (j, i) such that the (i, j)th element of W (t) is positive, i, j = 1, . . . ,m, i 6= j.

Let E be the set of (i, j) such that (i, j) ∈ E (t) for infinitely many t ∈ Z+, i, j = 1, . . . ,m,

i 6= j. Furthermore, the following additional assumptions hold:

i) The set B ⊆ N = {1, . . . ,m} is nonempty.

ii) There exists c > 0 such that if (j, i) ∈ E (t), then the (i, j)th element of W (t) is

bounded below by c.

38

iii) There exists a positive integer T such that for every t ∈ Z+,
⋃T
i=1 E (t+ i) = E .

iv) The digraph formed by (N ,E) contains a directed communication path from every

i ∈ B to every j ∈ N .

Then there exist φi ≥ 0, i = 1, . . . ,m, such that limt→∞X(t) = (1m×1[φ1, . . . , φm])X(0).

Furthermore, if i ∈ B, then φi > 0. Finally, this convergence is OIC, that is, X(t) ∈

Rm

+ = {[x1, . . . , xm]T ∈ Rm : xi ≥ 0, i = 1, . . . ,m} if X(0) ∈ Rm

+ or X(t) ∈ Rm

− =

{[x1, . . . , xm]T ∈ Rm : xi ≤ 0, i = 1, . . . ,m} if X(0) ∈ Rm

− .

Using the above result, we have the following OIC result for the proposed cooperative

learning consensus protocol.

Theorem 5. Consider (3.4)–(3.8) with (3.9). Assume that Assumptions 1 and 2 hold with the

digraph Gt = (V , Et), where V = {1, . . . , q}. Let E be the set of (i, j) such that (i, j) ∈ Et

for infinitely many t ∈ Z+, i, j = 1, . . . , q, i 6= j. Furthermore, assume that for every

k ∈ Z+ and every j = 1, . . . , q, the following conditions hold:

O1) f ik(1 + µik) ≤ 1.

O2) There exists a positive integer T such that for every k ∈ Z+,
⋃T
i=1 Ek+i = E .

Then limk→∞ θi(k) = θ† for every θi(0) ∈ Rn and every i = 1, . . . , q, where θ† =

limk→∞ arg min1≤i≤q F (θi(k)). Furthermore, this convergence is OIC.

Proof. To prove the conclusion, it suffices to verify all of the assumptions in Lemma 9.

First, it follows from Assumption O1) and Lemma 8 that Iq + A
[j]
k is nonnegative for

every j = 1, . . . , q and k = 0, 1, 2, Furthermore, it follows from Lemma 6 that

(Iq +A
[j]
k)1q×1 = 1q×1.

Next, by Assumption 1, i) and iv) of Lemma 9 hold with B = N = {1, . . . , q} = V .

For A[j]
k given by (3.15), it follows from (3.17) that all of the off-diagonal elements of

39

Iq + A
[j]
k are chosen among f ik/|N i

k|, f ik/|N i
k| + f ikµ

i
k, and f ikµ

i
k. Since |N i

k| ≤ q − 1,

f ik ≥ fmin > 0, and µik ≥ µmin > 0, it follows that f ik/|N i
k| ≥ fmin/(q − 1), f ik/|N i

k| +

f ikµ
i
k ≥ fmin/(q − 1) + fminµmin, and f ikµ

i
k ≥ fminµmin. Then ii) of Lemma 9 holds

with E (t) = Et and c = min{fmin/(q − 1), fminµmin} > 0. Finally, iii) of Lemma 9

follows directly from Assumption O2) with E = E . Note that for (3.10) with X(t) =

[θT1 (t), . . . ,θTq (t)]T ∈ Rnq,X(t) = W (t)W (t−1) · · ·W (0)X(0) = [(Iq+A
[jt]
t)⊗In][(Iq+

A
[jt−1]
t−1)⊗ In] · · · [(Iq +A

[j0]
0)⊗ In]X(0) = ([(Iq +A

[jt]
t)(Iq +A

[jt−1]
t−1) · · · (Iq +A

[j0]
0)]⊗

In)X(0). Now it follows from Lemma 9 that there exists φi > 0, i = 1, . . . , q, such that

limt→∞X(t) = ((1q×1[φ1, . . . , φq]) ⊗ In)X(0), and hence, limk→∞ θi(k) = θ† for every

θi(0) ∈ Rn and every i = 1, . . . , q, where θ† = limk→∞ arg min1≤i≤q F (θi(k)), and the

convergence is OIC.

Remark 4. Both Theorems 4 and 5 give sufficient conditions to guarantee the convergence

of (3.4)–(3.8) with (3.9). While Theorem 4 does not require W (t) to be nonnegative, it

involves a critical norm condition (Q1) and a rank condition (Q2). In contrast, Theorem 5

does not have the norm and rank conditions; but it requires W (t) to have the nonnegativity

property (O1) and joint connectivity property (O2). �

3.3 Simulation

3.3.1 Verification

To illustrate the convergence property of the proposed cooperative learning consensus

protocol under different suggested convergence directions for the linear case, we consider

two cost functions F1(x) = |x1 − x2| + |x3 − x1| and F2(x) = max{x1, x2, x3} −

min{x1, x2, x3} for x = [x1, x2, x3]
T ∈ R3. The function Φij(·) is chosen as Φij(xj(t) −

xi(t)) = xj(t) − xi(t). The number of bats used in the cooperative learning consensus

40

protocol is 4. The Laplacian matrix Lt of its graph is given by

Lt =

2 −1 −1 0

−1 3 −1 −1

−1 −1 3 −1

0 −1 −1 2

and hence the graph contains a ring loop. The frequency fi(t) is drawn from [0.2, 0.7]

randomly and the zooming number µi(t) is drawn from [0.2, 0.5] randomly for every i =

1, 2, 3, 4. In the simulation we verified (3.16) and the rank condition Q2) in Theorem 4 at

every time instant in order to proceed with the algorithm running. Figure 3.1 shows the

convergence of the cooperative learning consensus protocol when minimizing F1(x) while

Figure 3.2 shows the convergence of the cooperative learning consensus protocol when

minimizing F2(x) = max{x1, x2, x3} −min{x1, x2, x3}.

Next, we consider Theorem 5. Again, the number of bats used in the cooperative

learning consensus protocol is 4. The zooming number µi(t) is drawn from [0.2, 0.7]

randomly and the frequency fi(t) is drawn from [0.2, 0.5] randomly, and thus the first

condition O1) is satisfied. The Laplacian matrix Lt of its graph is given as follows: L3s+1 =

2 −1 −1 0

−1 2 0 −1

−1 0 2 −1

0 −1 −1 2

, L3s+2 =

2 −1 0 −1

−1 2 −1 0

0 −1 2 −1

−1 0 −1 2

, andL3s+3 =

3 −1 −1 −1

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 2

,

where s ∈ Z+. Thus,
⋃3
i=1 Ek+i = E for every k ∈ Z+, and hence, the second condition

O2) is satisfied. Figure 3.3 shows the convergence of the cooperative learning consensus

protocol when minimizing F1(x) = |x1 − x2| + |x3 − x1| while Figure 3.4 shows the

convergence of the cooperative learning consensus protocol when minimizing F2(x) =

max{x1, x2, x3} −min{x1, x2, x3}.

41

-1

1

-0.8

-0.6

0
0.2

-0.4

-1

x
3

0.1

-0.2

0

x
2

-2

0

-0.1

x
1

0.2

-3 -0.2
-0.3-4

-0.4
-5 -0.5

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning consensus.

-1

5

-0.8

-0.6

5

-0.4

x
3

4

-0.2

x
2

30

0

2

x
1

0.2

1

0

-1
-5 -2

0

2

4

6

8

10

12

14

(b) Function value map

Figure 3.1: Convergence of cooperative learning consensus when minimizing F1(x) =
|x1 − x2|+ |x3 − x1|: Theorem 4.

42

-0.1

0.1

-0.05

0

0
1.2

0.05

-0.1

x
3

1

0.1

0.8

x
2

-0.2

0.15

0.6

x
1

0.2

-0.3 0.4
0.2-0.4

0
-0.5 -0.2

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning consensus.

-0.1

2

-0.05

0

1 2

0.05

x
3

1.5

0.1

1

x
2

0

0.15

0.5

x
1

0

0.2

-0.5-1
-1

-1.5
-2 -2

0

0.5

1

1.5

2

2.5

3

3.5

4

(b) Function value map

Figure 3.2: Convergence of cooperative learning consensus when minimizing F2(x) =
max{x1, x2, x3} −min{x1, x2, x3}: Theorem 4.

43

-1

2

0

1

1.5
1.4

2

x
3

1.2
1

3

1

x
2

4

0.8

x
1

0.5 0.6

5

0.4
0 0.2

0
-0.5 -0.2

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning consensus.

0

2

0.5

1

1.5

2

1 2

2.5

x
3

1.5

3

1

x
2

3.5

0
0.5

4

x
1

0

4.5

-0.5-1
-1

-1.5
-2 -2

0

1

2

3

4

5

6

7

8

(b) Function value map.

Figure 3.3: Convergence of the cooperative learning consensus protocol when minimizing
F1(x) = |x1 − x2|+ |x3 − x1|: Theorem 5.

44

-0.5

5

0

0.5

1

4

1.5

2.5

2

3

x
3

2

2.5

x
2

3

2 1.5

3.5

x
1

1

4

1
0.5

0
0

-1 -0.5

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning consensus.

-0.5

6

0

0.5

1

1.5

4 6

2

x
3

5

2.5

x
2

4

3

2

3.5

3

x
1

4

2
0

1

0
-2 -1

0

1

2

3

4

5

6

7

(b) Function value map.

Figure 3.4: Convergence of the cooperative learning consensus protocol when minimizing
F2(x) = max{x1, x2, x3} −min{x1, x2, x3}: Theorem 5.

45

3.3.2 Comparison

In this part, we will conduct a comparison simulation to demonstrate the key difference–the

ability to solve a separate, unrelated optimization problem–between the proposed cooperative

learning consensus protocol and the existing, most dominant average consensens protocols

in the literature. Here we use two benchmark test functions from [33] serving as the

cost function F (x) of the separate optimization problem minx∈Rn F (x). The first one is

Rosenbrock’s Valley function: F1(x) =
∑n−1

i=1 [100(xi+1− x2i)2 + (1− xi)2] and the second

one is Zakharov function: F2(x) =
∑n

i=1 x
2
i + (0.5ixi)

2 + (0.5ixi)
4. The global minimum

for both of them is 0 at xi = 1 and at xi = 0, respectively, i = 1, . . . , n.

In the simulation, we take x = [x1, x2, x3, x4]
T. For both F1(x) and F2(x), we run 30

times for both the average consensus (AC) and the proposed cooperative learning consensus

(CLC). For each run, the initial value for both consensus protocols are the same. Finally, we

take the average of their state information in 30 runs as the ultimate value for x, and use it

to compute F1(x) and F2(x) for comparison of both consensus protocols. The numerical

comparisons are provided in Tables 3.1 and 3.2. According to these results, the CLC protocol

can achieve much better statistical performance than the AC protocol.

Table 3.1: Comparison of the proposed cooperative learning consensus and average consensus for
F1(x) after 30 run times

Algorithm Min Max Median Average SD
Cooperative Learning Consensus 2.00E-03 6.07E+01 2.98E+00 5.11E+00 1.04E+01

Average Consensus 1.47E+00 4.57E+03 1.65E+01 2.77E+02 8.32E+02

Figure 3.5 shows the convergence of the average consensus and the proposed cooperative

learning consensus under the benchmark function F1(x), respectively. The proposed

46

Table 3.2: Comparison of the proposed cooperative learning consensus and average consensus for
F2(x) after 30 run times

Algorithm Min Max Median Average SD
Cooperative Learning Consensus 1.33E-10 2.37E-01 2.197E-05 1.30E-02 4.30E-02

Average Consensus 1.10E-02 2.87E+02 2.03E+00 1.80E+01 5.19E+01

cooperative learning consensus approaches the optimal solution 1 closer than the average

consensus. Moreover, the proposed cooperative learning consensus has the steady-state

result 15.9276 for F1(x) while the average consensus result for F1(x) is 72.2378. Clearly

the proposed cooperative learning consensus outperforms the average consensus by a large

margin in this case when solving a minimization problem of F1(x).

Figure 3.6 shows the convergence of the average consensus and the proposed cooperative

learning consensus under the benchmark function F2(x), respectively. The proposed

cooperative learning consensus approaches the optimal solution 0 while the average consensus

has a bigger deviation from the optimal solution 0. Moreover, the proposed cooperative

learning consensus has the steady-state result 0.0075 for F2(x) while the average consensus

result for F2(x) is 1.2405. Clearly the proposed cooperative learning consensus is still far

superior to the average consensus in this case when solving a minimization problem of

F2(x).

3.4 Conclusion

In this chapter, motivated by the bat searching algorithm in swarm intelligence, a new class

of cooperative learning consensus protocols were proposed. This new consensus protocol

can simultaneously fulfill two tasks in one framework: an optimization problem and a

consensus achievement problem. The onvergene analysis of the proposed cooperative

learning consensus protocol was discussed in details for the linear case by means of

nonnegative and paracontracting matrix analysis.

47

0 20 40 60 80
iteration number

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

st
at
e
x1

CLC_agent
AC_agent
optimal value

(a) x1 versus iteration number.

0 20 40 60 80
iteration number

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

st
at
e
x2

CLC_agent
AC_agent
optimal value

(b) x2 versus iteration number.

0 20 40 60 80
iteration number

-1.0

-0.5

0.0

0.5

1.0

st
at
e
x3 CLC_agent

AC_agent
optimal value

(c) x3 versus iteration number.

0 20 40 60 80
iteration number

-1.0

-0.8

-0.5

-0.2

0.0

0.2

0.5

0.8

1.0

st
at
e
x4

CLC_agent
AC_agent
optimal value

(d) x4 versus iteration number.

Figure 3.5: Convergence of average consensus for Rosenbrock’s Valley function.

One important remaining problem for the proposed cooperative learning consensus

protocol is the time delay issue for the multihop relay protocol part when the two-step

information exchange is going among these bats. when the two-step information exchange

is going among these bats. In this chapter, we just assumed that this two-step information

exchange occurs at every time instant. It would be interesting to see what will happen to the

proposed cooperative learning consensus protocol if there is a time delay or latency in this

information exchange process. Note that some time delay issues have been discussed for

continuous-time consensus protocols under a general framework of semistability theory for

nonlinear dynamical systems [70]. In the next chapter, we will explore the performance of

this algorithm for the nonliear case of the flux function.

48

0 20 40 60 80
iteration number

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

st
at
e
x1

CLC_agent
AC_agent
optimal value

(a) x1 versus iteration number.

0 20 40 60 80
iteration number

-0.8

-0.6

-0.4

-0.2

0.0

0.2

st
at
e
x2

CLC_agent
AC_agent
optimal value

(b) x2 versus iteration number.

0 20 40 60 80
iteration number

-1.5

-1.0

-0.5

0.0

0.5

1.0

st
at
e
x3

CLC_agent
AC_agent
optimal value

(c) x3 versus iteration number.

0 20 40 60 80
iteration number

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

st
at
e
x4

CLC_agent
AC_agent
optimal value

(d) x4 versus iteration number.

Figure 3.6: Convergence of cooperative learning consensus for minimizing Rosenbrock’s
Valley function.

49

CHAPTER 4

THE BIO-INSPIRED COOPERATIVE LEARNING CONSENSUS

UNDER SUGGESTED CONVERGENCE DIRECTION:

NONLINEAR CASE

4.1 Introduction

Distributed network coordination of dynamic multi-agent systems has attracted a lot of

attention in recent years from many aspects such as the application of multi-agent systems

in formation control [71–73], flocking and fish schooling [74, 75], and distributed sensor

networks [76]. The foundation of designing such distributed network coordinated algorithms

is the consensus protocols derived from corresponding consensus problems. The consensus

problems have been studied considerably in many different fields. In [77], the authors

provide a general framework of the consensus problems to study multi-agent systems

with fixed and switching topologies. A distributed algorithm is proposed to reach the

global consensus in finite time in [78]. In [79], the distributed H∞ consensus problems

are explored for multi-agent systems subject to external disturbances and uncertainties.

The authors in [80] and [81] propose the consensus algorithms for a group of agents with

limited communication data rate. A consensus tracking algorithm is proposed in [82] for

multi-agents with fixed and switching topologies to ensure that the state of the agents

follows a reference of the leader. In [83], to deal with the group coordination problem with

50

undirected communication graphs, a passivity-based design framework is proposed.

Among these research topics, some of the consensus problems are motivated by swarm

intelligence. Many researchers have constructed mathematical models to simulate their

collective behaviors in biological systems [84], [85]. Later, various mathematical techniques

are used by control researchers to develop a rigorous control-theoretic framework to

conduct theoretical analysis of these behaviors. In [86], a nonnegative matrix analysis

technique is used to investigate the coordination behavior of multi-agent systems. The

authors in [87] show that the algebraic graph theory can be used to analyze the consensus

protocol for multi-agent systems under dynamically changing interaction topologies. In

[88], a Lyapunov-based method is used to develop a general framework for designing

consensus protocols in dynamic networks for achieving multi-agent coordination in finite

time. Motivated by the bat searching (BS) algorithm, we propose a new bat-inspired

consensus protocol in this chapter. It combines the original bat algorithm with the idea

of multi-agent coordination optimization (MCO) algorithm [89]. The proposed consensus

protocol is embedded into a separate optimization problem first. This embedded optimization

problem guides the convergence direction. The proposed consensus protocol has some

nonlinear dynamics which differs from the consensus protocol in last chapter. Meanwhile,

we consider a multi-agent system with external disturbances to design its consensus protocols.

These proposed consensus protocols have a potential of solving a simultaneous optimized

planning and regulating problem for agent-based autonomous systems, with applications in

manufacturing, robotics, and power systems.

4.2 Bat-Inspired Consensus

The notation used in this chapter are presented here. Some time-dependent, algebraic graph

related notations are used to describe the cooperative bat-inspired consensus protocols.

51

Specifically, R denotes the set of real number, R+ denotes the set of nonnegative real

numbers, Rn denotes the set of n-dimensional real column vectors, Rn×m denotes the set

of n-by-m matrices, (·)T denotes transpose, (·)−1 denotes inverse, and || · || denotes the

Euclidean norm, respectively. Next, ⊗ denotes the Kronecker product. diag(x) denotes a

square diagonal matrix with the elements of vector x on the main diagonal. Let G(t) =

(V , E(t)) denote a dynamic directed graph with the set of vertices V = {v1, v2, . . . , vN}

and E(t) ⊂ V × V representing the set of edges, where t ∈ Z̄+ = {0, 1, 2, . . .}. A graph

with the property that (vi, vj) ∈ E implies (vj, vi) ∈ E is said to be undirected. The

time-varying adjacency matrix A(t) ∈ RN×N associated with the directed graph G is defined

by nonnegative adjacency elements aij(t) as A(t) = [aij(t)]. We assume (vi, vj) ∈ E(t)

if and only if aij = 1, (vi, vj) 6∈ E(t) if and only if aij = 0, and aii = 0 for all i ∈ N ,

where N = {1, 2, . . . , N} denotes the node index of G(t). The set of neighbors of the node

vi is denoted by N i(t) = {vj ∈ V : (vi, vj) ∈ E(t), j = 1, 2, . . . , |N |, j 6= i}, where |N |

denotes the cardinality of N . The degree matrix of a dynamic graph G(t) is defined by

δ(t) = [dij(t)], where i, j ∈ {1, 2, . . . , |N |} and

dij(t) =

∑|N |

j=1 aij(t), if i = j,

0, if i 6= j.

The Laplacian matrix of the dynamic graph G is defined by L(t) = δ(t)− A(t). If there is

a path from any node to any other node in a dynamic graph, the dynamic graph is called

strongly connected.

We consider a group of N bats who can communicate with their neighboring bats

via a communication graph topology G(t) at each time instant t. Each node k in the

graph corresponds to a labeled bat k, k = 1, 2, . . . , N . Next, we will make two standing

assumptions throughout the chapter. The first one is about the connectivity of G(t).

52

Assumption 3. The communication graph G(t) is strongly connected, i.e., without loss of

generality, assuming that there exists a path in the N bats:

Bat 1↔ Bat 2↔ · · · ↔ Bat N ↔ Bat 1 (4.1)

Meanwhile, we assume that all of the bats are able to access to their neighbors’ state

information and serve as routers to transfer some data to their own neighbors.

The next assumption is about a separate optimization problem embedded in the proposed

bat consensus protocol.

Assumption 4. The minimization problem minx∈Rn F (x) has a solution, where F : Rn → R.

The original bat algorithm was based on the echolocation or bio-sonar characteristics of

microbats [35]. The bats can update their position information by following certain rules to

find the prey. The update rules for solving an optimization problem minx∈Rn F (x) are given

by the following form:

fi(t) = fmin + (fmax − fmin)βi(t),

vi(t+ 1) = vi(t) + [xi(t)− p(t)]fi(t),

xi(t+ 1) = xi(t) + vi(t+ 1)

(4.2)

where xi(t) and vi(t) are the position and velocity of Bat i at each time instant t, respectively.

fi(t) is the frequency information for Bat i at time instant t. fmin and fmax are the lower

bound and upper bound of the frequency for Bat i, respectively. βi(t) ∈ [0, 1] is a random

vector drawn from a uniform distribution, and p(t) is the current best global solution at time

instant t, i.e.,

p(t) = arg min
1≤i≤N,0≤s≤t

F (xi(s))

Based on this algorithm, we propose a bat-inspired consensus protocol. We are consider-

53

ing here that all of the bats have the same constant speed, but with different heading

angles. The proposed consensus protocol for heading angles of the bats can be used to

asymptotically achieve a common heading angle among all of the bats. Thus, the consensus

protocol described here for tackling heading angles of the bats can be described as follows:

θ1,min(t) = θ1(t), (4.3)

θk+1,min(t) = arg min{F (θk,min(t)), F (θk+1(t))},

k = 1, . . . , 2N − 1

(4.4)

θ2N,min(t) = θ2N−1,min(t), (4.5)

θi(t+ 1) =θi(t) + fi(t){arg min
θ(t)∈Rn

∑
j∈N it

[θj(t)− θ(t)]TΦij(θj(t)− θ(t))− θi(t)}

+ fi(t)µi(t)[θN+i,min(t)− θi(t)],

(4.6)

fi(t) = fmin + β(t)(fmax − fmin), i = 1, . . . , N (4.7)

where t ∈ Z+,θi(t) = θN+i ∈ Rm denotes the heading angle of Bat i at time instant t.

β, fmin and fmax have the same meaning as in (4.2). 0 < µi(t) < 1 is the zooming parameter

for Bat i. Φij : Rm → Rm is a vector-valued flux function which satisfies Φij(x) = 0 if

and only if x = 0 and xTΦijx ≥ 0 for every x ∈ Rm and every i, j = 1, . . . , N, i 6= j.

The flux function Φij(·) is convex and can be interpreted as an energy/mass exchange

rate in compartmental modeling [90], [91] or a heat transfer rate in thermodynamics [92].

It should be noted that the original bat algorithm does not have the interconnected term

arg minθ(t)∈Rm
∑

j∈N it
[θj(t)− θ(t)]TΦij(θj(t)− θ(t)) in (4.6). This term stems from the

speed-up and speed-down strategy which was derived from biological swarms [93]. The

term θN+i,min(t) in (4.6), which is equivalent to arg min1≤i≤N F (θi(t)), is the suggested

54

convergence direction. This term is calculated through the mutihop communication protocol

(4.3)-(4.5) based on the communication loop path (4.1), which includes the following two

steps:

1. Bat k + 1 can receive the state information θk,min(t) from Bat k at time instant t,

k = 1, . . . , N − 1. At the same time, Bat k + 1 determines

θk+1,min(t) = arg min{F (θk,min(t)), F (θk+1(t))}

and meanwhile, it serves as a router to send θk+1,min(t) to the next Bat in (4.1).

2. After θN,min(t) is determined by Bat N , this information is passed to Bat (N +

1 mod N), which is essentially Bat 1, where mod denotes the modulo operation. Bat

(k mod N), k = N + 1, . . . , 2N − 1, again determines

θk,min(t) = arg min{F (θk−1,min(t)), F (θ(k mod N)(t))}

and serves as a router to send θk,min(t) to Bat (k+1 mod N) by sequentially following

the directed communication path

Bat N ↔ Bat (N + 1 mod N)↔ Bat (N + 2 mod N)

↔ · · · ↔ Bat (2N − 1 mod N),

which equals

Bat N ↔ Bat 1↔ Bat 2↔ · · · ↔ Bat (N − 1)

thus, this implies (4.1).

It should be noted that we use a “double-check” technique in these two steps to obtain

55

arg min1≤i≤N F (θi(t)). Specifically, after Step 1, we can find that θN,min(t) obtained by Bat

N is indeed arg min1≤i≤N F (θi(t)). Thus, in Step 2, θN+i,min(t) obtained by Bat i equals

θN,min(t) for every i = 1, . . . , N − 1. However, we still let Bat i perform the comparison

operation

θN+i,min(t) = arg min{F (θN+i−1,min(t)), F (θi(t))}

in Step 2. This operation can guarantee that we can acquire exact arg min1≤i≤N F (θi(t))

without any major error.

Henceforth, this consensus protocol is distinct from existing consensus protocols

described in the literature. Meanwhile, this consensus protocol can be implemented in

a distributed manner by determining θN+i,min(t) = arg min1≤i≤N F (θi(t)) locally, which

differs from the BS algorithm. arg min1≤i≤N F (θi(t)) computed by this algorithm is in a

global manner which requires that all of the bats’ position information is known to each bat.

4.3 Convergence Analysis of Bat-Inspired Consensus

One of the major questions around the proposed bat-inspired consensus protocol is its

convergence property. Given an optimization problem minx∈Rn F (x), how can we guarantee

that the proposed consensus protocol converges asymptotically? Here convergence means

that

lim
t→∞

θ1(t) = · · · = lim
t→∞

θN(t)

exists for the consensus protocol (4.3)-(4.7). To analyze the convergence of this consensus

protocol, we first need to focus on the form of Φij(·). In last chapter, the linear form was

proposed and subsequently, the convergence analysis can be conducted by using the matrix

56

paracontraction technique. However, if the function Φij(·) is nonlinear, then we cannot

convert it into a linear matrix form, and hence, cannot use the matrix paracontraction method

to determine the convergence of this consensus protocol. Next, we will present a technique

to deal with the convergence of the bat-inspired consensus protocol with a nonlinear form of

Φij(·).

The bat-inspired consensus protocol can be rewritten as follows:

θi(t+ 1) = θi(t) + fi(t)ui(t) + fi(t)µi(t)[θN+i,min(t)− θi(t)] (4.8)

and ui(t) is defined as

ui(t) = gi(θ(t))− θi(t)

where

gi(θ(t)) = arg min
θ(t)∈Rm

∑
j∈N it

(θj(t)− θ(t))Φij(θj(t)− θ(t))

Since gi(θ(t)) is an argmin mapping, we can write gi(θ(t)) as gi(θip,θ(t)), where

θip = col(θj(t)), j ∈ N i is the parameter of the function gi(θ(t)) and “col” denotes

the columnization operation. Next, to perform our analysis, we will make the following

assumption about the function gi(θ(t)).

Assumption 5. gi(θ) is semi-Lipschitz continuous, that is, there exists a constant γ such that

||gi(θ)− gj(θ)|| ≤ γ||θip − θjp||

where θip and θjp are the parameters of gi(θ) and gj(θ), respectively, and the domain of θ

is compact and convex.

57

We have the following theorem about the convergence of the proposed consensus

protocol.

Theorem 6. Consider (4.8) with (4.3)–(4.5) and (4.7). Assume that Assumptions 1, 2, and

5 hold. Furthermore, assume that there exist three positive constants c1, c2, c3 > 0 and a

positive-definite matrix P = PT ∈ Rn×n such that

Γ11(t) Γ12(t) Γ13(t)

∗ Γ22(t) Γ23(t)

∗ ∗ Γ33(t)

 ≤ −c3I3nq (4.9)

where Γ11(t) = (−c2 + 2c1)M1(t) + 2c1γ
2q2q̄(t)M(t), Γ12(t) = (P ⊗ Iq)M2(t), Γ13(t) =

(P ⊗ Iq)M3(t), Γ22(t) = MT
2 (t)(P ⊗ Iq)M2(t)− c1M1(t), Γ23(t) = MT

2 (t)(P ⊗ Iq)M3(t),

Γ33(t) = MT
3 (t)(P⊗Iq)M3(t)+c2M1(t), q̄(t) =

∑q
i=1 |N i

t |,M(t) = diag(
∑q

i=1 rowi(At))

⊗In, rowi(At) denotes the ith row of the adjacency matrixAt, M1(t) = (2qIq−21q×q)⊗In,

M2(t) = F2(t)⊗ In, M3(t) = F3(t)⊗ In, F2(t) = diag(f(t))− (1/q)(1q×1fT(t)), F3(t) =

diag(∆f(t))− (1/q)(1q×1∆fT(t)), f(t) = [f1(t), . . . , fq(t)]
T, ∆f(t) = [f1(t)µ1(t), . . . ,

fq(t)µq(t)]
T, and “∗” is used for the blocks induced by symmetry. Then the heading angle

vectors of the q bats will asymptotically reach consensus under the proposed cooperative

learning protocol (4.8) with (4.3)–(4.5) and (4.7). Moreover, this consensus reaching

is uniform in t, that is, θi(t) ⇒ θ† as t → ∞ for every i = 1, . . . , q, where θ† =

limt→∞ arg min1≤i≤q F (θi(t)) and “⇒” denotes uniform convergence.

Proof. Define ei(t) = θi(t) − (1/q)
∑q

j=1 θj(t) = (1/q)
∑q

j=1(θi(t) − θj(t)) for every

58

i = 1, . . . , q and every t ∈ Z+. Then it follows that for every i = 1, . . . , q,

ei(t+ 1) =θi(t+ 1)− (1/q)

q∑
j=1

θj(t+ 1)

=(1/q)

q∑
j=1

[θi(t+ 1)− θj(t+ 1)]

=(1/q)

q∑
j=1

[θi(t)− θj(t)] + (1/q)

q∑
j=1

[fi(t)ui(t)− fj(t)uj(t)]

+ (1/q)

q∑
j=1

[fi(t)µi(t)(θq+i,min(t)− θi(t))− fj(t)µj(t)(θq+j,min(t)− θj(t))]

=ei(t) + (1/q)

q∑
j=1

[fi(t)(g
i
t(θ(t))− θi(t))− fj(t)(gjt (θ(t))− θj(t))]

+ (1/q)

q∑
j=1

[fi(t)µi(t)(θq+i,min(t)− θi(t))− fj(t)µj(t)(θq+j,min(t)− θj(t))]

Let ∆Gi(t) = (1/q)
∑q

j=1[fi(t)(g
i
t(θ(t))− θi(t))− fj(t)(git(θ(t))− θj(t))] and ∆ξi(t) =

(1/q)
∑q

j=1[fi(t)µi(t)(θq+i,min(t)− θi(t))− fj(t)µj(t)(θq+j,min(t)− θj(t))], i = 1, . . . , q.

Then for every i = 1, . . . , q,

ei(t+ 1) = ei(t) + ∆Gi(t) + ∆ξi(t) (4.10)

Now we can choose the Lyapunov function candidate V (t) =
∑q

i=1 e
T
i (t)Pei(t), where

P = PT is a positive-definite matrix, and it follows that

∆V (t) = V (t+ 1)− V (t)

=

q∑
i=1

eTi (t+ 1)Pei(t+ 1)−
q∑
i=1

eTi (t)Pei(t) (4.11)

59

Substituting (4.10) into (4.11) yields

∆V (t) =

q∑
i=1

{
eTi (t)P∆Gi(t) + eTi (t)P∆ξi(t) + ∆GT

i (t)Pei(t) + ∆GT
i (t)P∆Gi(t)

+ ∆GT
i (t)P∆ξi(t) + ∆ξTi (t)Pei(t)

+ ∆ξTi (t)P∆Gi(t) + ∆ξTi (t)P∆ξi(t)

}
(4.12)

Let ∆g(t) = [∆gT1 (t), . . . ,∆gTq (t)]T, where ∆gi(t) = git(θ(t)) − θi(t), i = 1, . . . , q.

Since, by Assumption 5, git(θ(t)) is uniformly pseudo-Lipschitz continuous in terms of its

parameters, it follows that for every i, j = 1, . . . , q,

||∆gi(t)−∆gj(t)|| ≤ ||git(θ(t))− gjt (θ(t))||+ ||θi(t)− θj(t)||

≤
∑
a∈N it

∑
b∈N jt

γ||θa(t)− θb(t)||+ ||θi(t)− θj(t)||

=
∑
a∈N it

∑
b∈N jt

γ||ea(t)− eb(t)||+ ||ei(t)− ej(t)||

where γ is the uniform pseudo-Lipschitz constant. By using the fact ||a+ b||2 ≤ 2(||a||2 +

||b||2) and the Cauchy-Schwarz inequalty, for every i, j = 1, . . . , q, we have

||∆gi(t)−∆gj(t)||2 ≤ 2

(∑
a∈N it

∑
b∈N jt

γ||ea(t)− eb(t)||
)2

+ 2||ei(t)− ej(t)||2

≤ 2γ2(|N i
t | · |N

j
t |)
∑
a∈N it

∑
b∈N jt

||ea(t)− eb(t)||2 + 2||ei(t)− ej(t)||2

60

Thus, for every i = 1, . . . , q,

q∑
j=1

||∆gi(t)−∆gj(t)||2 ≤ 2γ2
q∑
j=1

(
(|N i

t | · |N
j
t |)
∑
a∈N it

∑
b∈N jt

||ea(t)− eb(t)||2
)

+ 2

q∑
j=1

||ei(t)− ej(t)||2

≤ 2γ2
q∑
j=1

(
(|N i

t | · |N
j
t |)
∑
a∈N it

∑
b∈N jt

(||ea(t)||2 + ||eb(t)||2)
)

+ 2

q∑
j=1

||ei(t)− ej(t)||2

Since |N i
t | ≤ q for every i = 1, . . . , q and every t ∈ Z+, it further follows that for every

i = 1, . . . , q,

q∑
j=1

||∆gi(t)−∆gj(t)||2 ≤ 2γ2q2
q∑
j=1

(∑
a∈N it

∑
b∈N jt

(||ea(t)||2 + ||eb(t)||2)
)

+ 2

q∑
j=1

||ei(t)− ej(t)||2

= 2γ2q2
[
(|N 1

t |+ · · ·+ |N
q
t |)eT(t)(diag(rowi(At))⊗ In)e(t)

+ |N i
t |eT(t)(diag(row1(At) + · · ·+ rowq(At))⊗ In)e(t)

]
+ 2

q∑
j=1

||ei(t)− ej(t)||2

where e(t) = [eT1 (t), . . . , eTq (t)]T and rowi(At) is the ith row of the adjacency matrix At.

Let q̄(t) = |N 1
t |+ · · ·+ |N

q
t | and M(t) = diag(row1(At) + · · ·+ rowq(At))⊗ In, then for

any positive constant c1 > 0, we can obtain

c1∆g
T(t)(2qIq − 21q×q)⊗ In∆g(t) ≤2c1γ

2q2q̄(t)eT(t)M(t)e(t)

+ 2c1e
T(t)(2qIq − 21q×q)⊗ Ine(t)

(4.13)

61

Let ∆ξ(t) = [∆ξT1 (t), . . . ,∆ξTq (t)]T and ∆G(t) = [∆GT
1 (t), . . . ,∆GT

q (t)]T, then it

follows from (4.12) that

∆V (t) =eT(t)(P ⊗ Iq)∆G(t) + eT(t)(P ⊗ Iq)∆ξ(t) + ∆GT(t)(P ⊗ Iq)e(t)

+ ∆GT(t)(P ⊗ Iq)∆G(t) + ∆GT(t)(P ⊗ Iq)∆ξ(t) + ∆ξT(t)(P ⊗ Iq)e(t)

+ ∆ξT(t)(P ⊗ Iq)∆G(t) + ∆ξ(t)(P ⊗ Iq)∆ξ(t) (4.14)

From (4.13), we have

− c1∆gT(t)(2qIq − 21q×q)⊗ In∆g(t)

+ 2c1γ
2q2q̄(t)eT(t)M(t)e(t) + 2c1e

T(t)(2qIq − 21q×q)⊗ Ine(t) ≥ 0

(4.15)

Also, define Θ(t) = [ΘT
1 (t), . . . ,ΘT

q (t)]T, where Θi(t) = θq+i,min − θi(t), i = 1, . . . , q.

Since θq+i,min = θq+j,min for every i, j = 1, . . . , q, it follows that

q∑
i=1

q∑
j=1

||Θi(t)−Θj(t)||2 =

q∑
i=1

q∑
j=1

||(θq+i,min − θi(t))− (θq+j,min − θj(t))||2

=

q∑
i=1

q∑
j=1

||θi(t)− θj(t)||2

=

q∑
i=1

q∑
j=1

||ei(t)− ej(t)||2 (4.16)

The left hand side of (4.16) can be rewritten as
∑q

i=1

∑q
j=1 ||Θi(t)−Θj(t)||2 = ΘT(t)(2qIq−

21q×q) ⊗ InΘ(t). For the right hand side of (4.16),
∑q

i=1

∑q
j=1 ||θi(t) − θj(t)||2 =

eT(t)(2qIq − 21q×q)⊗ Ine(t). Hence, (4.16) can be rewritten as

ΘT(t)(2qIq − 21q×q)⊗ InΘ(t) = eT(t)(2qIq − 21q×q)⊗ Ine(t)

62

For any positive constant c2 > 0, it follows that

c2Θ
T(t)(2qIq − 21q×q)⊗ InΘ(t)− c2eT(t)(2qIq − 21q×q)⊗ Ine(t) = 0 (4.17)

Since ∆G(t) = F2(t)⊗ Im∆g(t) and ∆ξ(t) = F3(t)⊗ ImΘ(t), by adding (4.15) and (4.17)

to the right hand side of (4.14), we have

∆V (t) ≤(−c2 + 2c1)e
T(t)(2qIq − 21q×q)⊗ Ine(t) + 2c1γ

2q2q̄(t)eT(t)M(t)e(t)

+ eT(t)(P ⊗ Iq)(F2(t)⊗ In)∆g(t) + eT(t)(P ⊗ Iq)(F3(t)⊗ In)Θ(t)

+ ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)e(t)

+ ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)(F2(t)⊗ In)∆g(t)

− c1∆gT(t)(2qIq − 21q×q)⊗ In∆g(t)

+ ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)(F3(t)⊗ In)Θ(t)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)e(t)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)(F2(t)⊗ In)∆g(t)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)(F3(t)⊗ In)Θ(t)

+ c2Θ
T(t)(2qIq − 21q×q)⊗ InΘ(t)

Let Ξ1(t) = [eT(t),∆gT(t),ΘT(t)]T, then by (4.9), we have

∆V (t) ≤ ΞT
1 (t)Ω1(t)Ξ1(t) ≤ −c3ΞT

1 (t)Ξ1(t) ≤ −c3||e(t)||2 (4.18)

63

where

Ω1(t) =

Γ11(t) Γ12(t) Γ13(t)

ΓT
12(t) Γ22(t) Γ23(t)

ΓT
13(t) ΓT

23(t) Γ33(t)

By vii) of Theorem 13.11 in [69, p. 785], it follows that (4.18) implies that the discrete-time

system (4.10) is (uniformly) geometrically stable, which means that e(t) ⇒ 0 as t → ∞.

Thus the consensus of the heading angle vectors for the q bats will be reached.

4.4 Bat-Inspired Consensus with Disturbances

In this section, we extend the previous cooperative learning consensus protocol in the

nonlinear case to the scenario where a group of q bats suffer from external disturbances.

Specifically, consider the cooperative learning consensus protocol given by the following

form

θi(t+ 1) = θi(t) + fi(t)ui(t) + fi(t)µi(t)[θq+i,min(t)− θi(t)] + ωi(t), i = 1, . . . , q

(4.19)

where ωi(t) ∈ Rn is the external disturbance vector for Bat i at time instant t. The other

parameters are defined as the same in (4.8) with (4.3)–(4.5) and (4.7).

The objective of this cooperative learning consensus protocol is to reach global consensus

and to maintain a desirable disturbance rejection performance. In order to achieve this goal,

we first define the variable ei(t) = θi(t)− (1/q)
∑q

j=1 θj(t), where i = 1, 2, . . . , q. Next,

motivated by [94], we have the following definition regarding the disturbance rejection

performance for (4.19).

64

Definition 2. For a positive scalar γ1, the cooperative learning consensus protocol (4.19) with

(4.3)–(4.5) and (4.7) can robustly reach consensus with the performance γ1 if the following

two requirements hold:

1. limt→∞ e(t) = 0 for ω(t) ≡ 0,

2. lim supT→∞
∑T

t=0 ||e(t)||2 ≤ γ1 lim supT→∞
∑T

t=0 ||ω(t)||2 for all ω(t) 6≡ 0,

where e(t) = [eT1 (t), . . . , eTq (t)]T and ω(t) = [ωT
1 (t), . . . , ωT

q (t)]T.

At this stage, we can state the following result that provides a sufficient condition to

ensure the two requirements in Definition 2.

Theorem 7. Consider (4.19) with (4.3)–(4.5) and (4.7). Assume that Assumptions 1, 2, and

5 hold. Furthermore, assume that there exist three positive constants c1, c2, c3 > 0 and a

positive-definite matrix P = PT ∈ Rn×n such that 0 < P < (1 + c3)In and

Γ11(t) + Inq Γ12(t) Γ13(t) Γ14(t)

∗ Γ22(t) Γ23(t) Γ24(t)

∗ ∗ Γ33(t) Γ34(t)

∗ ∗ ∗ Γ44(t)

≤ −c3I4nq (4.20)

where Γ14(t) = (P⊗Iq)(M⊗In), Γ24(t) = MT
2 (t)(P⊗Iq)(M⊗In), Γ34(t) = MT

3 (t)(P⊗

Iq)(M⊗In), Γ44(t) = (M⊗In)T(P ⊗Iq)(M⊗In)−γ21Inq,M = Iq−(1/q)1q×q, γ1 > 0

is given, and the rest of the symbols are defined as the same in Theorem 6. Then the

cooperative learning consensus protocol (4.19) with (4.3)–(4.5) and (4.7) can robustly reach

consensus with the performance γ21/γ2, where γ2 = min{1 + c3 − λmax(P), λmin(P)}, and

λmax(P) and λmin(P) denote the maximum and minimum eigenvalues of P , respectively.

Proof. Since ei(t) = θi(t) − (1/q)
∑q

j=1 θj(t) = (1/q)
∑q

j=1(θi(t) − θj(t)) for every

65

i = 1, . . . , q and every t ∈ Z+, it follows that for every i = 1, . . . , q,

ei(t+ 1) = (1/q)

q∑
j=1

(θi(t+ 1)− θj(t+ 1))

= (1/q)

q∑
j=1

(θi(t)− θj(t))

+ (1/q)

q∑
j=1

[fi(t)(g
i
t(θ(t))− θi(t))− fj(t)(gjt (θ(t))− θj(t))]

+ (1/q)

q∑
j=1

[fi(t)µi(t)(θq+i,min(t)− θi(t))− fj(t)µj(t)(θj+q,min(t)− θj(t))]

+ (1/q)

q∑
j=1

(ωi(t)− ωj(t)) (4.21)

Let Ψi(t) = (1/q)
∑q

j=1(ωi(t) − ωj(t)), then it follows from (4.21) that for every i =

1, . . . , q,

ei(t+ 1) = ei(t) + ∆Gi(t) + ∆ξi(t) + Ψi(t)

where ∆Gi(t) and ∆ξi(t) were defined in the proof of Theorem 6.

Next, we choose the Lyapunov function candidate V (t) =
∑q

i=1 e
T
i (t)Pei(t), where

66

P = PT is a positive-definite matrix. Then it follows that

∆V (t) =V (t+ 1)− V (t)

=

q∑
i=1

eTi (t+ 1)Pei(t+ 1)−
q∑
i=1

eTi (t)Pei(t)

=

q∑
i=1

{
eTi (t)P∆Gi(t) + eTi (t)P∆ξi(t) + eTi (t)PΨi(t) + ∆GT

i (t)Pei(t)

+ ∆GT
i (t)P∆Gi(t) + ∆GT

i (t)P∆ξi(t)

+ ∆Gi(t)P∆Ψi(t) + ∆ξTi (t)Pei(t)

+ ∆ξTi (t)P∆Gi(t) + ∆ξTi (t)P∆ξi(t)

+ ∆ξTi (t)PΨi(t) + ΨT
i (t)Pei(t)

+ ΨT
i (t)P∆Gi(t) + ΨT

i (t)P∆ξ(t) + ΨT
i (t)PΨi(t)

}
(4.22)

Furthermore, since ∆G(t) = F2(t) ⊗ In∆g(t) and ∆ξ(t) = F3(t) ⊗ InΘ(t), where F2(t)

and F3(t) were defined in the statement of Theorem 6, and ∆g(t) and Θ(t) were defined in

67

the proof of Theorem 6, it follows from (4.22) that

∆V (t) =eT(t)(P ⊗ Iq)(F2 ⊗ In)∆g(t) + eT(t)(P ⊗ Iq)(F3(t)⊗ In)Θ(t)

+ eT(t)(P ⊗ Iq)(M⊗ In)ω(t) + ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)e(t)

+ ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)(F2(t)⊗ In)∆g(t)

+ ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)(F3(t)⊗ In)Θ(t)

+ ∆gT(t)(F2(t)⊗ In)T(P ⊗ Iq)(M⊗ In)ω(t)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)e(t)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)(F2(t)⊗ In)∆g(t)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)(F3(t)⊗ In)Θ(t) (4.23)

+ ΘT(t)(F3(t)⊗ In)T(P ⊗ Iq)(M⊗ In)ω(t)

+ ωT(t)(M⊗ In)T(P ⊗ Iq)e(t)

+ ωT(t)(M⊗ In)T(P ⊗ Iq)(F2(t)⊗ In)∆g(t)

+ ωT(t)(M⊗ In)T(P ⊗ Iq)(F3(t)⊗ In)Θ(t)

+ ωT(t)(M⊗ In)T(P ⊗ Iq)(M⊗ In)ω(t)

Next, we define W (t) = ∆V (t) + eT(t)e(t)− γ21ωT(t)ω(t). Adding (4.15) and (4.17)

to both sides of ∆V (t), it follows from (4.23) and (4.20) that

W (t) ≤ ΞT
2 (t)Ω2(t)Ξ2(t) ≤ −c3ΞT

2 (t)Ξ2(t) ≤ 0 (4.24)

68

where Ξ2(t) = [eT(t),∆gT(t),ΘT(t), ωT(t)]T and

Ω1(t) =

Γ11(t) + Inq Γ12(t) Γ13(t) Γ14(t)

ΓT
12(t) Γ22(t) Γ23(t) Γ24(t)

ΓT
13(t) ΓT

23(t) Γ33(t) Γ34(t)

ΓT
14(t) ΓT

24(t) ΓT
34(t) Γ44(t)

If ω(t) ≡ 0, then it follows from (4.24) that ∆V (t) ≤ −c3‖e(t)‖2, which, by viii) of

Theorem 13.11 in [69, p. 785], implies that e(t)⇒ 0 as t→∞. Hence, the first requirement

of Definition 2 is satisfied.

If ω(t) 6≡ 0, then it follows from (4.24) that W (t) ≤ −c3‖e(t)‖2, which further implies

that for any T ∈ Z+,

(1 + c3)
T∑
t=0

||e(t)||2 +
T∑
t=0

(V (t+ 1)− V (t)) ≤ γ21

T∑
t=0

||ω(t)||2

or equivalently,

(1 + c3)
T∑
t=0

||e(t)||2 + eT(T + 1)(P ⊗ Iq)e(T + 1)− eT(0)(P ⊗ Iq)e(0)

≤ γ21

T∑
t=0

||ω(t)||2 (4.25)

Since eT(T + 1)(P ⊗ Iq)e(T + 1) ≥ λmin(P ⊗ Iq)‖e(T + 1)‖2 = λmin(P)‖e(T + 1)‖2 and

69

eT(0)(P ⊗ Iq)e(0) ≤ λmax(P)‖e(0)‖2, it follows from (4.25) that

γ2

T+1∑
t=0

‖e(t)‖2 ≤ [1 + c3 − λmax(P)]‖e(0)‖2 + (1 + c3)
T∑
t=1

‖e(t)‖2

+ λmin(P)‖e(T + 1)‖2

≤ (1 + c3)
T∑
t=0

||e(t)||2 + eT(T + 1)(P ⊗ Iq)e(T + 1)

− eT(0)(P ⊗ Iq)e(0)

≤ γ21

T∑
t=0

||ω(t)||2

≤ γ21

T+1∑
t=0

||ω(t)||2

which implies that

lim sup
T→∞

T+1∑
t=0

‖e(t)‖2 ≤ (γ21/γ2) lim sup
T→∞

T+1∑
t=0

||ω(t)||2

Hence, the second requirement of Definition 2 is satisfied. Therefore, the cooperative

learning consensus protocol (4.19) with (4.3)–(4.5) and (4.7) can robustly reach consensus

with the performance γ21/γ2.

4.5 Simulation

In this part, we will give a simulation example to show the effectiveness of the proposed

cooperative learning consensus protocol in the nonlinear case with and without disturbances.

The cost functions for the corresponding minimization problems are again F1(x) = |x1 −

x2|+ |x3−x1| and F2(x) = max{x1, x2, x3}−min{x1, x2, x3} for x = [x1, x2, x3]
T ∈ R3.

The number of bats used in the cooperative learning consensus protocol is 4. Its graph

70

topology is strongly connected and includes a ring path, with a Laplacian matrix Lt given by

Lt =

3 −1 −1 −1

−1 2 0 −1

−1 0 2 −1

−1 −1 −1 3

.

The nonlinear function Φij(·) is chosen as Φij(xj(t) − xi(t)) = (xj(t) − xi(t))
3. The

frequency fi(t) is drawn randomly in [0.2, 0.7] and the zooming number µi(t) is drawn

randomly in [0.3, 0.7] for every i = 1, 2, 3, 4. Let γ = 1.7, q̄(t) = 3 + 2 + 2 + 3 = 10,

M(t) = diag([3 2 2 3]) ⊗ I3. Also, we let c1 = 5.6470, c2 = 0.1012, and c3 = 0.4258.

By using the MATLAB LMI toolbox to solve (4.9) in Theorem 6, we can obtain the

positive-definite matrix P = 1.2975× I3, which guarantees that (4.9) in Theorem 6 holds

for all fi(t) and µi(t). Moreover, it follows from Figures 4.1c and 4.2c that the ratio

λ = maxi,j ‖git(θ) − gjt (θ)‖/‖θip − θjp‖ does not exceed 1.5, and hence, Assumption 5

holds for γ = 1.7.

Figures 4.1a and 4.1b show the convergence of the proposed cooperative learning

consensus protocol without disturbances when minimizing F1(x) = |x1 − x2|+ |x3 − x1|,

while Figures 4.2a and 4.2b show the convergence of the proposed cooperative learning

consensus protocol without disturbances when minimizing F2(x) = max{x1, x2, x3} −

min{x1, x2, x3}. The simulation results demonstrate that the proposed cooperative learning

consensus protocols approach the optimal value of the function.

Next, we consider the proposed cooperative learning consensus protocol subject to

external disturbances. We chose ω(t) = [ω1(t), ω2(t), ω3(t)]
T, where ωi(t) is the random

variable whose value is drawn from [0, 1] at each time instant t. Similarly, the parameters

fi(t) and µi(t) are randomly drawn from [0.2, 0.7] and [0.3, 0.7], respectively. Let γ = 1.7,

71

0.35

1.2

0.4

0.45

0.5

1 1
0

x
3

0.55

-1

0.6

x
2

-20.8

0.65

-3

x
1

-4

0.7

-50.6 -6
-7

-8
0.4 -9

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning
consensus.

0.35

2

0.4

0.45

0.5

1
0

x
3

0.55

0.6

x
2

-20

0.65

x
1

-4

0.7

-1
-6

-8
-2

0

1

2

3

4

5

6

7

8

(b) Function value map.

0 50 100 150 200 250 300

iterations

0

0.2

0.4

0.6

0.8

1

1.2

v
a

lu
e

 o
f

(c) Time history of λ = maxi,j ‖git(θ) −
gjt (θ)‖/‖θip − θjp‖.

Figure 4.1: Convergence of the cooperative learning consensus protocol when minimizing
F1(x) = |x1 − x2|+ |x3 − x1| without disturbances: Theorem 6.

γ1 = 2, q̄(t) = 10, and M(t) = diag([3 2 2 3]) ⊗ I3. Furthermore, let c1 = 5.0601,

c2 = 0.5493, and c3 = 0.8493. By solving (4.20) in Theorem 7 via the MATLAB LMI

toolbox, we can obtain the positive-definite matrix P = 1.5217× I3 < (1 + c3)I3, which

guarantees that (4.20) in Theorem 7 holds for all fi(t) and µi(t). Moreover, it follows from

Figures 4.3c and 4.4c that the ratio λ = maxi,j ‖git(θ)−gjt (θ)‖/‖θip−θjp‖ does not exceed

1.5, and hence, Assumption 5 holds for γ = 1.7.

Figures 4.3a and 4.3b show the convergence of the proposed cooperative learning

72

0.35

1.1

0.4

0.45

1

0.5

10.9

x
3

0.55

00.8

0.6

x
2

0.65

-10.7

x
1

0.7

-20.6

0.5 -3

0.4 -4

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning
consensus.

0.35

6

0.4

0.45

5

0.5

1
4

x
3

0.55

03

0.6

x
2

0.65

-12

x
1

0.7

-21

0 -3

-1 -4

0

1

2

3

4

5

6

7

(b) Function value map.

0 50 100 150 200 250 300

iterations

0

0.5

1

1.5

v
a

lu
e

 o
f

(c) Time history of λ = maxi,j ‖git(θ) −
gjt (θ)‖/‖θip − θjp‖.

Figure 4.2: Convergence of the cooperative learning consensus protocol when minimizing
F2(x) = max{x1, x2, x3} −min{x1, x2, x3} without disturbances: Theorem 6.

consensus protocol with disturbances when minimizing F1(x) = |x1−x2|+ |x3−x1|, while

Figures 4.4a and 4.4b show the convergence of the proposed cooperative learning consensus

protocol with disturbances when minimizing F2(x) = max{x1, x2, x3} −min{x1, x2, x3}.

The simulation results demonstrate that the proposed cooperative learning consensus

protocols approach the optimal value of the function.

73

-3

-2.5

4

-2

-1.5

3

-1

0.5

-0.5

x
3

0

0

2

0.5

-0.5

x
2

1

-1

1.5

x
1

1 -1.5

2

-2
0 -2.5

-3
-1 -3.5

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning
consensus.

-3

-2.5

4

-2

-1.5

2

-1

2

-0.5

0

x
3

0

0

0.5

x
2

-2

1

-2

1.5

x
1

2

-4
-4

-6 -6

-8 -8

0

2

4

6

8

10

12

14

16

18

20

(b) Function value map.

0 50 100 150 200 250 300

iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

v
a

lu
e

 o
f

(c) Time history of λ = maxi,j ‖git(θ) −
gjt (θ)‖/‖θip − θjp‖.

Figure 4.3: Convergence of the cooperative learning consensus protocol when minimizing
F1(x) = |x1 − x2|+ |x3 − x1| with disturbances: Theorem 7.

4.6 Conclusion

In this chapter, we proposed a class of bat-inspired consensus protocols with nonlinear

dynamics based on the bat algorithm and multi-agent coordination optimization. These

consensus protocols embed a suggested convergence direction that can improve the perform-

ance of their convergence restricted by certain rules via solving an additional optimization

problem. A Lyapunov-based method was used to give the sufficient condition which

74

-4

2

-3.5

-3

-2.5

1.5

-2

0.5

-1.5

x
3

1

-1

0

x
2

-0.5

0

x
1

0.5 -0.5

0.5

0 -1

-0.5 -1.5

agent 1

agent 2

agent 3

agent 4

optimal line

(a) Convergence of cooperative learning
consensus.

-4

6

-3.5

-3

-2.5

-2

4 6

-1.5

x
3

5

-1

4

x
2

-0.5

2
3

0

x
1

2

0.5

10
0

-1
-2 -2

0

1

2

3

4

5

6

7

(b) Function value map.

0 50 100 150 200 250 300

iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

v
a

lu
e

 o
f

(c) Time history of λ = maxi,j ‖git(θ) −
gjt (θ)‖/‖θip − θjp‖.

Figure 4.4: Convergence of the cooperative learning consensus protocol when minimizing
F2(x) = max{x1, x2, x3} −min{x1, x2, x3} with disturbances: Theorem 7.

can guarantee the convergence of the proposed consensus protocols. We extended the

bat-inspired consensus protocols to the case where they are subjected to external disturbances

and also gave the sufficient condition to guarantee their asymptotic convergence under some

matrix inequality conditions.

Future work will focus on the relaxation of the semi-Lipschitz condition in Assumption 5

and further discussion on solving some nonsmooth optimization for discontinuous flux

functions in the proposed consensus protocol. Also, the application of the proposed

consensus protocols in multi-layer, multi-dependent cyber-physical network systems will be

75

interested for further research.

76

CHAPTER 5

THE BAT-INSPIRED CONSENSUS PROTOCOLS WITH

DIFFERENTIAL PRIVACY

5.1 Introduction

While the consensus problem for multi-agent systems [13] has drawn a great attention

in recent years in different areas, and is studied extensively from the control-theoretic

perspective, it is until recently that some analogy between this problem and swarm intelligence

algorithms, such as particle swarm optimization, has been noticed by [33,56]. This similarity

has inspired us to improve the performance of swarm intelligence algorithms by modifying

them using some techniques from the various consensus protocols in the literature. Such a

combination from a control problem and a computational intelligence algorithm offers a

brand new perspective to design efficient swarm intelligence algorithms, not just from the

bio-inspired direction, but also from the control-theoretic methodology, leading to a one-way

exploration from control theory to swarm optimization. Now the question lies in the other

direction: Is it possible to design consensus protocols for multi-agent systems using some

techniques or concepts from swarm intelligence, so that the state convergence direction of

these systems can be totally guidable but not totally predictable, with agents being “smart”

to their data transmission and “sensitive” to their data privacy, rather than being “dumb”

and “passive” to these issues? This is the question we will address in this chapter, and an

77

affirmative answer will be given to this question. Hence, a two-way, positive feedback of

mutual exploration and interplay is unraveled between networked control theory and swarm

optimization based algorithms, based on the result in this chapter and the results in [33, 56].

We will address the above question in two aspects. First, we show that swarm intelligence

can be used for designing new consensus protocols with two additional attributes of agents

being “smart” to data transmission and their state convergence direction being totally

guidable but not totally predictable. There are many swarm intelligence algorithms existing

in the literature. Among these, the bat algorithm (BA) [35] is a recently developed algorithm

to solve some unusual optimization problems that are irregular, nonconvex, nonlinear, and

time-dependent. This algorithm increases the diversity of the population of candidate

solutions to an optimization problem by mimicking the frequency of the bats. In this

chapter, motivated by the multi-agent coordination optimization (MCO) algorithm [33, 56],

a new bat-inspired consensus protocol is proposed. More specifically, by incorporating a

separate, unrelated optimization problem into the protocol, our new consensus algorithm can

fully guide its state convergence direction leaning toward the best solution (i.e., the optimal

solution among the population of candidate solutions) to this separate, unrelated optimization

problem. At the same time, although the optimal solution to this optimization problem

may always exist (e.g., convex optimization), its best solution form may not be precisely

calculated or numerically found. Hence, such an issue actually creates an uncertainty for

exactly predicting the final state convergence direction, which turns out to be a good merit

for protecting multi-agent systems from semi-honest and malicious adversaries. Moreover,

the proposed consensus algorithm further takes advantage of the mechanism behind the

BA algorithm to enhance agents’ data transmission capability so that they become “smart”

enough to not only process the neighboring and their own data, but also relay the processed

data among agents in a multi-hop way.

Generally speaking, a consensus algorithm for a multi-agent system needs each agent to

78

share its own state information to its neighbors in order to achieve a common state for all

agents. However, in some cases, agents may not want 100% to share their information to

others. This is common in the social area, where persons in rendezvous activity may not

want to share their initial location information to others. Another example is when a group

of individuals were asked about their opinions on a particular subject, they may not want

their own opinions to be known by others but they are curious about others’ opinions. Thus,

it is worth to consider the privacy preserving when designing a consensus algorithm in this

regard. This is the second aspect that we will address in the chapter.

The concept of differential privacy has been studied in database [46] and recently is

applied in dynamical systems. In [95], the authors design a differentially private filters

for dynamical systems by adding white Gaussian noise to the system. Authors of [48]

proposed a differential privacy consensus algorithm, where a Laplacian noise process is

considered and added. A type of convergence in the sense of mean squared operation

is considered in [45], which can guarantee the privacy of the initial state and make the

consensus state converge to its exact initial value. However, both of these two consensus

algorithms only consider the average consensus, namely, the consensus algorithm eventually

converges to the average of the initial value. This is a total predictable situation for the

state convergence direction, and may not be a desired scenario in many problems. For

example, the convergence problem in some stochastic optimization algorithms [17] and the

temperature equipartition problem in system thermodynamics [96] will not lead to average

consensus in general. The agreement algorithm in [17] shows a weighted consensus result

for the state convergence direction, which is partially predictable but hard to make these

weights directly controllable, and hence, is not totally guidable. In contrast, our proposed

consensus protocol is fully guidable but not fully predictable, due to the unique feature that

the convergence state of the multi-agent system leans toward the best solution to a separately

designated, designer-controllable optimization problem that an adversary cannot predict a

79

priori.

5.2 Bat-Inspired Consensus and Differential Privacy

The notations used in this chapter is fairly standard. Specifically, R denotes the set of

real number. R+ denotes the set of nonnegative real numbers. Rn denotes the set of

n-dimensional real column vectors. Rn×m denotes the set of n-by-m matrices. (·)T denotes

transpose and (·)−1 denotes inverse. Let ⊗ denote the Kronecker product. Furthermore, we

use some algebraic graph-relatd notations to describe the bat-inspired consensus protocols.

Let G = (V , E) denote an undirected graph with the set of vertices V = {v1, v2, . . . , vq} and

E ⊂ V × V , where E denotes the set of edges. Also, we define the matrix A ∈ Rq×q be

the adjacency matrix, whose elements aij associated with the graph G are nonnegative. A

finite set N = {1, 2, . . . , q} denotes the node index of the G. An edge of the G is denoted

by eij = (vi, vj). If eij ∈ G, then aij = 1, otherwise aij = 0, and aii = 0 for all i ∈ N .

For each node i, we denote its neighbors as the set of N i = {vj ∈ N : (vi, vj) ∈ E , j =

1, 2, . . . , |N |, j 6= i}, where |N | denotes the cardinality of the set N . The degree matrix

of the graph G is defined as D = [dij]i,j=1,2,...,|N |, where dij =

∑N

j=1 aij if i = j,

0 if i 6= j.
The

Laplacian matrix of the graph G can be defined by L = D−A. For a constant c > 0, Lap(c)

denotes the Laplace distribution with probability density function Pc(x) , 1
2c
e−
|x|
c , where

| · | denotes a norm of a vector. The Laplace distribution has zero mean and the variance is

2c2. We can write this as x ∼ Lap(c). For an n-dimensional random vector, its probability

density function is defined as Pc(x) = (1
2c

)ne−
‖x‖1
c . We can write this as x ∼ Lap(c, n). The

components of the Laplace random vector are independent and ‖·‖1 denotes the L1 norm.

80

5.2.1 Bat-Inspired Consensus

In this chapter we consider a group of q bats whose communication graph G is fixed. Before

we present our consensus protocols, we need to make some assumptions.

Assumption 6. There is a Hamiltonian cycle in the communication graph G.

For the Assumption 6, if there is a Hamiltonian cycle in the G, we know that there exists

a communication path in the q bats:

Bat 1↔ Bat 2↔ · · · ↔ Bat q ↔ Bat 1 (5.1)

Furthermore, we assume that for each Bat i, it is “smart” to access the state information of

its neighbors, meanwhile, it can serve as routers to transfer some information to its neighbor.

Assumption 7. For a given optimization problem minx∈Rn F (x), the set X is compact and

convex. Let C1 , supx,y∈X‖x − y‖1 denote the diameter of X , where X ⊆ Rn is the

domain of optimization and ‖·‖1 denotes the L1 norm.

The next assumption is about a separate optimization problem embedded in the proposed

bat-inspired consensus protocol.

Assumption 8. The optimization problem minx∈Rn F (x) has a solution, where F : Rn → R.

This assumption is needed since if the optimization problem does not have a solution,

the consensus state may not be achieved.

The original bat algorithm was inspired by the echolocation or bio-sonar characteristics

of microbats [35]. The agents or the bats can update their state information by the following

rules to find their prey. The update rules to solve the optimization problem minx∈Rn F (x)

81

are given as follows:

fi(t) = fmin + (fmax − fmin)βi(t)

vi(t+ 1) = vi(t) + [xi(t)− p(t)]fi(t)

xi(t+ 1) = xi(t) + vi(t+ 1)

(5.2)

where t ∈ Z+ = {0, 1, 2, . . .}, and xi(t) and vi(t) are the position and velocity for each

Bat i at each time t, respectively. fi(t) is the frequency information of each Bat i at time t.

fmin and fmax are the lower and upper bound of the frequency, respectively. βi(t) ∈ [0, 1]

is a random number drawn from a uniform distribution, and p(x) is the current best global

solution to the optimization problem at time t.

Based on this algorithm, we can develop a bat-inspired consensus protocol, which

is fully guidable but not fully predictable. Here we consider that all of the bats have

the same constant speed but with different heading angles. By updating their angle

information continuously, the heading angles of all bats can achieve a common heading

angle asymptotically. The consensus protocol proposed for tacking heading angles of the

bats is described as follows [97–99]:

θ1,min(t) = θ1(t) (5.3)

θk+1,min = arg min{F (θk,min(t)), F (θk+1(t))},

k = 1, 2, . . . , 2q − 1

(5.4)

θ2q,min(t) = θ2q−1,min (5.5)

θi(t+ 1) =θi(t) + fi(t)
{

arg min
θ(t)∈Rn

∑
j∈N i

[θj(t)− θ(t)]TΦij(θj(t)− θ(t))− θi(t)
}

+ fi(t)µi(t)[θq+i,min(t)− θi(t)]

(5.6)

82

fi(t) = fmin + βi(t)(fmax − fmin) (5.7)

where t ∈ Z+,θi = θq+i ∈ Rn denotes the heading angle of Bat i at time t. βi(t), fmin, and

fmax have the same meaning as in the (5.2). µmin < µi(t) < µmax is the zooming parameter

for each Bat i. Φij : Rn → Rn is a vector-valued flux function which satisfies Φij(x) = 0 if

and only if x = 0 and xTΦijx ≥ 0 for every x ∈ Rn and i, j = 1, . . . , q, i 6= j. This function

can be seen as an energy/mass exchange rate in compartmental modeling [90, 91] or a heat

transfer rate in thermodynamics [92]. Compared with the original bat optimization algorithm,

our proposed consensus algorithm has a one more term arg minθ(t)∈Rn
∑

j∈N i [θj(t) −

θ(t)]TΦij(θj(t) − θ(t)) in (5.6). This interconnected term comes from the speed-up and

speed-down strategy and is derived from the biological swarms [100]. Also, it should be

noted that the term θq,min(t) in (5.6) is the suggested convergence direction. This term is

important for the consensus protocol to achieve convergence and it can be computed through

the multihop communication protocol [60] of the form (5.3)-(5.5) based on the Hamiltonian

path (5.1). This process includes the following two steps:

1) For Bat k + 1, it can receive the state information θk,min(t) from Bat k at time

t, where k = 1, . . . , q − 1. Meanwhile, Bat k + 1 determines θk+1,min(t) =

arg min{F (θk,min(t)), F (θk+1(t))} and serves as a router to send this state information

θk+1,min(t) to its neighbor in the communication loop path (5.1).

2) After the state information θq,min(t) is determined by Bat q, this state information can

be passed to Bat (q + 1 mod q), which means the state information is passed to Bat 1.

The mod denotes the modulo operation. Thus, Bat (k mod q), k = q + 1, . . . , 2q − 1,

can determine θk,min(t) = arg min{F (θk−1,min(t)), F (θ(k mod q)(t)} and serve as a

router to pass the state information θk,min(t) to Bat (k + 1 mod q) by following the

83

Hamiltonian path

Bat q ↔ Bat (q + 1 mod q)↔ Bat (q + 2 mod q)

↔ · · · ↔ Bat (2q − 1 mod q)

which equals

Bat q ↔ Bat 1↔ Bat 2↔ · · · ↔ Bat (q − 1).

This is the same Hamiltonian cycle compared with (5.1).

One may notice that here we used a “double-check” technique in the second step to acquire

the information arg min1≤i≤q F (θi(t)). Specifically, after Step 1, the state information

θq,min(t) we obtained in fact is arg min1≤i≤q F (θi(t)). Therefore, in Step 2, the state

information θq+i,min(t) we obtained equals θq,min(t) for each bat i = 1, . . . , q − 1. Even in

this situation, we still perform the comparison operation θq+i,min(t) = arg min{F (θq+i−1,min

(t)), F (θi(t))} in Step 2. This operation can ensure that there is no major error for the state

information arg min1≤i≤q F (θi(t)) we acquired.

Another important point of this consensus protocol is about the term Φij(·). We need

to determine the concrete form of the function Φij(·). According to [91, 92], the most

commonly used form is the linear form:

Φij(x) = x (5.8)

There are also some other forms such as the signum form Φij(x) = sgn(x), where sgn(·)

denotes the signum function. In this chapter, we only consider the linear form of the function

84

Φij(·) in (5.8) for simplicity. Thus, we have:

arg min
θ∈Rn

∑
j∈N i

[θj(t)− θ]TΦij(θj(t)− θ)

= arg min
∑
j∈N i
‖θj(t)− θ‖2

=
1

N i

∑
j∈N i

θj(t), i = 1, . . . , q

(5.9)

where ‖ · ‖ denotes the L2 norm. Hence, (5.6) can be written as:

θi(t+ 1) = θi(t) +
fi(t)

|N i|
∑
j∈N i

[θj(t)− θi(t)]

+ fi(t)µi(t)[θq,min(t)− θi(t)]

(5.10)

for each i = 1, . . . , q, since θq+i,min(t) = θq,min(t) = arg min1≤i≤q F (θi(t)).

5.2.2 Differential Privacy

In this part, we introduce the notation of differential privacy. First, define yi(t) ∈ Rn as the

observation information Bat i sent to its neighboring bats at time instant t. The value of yi(t)

can be computed as the current state information of Bat i plus a noise vectorwi(t) whose

elements are drawn independently from the Laplace distribution Lap(M,n), where M is a

parameter that we will define later. Meanwhile, we define zi(t) = 1
|N i|

∑
j∈N i yi(t) as the

received information for each Bat i from its neighboring bats. Thus, the new bat-inspired

consensus protocol is proposed as follows:

y1,min(t) = y1(t) = θ1(t) +w1(t) (5.11)

85

yk+1,min = arg min{F (yk,min(t)), F (yk+1(t))},

k = 1, 2, . . . , q

(5.12)

y2q,min(t) = y2q−1,min(t), (5.13)

θi(t+ 1) = θi(t) +
fi(t)

|N i|
∑
j∈N i

[yj(t)− θi(t)]

+ fi(t)µi(t)[yq+i,min(t)− θi(t)],

(5.14)

fi(t) = fmin + βi(t)(fmax − fmin), i = 1, . . . , q. (5.15)

All the other parameters are the same as the ones in (5.3)-(5.7). Also, (5.14) can be rewritten

as:
θi(t+ 1) = (1− fi(t))θi(t) + fi(t)zi(t)

+ fi(t)µi(t)[yq+i,min(t)− θi(t)]
(5.16)

The definition of differential privacy presented here is similar to the notion introduced in

[101] for the streaming algorithms. Let Θ(t) = [θT1 (t), . . . ,θTq (t)]T, y(t) = [yT
1 (t),yT

2 (t),

. . . ,yT
q (t)]T, and z(t) = [zT1 (t), zT2 (t), . . . ,zTq (t)]T. We define an execution of the bat

inspired consensus algorithm (5.11)-(5.15) is a possibly infinite sequence of the form

α = Θ(0), 〈y(0), z(0)〉,Θ(1), 〈y(1), z(1)〉, The observation part of this execution is

the corresponding infinite sequence y(0),y(1), Thus, we can define the observation

mapping of the execution as R(α) , {y(0),y(1), . . .}. This sequence gives us the

exchanged information for the corrsponding execution α. Suppose there exists an adversary

who can access to the whole communication channels, and thus, he/she can observe all of

the information that these bats send to each other, namely, yi(t) will be known to him/her

for each Bat i. If given optimization problem minx∈Rn F (x), the observation sequence of

information Y , and the initial state information Θ(0), thenR−1(minx∈Rn F (x), Y,Θ(0)) is

the set of execution α that can generate the observation Y .

86

Definition 3. The two vectors Θ(t), Θ′(t) ⊆ Rnq are δ-adjacent if there exists one i ∈ N

such that ‖θi(t)− θ′i(t)‖ ≤ δ and for all j 6= i, θj(t) = θ′j(t), where δ ≥ 0.

The Definition 3 is about the adjacent, then we can define the differential privacy based

on Definition 3.

Definition 4. For an ε > 0, the bat-inspired consensus is ε-differential privacy, if for any

two adjacent initial state information Θ(0) and Θ′(0), any set of observation sequences Y ,

and the optimization problem minx∈Rn F (x), the following condition is satisfied:

P[R−1(min
x∈Rn

F (x), Y,Θ(0))] ≤

eεP[R−1(min
x∈Rn

F (x), Y,Θ′(0))]

(5.17)

where the probability is taken over the coin-flips of the algorithm.

Generally speaking, the notation of ε-differential privacy ensures that the consensus

algorithm for multi-agent systems keeps the privacy for themselves, which means for an

adversary who can acess to all of the observation sequences would not infer the state

information for each individual bat with a significant probability. Also, the smaller ε

generally means a higher privacy level of the consensus algorithm.

Definition 5. At each time instant t, for any optimization problem minx∈Rn F (x), the

observation sequences Y , and two adjacent initial state information Θ(0), Θ′(0), define

x ∈ R−1(minx∈Rn F (x), Y,Θ(0)) and x′ ∈ R−1(minx∈Rn F (x), Y,Θ′(0)), the sensitivity

of the bat-inspired consensus can be defined as:

∆(t) , sup‖x− x′‖1. (5.18)

To estimate the bound of ∆(t), we fix any observation sequence Y , the optimization

problem minx∈Rn F (x), and the initial adjacent vector Θ(0) and Θ′(0), the corresponding

87

execution can be defined asR−1(minx∈Rn , Y,Θ(0)) = Θ(0), 〈y(0), z(0)〉,Θ(1), 〈y(1),

z(1)〉, . . . andR−1(minx∈Rn , Y,Θ
′(0)) = Θ′(0), 〈y′(0), z′(0)〉,Θ′(1), 〈y′(1), z′(1)〉,

. . ., since the observation sequence Y is identical for both executionsR−1(minx∈Rn , Y,Θ(0))

andR−1(minx∈Rn , Y,Θ
′(0)), which means that y(t) = y′(t) for all time instant t. From the

definition of zi(t), zi(t) = 1
|N i|

∑
j∈N i yi(t), we can know z(t) = z′(t) for all time instant

t. Hence, the sensitivity of the bat-inspired consensus can be computed as follows:

∆(t) =‖R−1(min
x∈Rn

F (x), Y,Θ(0))

−R−1(min
x∈Rn

F (x), Y,Θ′(0))‖1

= ‖Θ(t)−Θ′(t)‖1

= ‖θi(t)− θ′i(t)‖1,

(5.19)

From Assumption 7, we have

∆(t) ≤ C1. (5.20)

Then, we can define the parameter M in Lap(M,n) as:

M = C1/(aq
t) (5.21)

where a > 0 is a constant and q ∈ (0, 1).

5.3 Convergence Analysis

In this section, we want to show that the proposed bat-inspired consensus algorithm

converges and to establish the bound of the accuracy of this consensus algorithm. First, we

need to define the convergence and accuracy of the proposed consensus algorithm.

88

Definition 6. The proposed bat-inspired consensus is convergent if for any Bats i, j ∈ N ,

lim
t→∞

E‖θi(t)− θj(t)‖ = 0, (5.22)

where the expectation is taken over the coin-flip of the consensus algorithm.

We define the solution to the optimization problem minx∈Rn F (x) by θ∗, and the average

of the state information of the individual bat by θ(t) , 1
|N |
∑

i∈N θi(t). The accuracy of the

consensus can be defined as:

Definition 7. For a constant d ≥ 0, the proposed bat-inspired consensus is d-accurate if

lim
t→∞

E‖θ(t)− θ∗‖ ≤ d, (5.23)

where the expectation is the same as in Definition 6.

It should be noted that the smaller constant d means the consensus algorithm is more

accurate. If the consensus algorithm finds the exact solution of the optimization problem

minx∈Rn F (x), the constant d becomes 0. That is to say that the consensus has 0-accurate.

Then we can show that the proposed consensus algorithm converges, but we first need to

show that the proposed consensus satisfies ε-differential privacy.

Lemma 10. The proposed consensus algorithm (5.11)-(5.16) is ε-differential privacy if

a
1−q ≤ ε.

Proof. For an arbitrary time instant t, we fix any optimization problem minx∈Rn F (x), the

observation sequences Y , and any adjacent initial state information Θ(0) and Θ′(0). Since

the communication graph is fixed, the observation information y(t) at each time instant t is

fixed. According to the definition of received information, zi(t) = 1
|N i|

∑
j∈N i yi(t) is fixed.

Then, by (5.16), we know that the state information θi(t) is uniquely determined. Next,

89

we define a bijection f : R−1(minx∈Rn F (x), Y,Θ(0)) → R−1(minx∈Rn F (x), Y,Θ′(0)).

Define α ∈ R−1(minx∈Rn F (x), Y,Θ(0)) and α′ ∈ R−1(minx∈Rn F (x), Y,Θ′(0)). f(α) =

α′ if and only if they have the same observation sequence, which means that R(α) =

R(α′). If we fix the observation sequence Y , then there exists an unique execution

α ∈ R−1(minx∈Rn F (x), Y,Θ(0)) that can generate this observation sequence Y . Also,

there exists a unique execution α′ ∈ R−1(minx∈Rn F (x), Y,Θ′(0)). Now, we relate the

probability measures of the two executions α and α′:

P[R−1(minx∈Rn , Y,Θ(0))]

P[R−1(minx∈Rn , Y,Θ′(0))]
=

∫
α
P[α]dµ∫

α′
P[α′]dµ′

, (5.24)

and ∫
α′
P[α′]dµ′ =

∫
f(α)

P[f(α)]dµ =

∫
α

P[f(α)]dµ (5.25)

if we change the variable in the integral.

The probability comes from the noise wi(t) according to (6.11). We denote the kth

component of θi(t) as θki (t). Since yi(t) can be obtained by adding n-dimensional random

noise drawn from Lap(M,n). Each component of the noise is independent from others.

Thus,

P[α] =
∏

i∈N ,k∈n

PM(yki (t)− θki (t)). (5.26)

Then, we relate the distance between α and f(α) with the sensitivity of the consensus

∆(t) defined in Definition 5. Thus, from (5.20) we can obtain

‖θi(t)− θ′i(t)‖1 = ∆(t) ≤ C1. (5.27)

Since the function f is a bijection, the observations of α and f(α) are matched, which

means that y(t) = y′(t). According to the definiton of Laplacian distribution and (5.21), we

90

have ∏
i∈N ,k∈n

PM(yki (t)− θki (t))
PM(y

′k
i (t)− θ′ki (t))

≤
∏

i∈N ,k∈n

exp

(
|yki (t)− θki (t)− y

′k
i (t) + θ

′k
i (t)|

M

)

=
∏

i∈N ,k∈n

exp

(
θki (t)− θ

′k
i (t)

M

)

= exp

(∑
i∈N ,k∈n

|θki (t)− θ
′k
i (t)|

M

)

≤ exp

(
∆(t)

M

)
≤ exp

(
C1

M

)
= eaq

t

,

(5.28)

where exp denotes the exponential function. Then, by (5.24), (5.25), (5.26), and (5.28), we

can obtain
P[R−1(minx∈Rn , Y,Θ(0))]

P[R−1(minx∈Rn , Y,Θ′(0))]
=

∫
α
P[α]dµ∫

α
P[f(α)]dµ

≤
∫
α
e
∑∞
t=0 aq

tP[f(α)]dµ∫
α
P[f(α)]dµ

≤ e
∑∞
t=0 aq

t

= e
a

1−q ≤ eε.

(5.29)

Thus, the consensus algorithm is ε-differential privacy by Definition 4.

Next, in order to show that the proposed bat-inspired consensus algorithm is convergent,

we need to define some matrices first. Let R(t) = diag{f1(t), f2(t), . . . , fq(t)}, U(t) =

diag{µ1(t), µ2(t), . . . , µq(t)},

A[j](t) = R(t)U(t)(Iq − 1q×1 ⊗ E[j]
1×q) +R(t)D−1L, (5.30)

and

B[j](t) = R(t)D−1A+ 1q×1 ⊗ E[j]
1×q (5.31)

where diag denotes the diagonal matrix, 1q×1 denotes the vector of q elements and each

element is one, and E[j]
n×nq ∈ Rn×nq denotes a block-elements whose jth block-column

91

is In and the rest of the block-matrices are all zero matrices, for example, E[j]
n×nq =

[0n×n, . . . ,0n×n, Iq,0n×n, . . . ,0n×n], j ∈ {1, 2, . . . , q}.

By defining these notations, the consensus protocol (5.16) can be rewritten as:

Θ(t+ 1) = (Iq − A[j](t))⊗ InΘ(t) +B[j](t)⊗ Inw(t), (5.32)

where w(t) = [wT
1 (t),wT

2 (t), . . . ,wT
q (t)]T is the noise vector.

We have the following result regarding the convergence of (5.32), or equivalently,

(5.11)-(5.16).

Theorem 8. Consider the consensus algorithm (5.11)-(5.16), assume that for every t ∈ Z+

and every j ∈ N , there exist two constants λm and λM such that the following two conditions

hold:

C1) λmIn < A[j](t) < λMIn,

C2) 2λm > λ2M .

Then, the consensus algorithm is convergent.

Proof. We first define a function P (t) = 1
2

∑
i,j∈N [θi(t)−θj(t)]2. Thus, P (t) = ΘT(t)L⊗

92

InΘ(t). By (5.32), we have:

P (t+ 1) = Θ(t+ 1)TL⊗ InΘ(t+ 1)

= ((Iq − A[j](t))⊗ InΘ(t) +B[j](t)⊗ Inw(t))TL⊗ In

((Iq − A[j](t))⊗ InΘ(t) +B[j](t)⊗ Inw(t))

= ((Iq − A[j](t))⊗ InΘ(t))TL⊗ In

((Iq − A[j](t))⊗ InΘ(t)) + 2((Iq − A[j](t))⊗ InΘ(t))T

L⊗ In(B[j](t)⊗ Inw(t)) + (B[j](t)⊗ Inw(t))T

L⊗ In(B[j](t)⊗ Inw(t)),

(5.33)

then we take the expectation of both sides of (5.33) with respect to the coin-flip of the

consensus algorithm:

E‖P (t+ 1)‖ = E‖((Iq − A[j](t))⊗ InΘ(t))TL⊗ In

((Iq − A[j](t))⊗ InΘ(t))‖+ E‖2((Iq − A[j](t))⊗ In

Θ(t))TL⊗ In(B[j](t)⊗ Inw(t))‖

+ E‖(B[j](t)⊗ Inw(t))TL⊗ In(B[j](t)⊗ Inw(t))‖

(5.34)

Let T (t) = (B[j](t)⊗Inw(t))TL⊗In(B[j](t)⊗Inw(t)). Sincew(t) and Θ(t) are indepdent,

(5.34) becomes:

E‖P (t+ 1)‖ = E‖((Iq − A[j](t))⊗ InΘ(t))TL⊗ In

((Iq − A[j](t))⊗ InΘ(t))‖+ E‖T (t)‖

= E‖Θ(t)TL⊗ InΘ(t)− 2Θ(t)T(A[j](t)⊗ In)T

L⊗ InΘ(t) + Θ(t)T(A[j](t)⊗ In)TL⊗ In

(A[j](t)⊗ In)Θ(t)‖+ E‖T (t)‖

(5.35)

93

Let Q(t) = 2Θ(t)T(A[j](t)⊗ In)TL⊗ InΘ(t)−Θ(t)T(A[j](t)⊗ In)TL⊗ In(A[j](t)⊗

In)Θ(t), then, it follows:

Q(t) ≥ 2λmΘ(t)TL⊗ InΘ(t)− λ2MΘ(t)TL⊗ InΘ(t)

= (2λm − λ2M)Θ(t)TL⊗ InΘ(t)

(5.36)

Thus, (5.35) can be written as:

E‖P (t+ 1)‖ = E‖Θ(t)TL⊗ InΘ(t)‖

− E‖Q(t)‖+ E‖T (t)‖

≤ E‖Θ(t)TL⊗ InΘ(t)‖

− (2λm − λ2M)E‖Θ(t)TL⊗ InΘ(t)‖+ E‖T (t)‖,

(5.37)

then, for any a ≤ min((2λm − λ2M), 1), we have Q(t) ≥ aΘ(t)TL ⊗ InΘ(t). Also, from

Condition C2), we know that 2λm − λ2M > 0. Thus, for some a ∈ (0, 1), (5.37) becomes:

E‖P (t+ 1)‖ ≤ (1− a)E‖P (t)‖+ E‖T (t)‖. (5.38)

Since wi(t) and wj(t) are independent for i 6= j, and each element of wi(t) is drawn

independently from Lap(M,n). Then E‖wi(t)wj(t)‖ = 0 for i 6= j, and if i = j, then

E‖wi(t)wj(t)‖ = E‖wi(t)
2‖ = Var(wi(t)) = 2a2q2t, where Var denotes the finite variance.

Thus E‖T (t)‖ converges to 0 if t → ∞. The first term of the right hand side of (5.38)

also converges to 0, thus limt→∞ E‖P (t)‖ = limt→∞
∑

i,j∈N E‖θi(t)− θj(t)‖ = 0. From

Definition 6, the consensus algorithm is convergent.

Theorem 8 shows that all bats will eventually converge to a common value. Next, we

establish a bound of the accuracy of the proposed consensus algorithm. It should be noted

that here we use weighted average state instead of average state information defined in

94

Definition 7, where the weighted average state information is define as θ̄i(t) =
∑q
i=1 γi(t)θi(t)∑q
i=1 γi(t)

and γi(t) = fi(t)/|N i|.

Theorem 9. The proposed bat-inspired consensus algorithm can guarantee d-accuracy, i.e.,

lim
t→∞

E‖θ̄i(t)− θ∗‖ ≤ d,

where d = C1e
−fminµmin + fmaxµmaxC1

fminµmin
.

Proof. Equation (5.14) can be rewritten as:

θi(t− 1)− θ∗ = θi(t)− θ∗ +
fi(t)

|N i|
∑
j∈N i

[yj(t)− θi(t)]

+ fi(t)µi(t)[yq+i,min(t)− θi(t)],

(5.39)

where θ∗ is the solution to the optimization problem minx∈Rn F (x). Let γi(t) = fi(t)/|N i|.

Equation (5.39) can be reformulated as:

γi(t)[θi(t+ 1)− θ∗] = γi(t)[θi(t)− θ∗] +
∑
j∈N i

yj(t)

− |N i|θi(t) + γi(t)fi(t)µi(t)[yq+i,min(t)− θi(t)]

= γi(t)[θi(t)− θ∗] +
∑
j∈N i

θj(t)− |N i|θi(t)

+ γi(t)fi(t)µi(t)[θq+i,min(t)− θi(t)] +
∑
j∈N i

wj(t)

+wk(t)

(5.40)

where wk(t) denotes the noise vector corrsponding to the yq+i,min(t). Letting ηi(t) =

95

∑
j∈N i wj(t) +wk(t) and adding up all the q equations, we can obtain:

q∑
i=1

γi(t)[θi(t+ 1)− θ∗] =

q∑
i=1

γi(t)[θi(t)− θ∗]

+

q∑
i=1

γi(t)fi(t)µi(t)[θq+i,min(t)− θi(t)] +

q∑
i=1

ηi(t)

(5.41)

Dividing both sides of (5.41) by
∑q

i=1 γi(t), we have:

∑q
i=1 γi(t)[θi(t+ 1)− θ∗]∑q

i=1 γi(t)
=

∑q
i=1 γi(t)[θi(t)− θ∗]∑q

i=1 γi(t)

+

∑q
i=1 γi(t)fi(t)µi(t)[θq+i,min(t)− θi(t)]∑q

i=1 γi(t)
+

∑q
i=1 ηi(t)∑q
i=1 γi(t)

=

∑q
i=1 γi(t)[θi(t)− θ∗]∑q

i=1 γi(t)
+

∑q
i=1 ηi(t)∑q
i=1 γi(t)

+

∑q
i=1 γi(t)fi(t)µi(t)[θq+i,min(t)− θ∗]∑q

i=1 γi(t)

−
∑q

i=1 γi(t)fi(t)µi(t)[θi(t)− θ∗]∑q
i=1 γi(t)

(5.42)

Next, we take the L2 norm on both sides of (5.42). By Assumption 7, it follows that:

‖θ̄i(t+ 1)− θ∗‖ ≤ ‖θ̄i(t)− θ∗‖+ fmaxµmaxC1

− fminµmin‖θ̄i(t)− θ∗‖+

∥∥∥∥∑q
i=1 ηi(t)∑q
i=1 γi(t)

∥∥∥∥
= (1− fminµmin)‖θ̄i(t)− θ∗‖

+ fmaxµmaxC1 +

∥∥∥∥∑q
i=1 ηi(t)∑q
i=1 γi(t)

∥∥∥∥
(5.43)

96

where θ̄i(t) =
∑q
i=1 γi(t)θi(t)∑q
i=1 γi(t)

. Recursively repeating this process, it follows that:

‖θ̄i(t+ 1)− θ∗‖ ≤ (1− fminµmin)‖θ̄i(0)− θ∗‖

+
t∑

k=0

(1− fminµmin)k(fmaxµmaxC1)

+
t∑

k=0

(1− fminµmin)k
(∥∥∥∥∑q

i=1 ηi(t)∑q
i=1 γi(t)

∥∥∥∥) .
(5.44)

Next, by Assumption 7, Inequality (5.44) can be written as:

‖θ̄i(t+ 1)− θ∗‖ ≤ (1− fminµmin)C1

+
fmaxµmaxC1

fminµmin

(1− (1− fminµmin)t)

+
t∑

k=0

(1− fminµmin)k
(∥∥∥∥∑q

i=1 ηi(t)∑q
i=1 γi(t)

∥∥∥∥) ,
(5.45)

then, we take the expectation on both sides of (5.44), since wi(t) andwj(t) are indepedent

and E‖wi(t)‖ = 0, it follows that E‖
∑q

i=1 ηi(t)‖ = 0. Thus, by using the inequality

1− a ≤ e−a, we have:

lim
t→∞

E‖θ̄i(t+ 1)− θ∗‖ ≤ C1e
−fminµmin +

fmaxµmaxC1

fminµmin

. (5.46)

Consequently, the conclusion of the theorem is established.

5.4 Simulation

To show the effectiveness of the proposed bat-inspired consensus algorithm, we consider an

optimization problem minF (x) =
∑n−1

i=1 [100(xi+1−x2i)2+(1−xi)2] for x = [x1, x2, x3]
T ∈

R3. The global minimum for this optimization problem is 0 at xi = 1. The number of

the agents is 4 and their communication graph is connected. The corresponding Laplacian

97

matrix is shown as:

L =

3 −1 −1 −1

−1 2 0 −1

−1 0 2 −1

−1 −1 −1 3

.

The parameter fmin and fmax are 0.01 and 0.07, respectively and the zooming parameters

µmin and µmax are 0.3 and 0.8, respectively. For Laplacian distribution, we choose q =

0.8 and a = 0.4. Fig.5.1, Fig.5.2, and Fig.5.3 show x1, x2, and x3 of all of the agents

versus iteration numbers. From the simulation results, we can observe that the consensus

state can be reached by this algorithm. The optimization value is 0.03278 at point x =

[1.0777, 1.1624, 1.3528]T in this simulation instead of the exact optimization point, i.e.,

x∗ = [1, 1, 1]T . This can be explained from two aspects. The first aspect is that the

BA optimization method does not find the true optimization point. It can only obtain

the best solution among the population of candidiate solutions. Hence, the proposed

bat-inspired consensus algorithm inherents this property, leading to full guidability but not

full predictability. The second aspect is that we use the differentially privacy method in

our consensus algorithm. Even though this can preserve the privacy, it does not guarantee

its convergence to the exact optimization point. However, this can be tolorated when we

concern more about the privacy, especially in the case where the accurate number d is small.

5.5 Conclusion

In this chapter, we proposed a bat-inspired consensus algorithm with privacy-awareness

for multi-agent systems. By embedding a separate optimization problem, this consensus

algorithm can guide the search direction that is not fully predictable. In order to prevent

98

0 50 100 150 200 250

iteration number

0

0.5

1

1.5

2

2.5

3

x
1

agent 1

agent 2

agent 3

agent 4

Figure 5.1: x1 of all agents versus time for the differential privacy consensus algorithm.

0 50 100 150 200 250

iteration number

-1

-0.5

0

0.5

1

1.5

x
2

agent 1

agent 2

agent 3

agent 4

Figure 5.2: x2 of all agents versus time for the differential privacy consensus algorithm.

99

0 50 100 150 200 250

iteration number

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

x
3

agent 1

agent 2

agent 3

agent 4

Figure 5.3: x3 of all agents versus time for the differential privacy consensus algorithm.

semi-honest adversaries from inferring the state information of each agent, we introduced

the notation of differentially privacy. We showed that the proposed bat-inspired consensus

algorithm satisfies the differential privacy and the consensus algorithm is convergent. Also,

we derived the upper bound of the accuracy of the proposed consensus algorithm.

100

CHAPTER 6

THE FORMATION CONTROL OF MULTI-AGENT WITH DEEP

REINFORCEMENT LEARNING

6.1 Introduction

Cooperative control of multi-agent systems (MASs) has attracted many research interest

from control and robotics communities in recent years [102]. The application of this task has

a wide range in reconnaissance, surveillance, and security [103,104]. The ability of maintain

the network topology and connectivity of robots is crucial for some tasks such as target

localization, oceanic search and recur, and undersea oil pipeline maintainance [105–107].

Among cooperative control of MASs, the formation control is one of the most interesting

research topic since it has broad applications. Many MASs including unmanned aerial

vehicles (UAVs), autonomous underwater vehicles(AUVs), and nonholonomic mobile robots

are studied to address the formation control problem. These studies focus on leader-follower

methods [108–110], virtual leader approaches [111, 112], and leaderless consensus method

[113]. Some other results of the formation control can be found in the survey [114]. The

aim of the formation control of the MASs is to design the appropriate algorithm such

that it can ensure the group of the agents to achieve and maintain the desired geometric

connection of their states. Formation control generally makes the autonomous agents work

together to collaboratively finish the formation task. This work is generally accomplished by

101

Figure 6.1: The formation control of four robots forming a rectangle.

communicating the state information of each agent with its neighbors. The leader-follower

approach is one the most popular method since its simplicity. The basic idea is that the

leader can be designed as the reference such that other agents can be controlled to follow

the corresponding trajectory, meanwhile, the trajectory of the follower agent is designed to

the desired separation and relative bearing with the leader. Another popular method is the

consensus algorithm, which focuses on finding a common state for all of the agents, then

driving each agent to the particular state relative to the founded common state. Based on

this idea, the research on the consensus problems for multi-agent can be extended to the

case of directed topology [115].

Many studies use the mobile robot systems to perform the formation control algorithm.

For example, the vision-based control method is used to drive the mobile robots to form

the desired formation [116]. The obstacle avoidance problems is tackled in the formation

control for the mobile robots [117]. A real-time observer developed to estimate the relative

state of the mobile robot to form the formation is proposed in [118].

One of the main difficult problem in the formation control is the collision avoidance in

the moving of the mobile robot. The major strategies for this problem are the rule-based

approaches and optimization-based approaches. For the rule-based approaches, a consensus

based algorithm is proposed in [119], where the artificial potential approach is used

102

to generate the collision avoidance strategy. By exploiting the properties of weighted

graphs, the formation and the collision avoidance for the robots can be achieved in [120].

Correspondingly, one of the optimization approaches is to use the model predictive control

based method [121, 122]. Another problem is that in practice, many robot system models

are nonlinear and have nonholonomic constraints, which means the dynamic equation of the

robots are hard to model. Some studies focus on the formation control task for nonholonomic

mobile robots [123,124]. The tracking control of the mobile robots with limited information

of the desired trajectory is studied in [125].

In order to overcome these two problems, we try to find an efficient way by introducing

reinforcement learning (RL) to handle them. In the control engineering domain, RL bridges

the gap between the traditional control theory and the adaptive control algorithm [126].

The reinforcement learning is based on the idea of an agent can solve the different actions

from learning the outcome which is optimal for some specific situation. Since RL is an

end-to-end learning method, there is no need to know the model of the robot, therefore,

the designer of the control algorithm can save a lot of effort since only the feedback in the

form of the reward function needs to be provided. This reward function generally provides

the information of the state and action about the performance of the last step the agent

takes [127]. Thus, the agent can learn the appropriate policy to optimize the long-term

reward by continuely interact with the environment. For the RL, an agent can evaluate the

feedback of its action in each of its step, thus the whole performance of the agent can be

improved for the subsequent actions [128, 129].

In this work, the deep reinforcement learning (DRL) is used to model the formation

control problem. DRL has been proven to learn control policy directly from the input

in [130]. Also, they present that DRL can receive the high-dimensional sensory inputs to

learn the policy to excel for some challenging tasks [51]. A major progress for DRL is that

it can be extends to the continuous action domain [131]. From then, using DRL to solve

103

some classical control problems becomes easily. Some DRL algorithms in continuous action

domain are proposed such as asynchronous advantage actor-critic [132] and in [133], they

combine the asymmetric actor-critic with domain randomization. In this chapter, we will

use an multi-agent actor-critic algorithm to train our multi robots in the simulation, and use

the trained network to the real robots to demonstrate the effectiveness of our algorithm. The

main advantages of our algorithm over traditional formation control are that firstly, it avoids

the complex model of the nonholonomic mobile robot, hence we avoid designing the input

specifically, and secondly, we combine an collision avoidance method in this formation

control algorithm.

6.2 Background

In this section, we will introduce some basic knowledge and methods related to our work.

6.2.1 Formation Control

Firstly, we formulate the formation control of multi robots under the general problem setup.

Consider the following N agents:

ṗi = qi

q̇i = ai,

(6.1)

where pi and qi denote the position and velocity of each robot i, i ∈ {1 . . . , N}. They are

the state of the agent si = [pi qi]
T. ai is the control input for each robot i. It can be seen

as the action of each robot i. Let F : R2N → RM be given. The desired formation for the

agent can be specified by the constraint:

F (s) = F (s∗). (6.2)

104

Then, the formation control problem can be defined as:

Definition 8. [114] (Formation Control Problem): The formation control problem can be

defined as to design a control law such that the constraint (6.2) can be satisfied for the multi

robots systems (6.1).

Based on the Definition 8, some commonly used formation control problems are shown

as follows:

• Position-based problem: Each robot i can sense the absolute state of others with

respect to a global coordinate system. The constraint (6.2) can be given by:

F (s) := s = F (s∗). (6.3)

Each agent can control si actively.

• Displacement-based problem: Each agent can sense the relative state of other agents

with respect to a global coordinate system. Meanwhile, they cannot sense the absolute

state of other agents with the global coordinate system. The constraint (6.2) can be

given as:

F (s) := [. . . , (sj − si)T, . . .]T = F (s∗), (6.4)

for each i, j = 1, . . . , N . The constraint (6.4) is invariant to translation applied to the

state s. Agent controls [. . . , (sj − si)T, . . .]T in the displacement-based problem.

• Distance-based problem: Distance-based problem requires that each agent can only

sense the relative state of other agents with respect to the local coordinate system.

They do not need to sense the absolute state information of other agents with respect

to the global coordinate system. The constraint is given as:

F (s) := [. . . , ‖sj − si‖, . . .]T = F (s∗), (6.5)

105

for each robot i, j = 1, . . . , N . The constraint (6.5) is invariant to combination of

translation and rotation applied to state s. Each agent actively controls [. . . , ‖sj−si‖]T.

The differece between distance-based and the displacement-based problem is that

the distance-based problem only cares the relative distance between the two agents,

however, the displacement-based problem cares the relative coordinate for each two

agents.

In this work, we perform the position-based formation control, which means the multi robots

system (6.1) will achieve F (s) → F (s∗). The constraint of the system will depend on

the (6.3), which describes the desired position for each robot with respect to the global

coordinate system, thus each robot will move to a designed state with respect to the common

state. The specific form of the constraints in (6.3) will be discussed in the experiment part.

6.2.2 Markov Decision Processes

In this part, we will introduce the Markov decision processes (MDP) for multi-agent. The

multi-agent MDP can be defined as a set of state S = {S1, . . . ,SN} which describes the

possible configurations of all the agents, a set of actionA = {A1, . . . ,AN} which describes

the actions of each agent i, and a set of observations O = {O1, . . . ,ON} for each agent. In

order to choose proper action for each agent, it uses a stochastic policy πθi : Oi×Ai → [0, 1]

to generate the next action it should take. By executing this action, the agent can produce

the next state according to the state transition function T : S ×A1 ×A2 × . . .×AN → S .

After each agent executing its own action, the agent can acquire the rewards as a function

of the state and the action ri : S × Ai → R, meanwhile, the agent can obtain a private

observation related with the state oi : S → Oi. The solution of the multi-agent MDP is a

control policy πθi which can maximize the expected sum of future rewards Ri =
∑T

t=0 γ
trti

if the agent executes the policy, where γ is a discount factor and T is the time horizon.

106

6.2.3 Deep Q-Networks

Deep Q-Networks (DQN) is a popular method in RL and has already been proven a

successful algorithm for the multi-agent scenario [134,135]. Q-learning use the action-value

function to evaluate the policy it learns. The corresponding action-value function can be

described as Qπ(s, a) = E[R|st = s, at = a]. This function can be computed recursively

as Qπ(s, a) = Es′ [r(s, a) + γEa′∼π[Qπ(s′, a′)]]. DQN can learn the optimal action-value

function Q∗ corresponding to the optimal policy of the agent by minimizing the function

given as follows:

L(θ) = Es,a,r,s′ [(Q∗(s, a|θ)− y)2], (6.6)

this function generally is referred as the loss function, where y = r + γmaxa′ Q̄
∗(s′, a′). Q̄

is the target Q function and its parameters are updated with the most recent paramenters in

DQN periodically. DQN also uses experience replay buffer D to stabilizing the network,

which is the tuples containing (s, a, r, s′).

The multi-agent can perform the DQN directly by letting each agent i learn its own

independently optimal function Qi [136]. The disadvantage of this algorithm is that the

environment may not maintain stationary for each agent i when each agent learns its optimal

policy independently. In this case, the Markov assumption will be violated.

6.2.4 Policy Gradient Algorithms

Avoiding learning the action-value function Q, another algorithm was proposed to learn the

policy directly, which is a popular choice for the DQN. The policy can be learned by adjust

the parameters θ of the policy by maximizing the objective function J(θ) = Es∼pπ ,a∼πθ [R].

This can be achieved by taking the steps in the gradient direction ∇θJ(θ). The gradient of

107

the policy can be given as follows:

∇θJ(θ) = Es∼pπ ,a∼πθ [∇θ log πθ(a|s)Qπ(s, a)], (6.7)

where pπ is the state distribution. The multi-agent scenario can use policy gradient algorithm

to exhibit the high variance gradient estimates. In such case, the reward of each agent

obtained depends on the actions of other agents. The agent’s own reward will exhibit more

variability when compared with the single agent action. Based on policy gradient algorithm,

many other method are developed by learning the approximation of the true action-value

function Qπ(s, a) such as temporal-difference learning and actor-critic algorithm [137].

The policy gradient algorithm can be extended to the deterministic policies µθ : S → A,

which can be used to solve the problem where the action of each agent taken will be

in the continuous domain. Thus, we can rewrite the gradient of the objective function

J(θ) = Es∼pµ [R(s, a)] as follows:

∇θJ(θ) = Es∼D[∇θµθ(a|s)∇aQ
µ(s, a)|a=µθ(s)], (6.8)

The term∇aQ
µ(s, a) requires that the action doamin A should be continuous and hence the

policy each agent acting also should be in the continuous domain.

The deep deterministic policy gradient (DDPG) is a variant of the deterministic policy

method, where the policy µ and the critic Qµ can be approximated by using the deep neural

networks. DDPG still uses the replay buffer of experiences to sample data and trains the

corresponding network. Also, it uses the target network to avoid the divergence, which

is the same as in the DQN. The DDPG can learn complex policies for some tasks using

low-dimensional observations. It adopts the straightforward actor-critic algorithm and makes

the learning process becoming easily implemented for some difficult problem and large

108

networks.

6.3 Algorithm

This part is to derive the algorithm that can perform the multi-agent cooperative work for

the DRL. Consider now a system of N robots operating in a common environment. There

is no controller can collect the rewards or make the decisions for the whole robots, which

means each agent in the communication network can only decide its own action and thus

receive the corresponding rewards for itself. The communication network can be denoted

by G = (N,E), where E represents the set of communication links, which means E is a

undirected graph with the vertex set N and edge set E ⊆ {(i, j) : i, j ∈ N, i 6= j}. We

assume that each agent can fully observe its state, i.e., si = oi. The edge (i, j) ∈ E denotes

that the agent i and j can communicate with each other. Meanwhile, each agent can only

use the local state information to learn its policies. By augmenting the policies information

of other agents, we can use the extended actor-critic method to solve the formation control

problem of multi robots.

For N robots, the policies of the system can be parameterized by θ = {θ1, . . . , θN}. We

denote π = {π1, . . . , πN} be the polices of all the robots. Thus, we can rewrite the gradient

of the expected return for each agent i. It can be given as follows:

∇θiJ(θi)

= Es∼µ,ai∼πi [∇θi log πi(ai|si)Qπ
i (s, a1, . . . , aN)],

(6.9)

From the action-value function Qπ
i (s, a1, . . . , aN) used in (6.9), we can observe that it

requires the actions of all of the robots as the input. The output is the Q value for the agent

i. Each agent i learns the Q value separately, since the action-value function for each agent

has its own structure, we can define different constraints (6.2) for each agent i.

109

Now we consider each robot will determine its own policies µθi in continuous domain

with respect to the parameters θi. The gradient can be rewritten as follows:

∇θiJ(µi) = Ex,a∼D

[∇θiµi(ai|si)∇aiQ
µ
i (s, a1, . . . , aN)|ai=µi(si)],

(6.10)

The replay buffer D constitutes the tuples(s, s′, a1, . . . , aN , r1, . . . , rN). This tuple can

contain the actions of all agent and hence all the rewards after they execute the action. Hence,

the loss function can be given as follows:

L(θi) = Es,a,r,s′ [(Qµ
i (s, a1, . . . , aN)− y)2], (6.11)

where y = ri + γQµ′

i (s′, a′1, . . . , a
′
N)|a′j=µ′j(sj), µ

′ = {µθ′1,...,θ′N} is the set of policies all the

agent learned in target network with parameter θ′i.

We can see that this algorithm still needs the assumption that the agent i needs to know

other agent’s policies. This assumption is commonly used in the Velocity Obstacle (VO)

method, which is used to solve the collision avoidance problem. In order to remove this

assumption, each robot i can estimate the policies µ̂ji of other agent j takes. This estimation

can be achieved by maximizing the log probability of agent j’s reward and it can be given

as follows:

L(µ̂ji) = −Esj ,aj [log µ̂ji (aj|sj) + λH(µ̂ji)], (6.12)

where H is the entropy of the policy distribution. Then the corresponding estimated ŷ can

be calculated by the following:

ŷ = ri = γQµ′

i (s′, µ̂′1i (s1) . . . , µ̂
′N
i (sN)), (6.13)

where µ̂′ji denotes the policies generated by the target network for the approximate policy

110

µ̂ji . When training the network, the action-value function Qµ
i can be updated and the latest

samples of each agent j in replay buffer can be used to perform the single gradient step to

update the parameter of the critic network. Thus, we can remove the assumption that each

agent needs to know other’s policies. The whole algorithm is shown in Algorithm 1.

Algorithm 1 Formation control of multi robots with Deep Reinforcement Learning
for episode = 1 to M do

Reveive the inital state s for each robots.
for t = 1 to max iteration number do

for each robot i selects action ai = µθi(oi) +Nt with respect to its policy.
each robot executes the action ai.
each robot receives the reward ri and moves to the next state si by the system
dynamic (6.1).
store (s, a, r, s′) to the replay buffer D.
for robot i = 1 to N do
si ← s′i for each robot i.
smaple a random minibatch of S samples (sj, aj, rj, s′j) from replay buffer D.
set ŷj by (6.13).
update critic by minimizing loss function (6.12).
update actor by sampled policy gradient by (6.10).

end for
end for

end for

6.4 Experiment

In this part, we will demonstrate our experiments in details. We first use the gazebo

simulation environment to train the DRL and get the network model, then we use the trained

algorithm in the real robot to show the effectiveness of the algorithm. The robot systems

we used here are 4 Pioneer 3dx robot. It is a differential driven robot which has two active

wheels and two velocity commands, linear and angular velocity. Each of them is with a

Nvidia TX1 such that they can communicate with each other by Robot Operating System

(ROS). The parameters used in the algorithm are shown is Table.6.1. After training the

111

network, we can use the algorithm to generate the path to achieve the formation control for

the robot systems.

Table 6.1: Parameters Used in the Algorithm

Parameter Name Parameter Value
Learning rate of actor 0.0001
Learning rate of critic 0.00001

Batch size 130
γ 0.001

Max steps in one episode 60

Let (rxi, ryi), θi denote the Cartesian position and orientation of the ith robot, respectively.

Let (vi, wi) denote the linear and angular speed of the ith robot. The kinematic equation of

the ith robot can be written as:

ṙxi = vi cos(θi), ṙyi = vi sin(θi), θ̇i = wi (6.14)

By linearize (6.14) for a fixed point off the center of the wheel axis (xi, yi) of the robot,

where xi = rxi + di cos(θi), yi = ryi + di sin(θi), and d = 0.15m. We can write

vi
wi

 =

 cos(θi) sin(θi)

−(1/d) sin(θi) (1/d) cos(θi)

axi
ayi

. This is a simple kinematic equation. With this

equation, we can transfer the action of each agent to the velocity command used in the

nonholonomic mobile robot directly.

Since our formation control is based on the consensus algorithm, we firstly is to seek

the consensus state of all the robots, which is denoted by sr = [xrc, y
r
c , θ

r
c]

T. The [xrc, y
r
c]

and θrc denote the reference position and orientation of the formation center of the robots

team, respectively. Since sr is dynamically changing, each robot maintains a local variable

sri = [xci, yci, θci]
T , which is the sense value of the state sr by each robot i. The objective of

112

consensus is to make sure that the value of sri tracks the value of sr, i = 1, . . . , N .

In order to perform the formation control, there is a constraint (6.2) needed to satisfy

for each robot i, which means that each robot needs to determine its own desired position

(xdi , y
d
i) relative to the sensed consensus state sri . It can be written as follows:

xdi
ydi

 =

xci
yci

+

cos(θci) − sin(θci)

sin(θci) cos(θci)

x̃if
ỹif

 , (6.15)

where [x̃if , ỹif]
T represents the desired deviation vector of the ith robot relative to the

geometric center of the formation. Thus, this is the constraints (6.2) that each robot i should

be satisfied in order to form the formation in our experiment. The real trajectory of each

robot i should track [xdi , y
d
i]

T and thus the desired formation shape can be maintained.

Then, we can define the reward function for each robot i. The reward function is specified

to give the robot award when it achieved its goal, and penalize it for getting too close with

another robot to cause the collision. The reward function for each robot i can be given as:

ri =

 −(‖xi − xdi ‖+ ‖yi − ydi ‖) if L > di

−10 if L < di

(6.16)

where L is the distance between the robot i and its nearest neighbor robot, and di is the

safe distance for each robot i to ensure that it cannot cause the collision with others. If the

collision happens, the episode is end.

The initial position for the robots are x1 = −1.83m, y1 = −1.82m, x2 = 1.78m,

y2 = 1.80m, x3 = −2.01m, y3 = 2.135m, and x4 = 2.135m, y4 = 2.135m. Fig.6.2 shows

that the learning curve of the algorithm.

Fig.6.3 and Fig.6.4 show that the trajectory of each robot moves after 500000 training

episodes. Fig.6.5 and Fig.6.6 show that the corresponding velocity in each direction for each

113

0

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

episodes

−250

−200

−150

−100

−50

0

m
e
a
n
 e
p
is
o
d
e
 r
e
w
a
rd
s

Figure 6.2: The learning curve for the formation control problem. The curve shows the
mean of the average reward of 1000 episode.

robot.

Kinematics constraints of each nonholonomic mobile robot need to be considered when

we run the experiments. In many works, the kinematics constraints of the mobile robot

are hard to encode, thus it might result in increasing the computational complexity [138].

However, it is quiet easy to incorporate these kinematic constraints in the RL framework.

Some kinematic constraints are:

a < vmax, (6.17)

|θt+1 − θt| < ∆t · vmax, (6.18)

where (6.17) limits that the velocity of the robot cannot exceed the maximum value of

the velocity, and (6.18) specifies a maximum turning rate that corresponds to maximum

velocity. The parameters used in this work are shown in Table 6.2.

114

0 5 10 15 20 25 30 35 40

time

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

x
 d

ir
e

c
ti
o

n

robot1

robot2

robot3

robot4

Figure 6.3: The x direction trajectory of each robot

With kinematics constraints incorporated in the experiments, the trajectory of all four

robots is shown in Fig.6.7. The arrow direction denotes the direction that the robot moves

toward.

Next, we will perform this trained DRL to the real robot systems. Fig.6.8-Fig.6.10 show

the experiment, where Fig.6.8 shows that the robots are in the initial position, Fig. 6.9

shows that robots are running. They are trying to avoid each other in order to preventing the

collision, and Fig.6.10 shows that finally, the robots are achieving the formation.

6.5 Conclusion

In this chapter, we developed a multi-agent formation control algorithm based on the

application of deep reinforcement learning. In particular, this method can not only let

115

0 5 10 15 20 25 30 35 40

time

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
 d

ir
e
c
ti
o
n

robot1

robot2

robot3

robot4

Figure 6.4: The y direction trajectory of each robot

each robot learn its own policies but also estimate the policies of other agent executing.

Meanwhile, it can perform the collision avoidance while the robots are running. The

simulation results show that this algorithm is effectiveness and can incorporate some

kinematics constraints for each robot.

116

0 5 10 15 20 25 30 35 40

time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
v
e
lo

c
it
y
 i
n
 x

 d
ir
e
c
ti
o
n

robot1

robot2

robot3

robot4

Figure 6.5: The velocity of x direction trajectory of each robot

Table 6.2: Some Parameters Used in the Experiment

Parameter Name Parameter Value
x̃1f 1.5m
ỹ1f 1.5m
x̃2f -1.5m
ỹ2f 1.5m
x̃3f 1.5m
ỹ3f -1.5m
x̃4f -1.5m
ỹ4f -1.5m
di 0.6m
vmax 1m/s

117

0 5 10 15 20 25 30 35 40

time

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

v
e
lo

c
it
y
 i
n
 y

 d
ir
e
c
ti
o
n

robot1

robot2

robot3

robot4

Figure 6.6: The velocity of y direction trajectory of each robot

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x direction

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

y
 d

ir
e
c
ti
o
n

robot1

robot2

robot3

robot4

Figure 6.7: The trajectory of each robot with kinematics constraints

118

Figure 6.8: The initial position for all of the robots

Figure 6.9: The robots are avoiding each other to prevent the collision

Figure 6.10: The final position of all of the robots

119

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion of This Dissertation

The goal of this research is to develop a novel bio-inspired consensus protocol which can

guide the direction of the convergence. In order to fulfill this target, the bat research algorithm

is considered to be incorporated into the general consensus protocol. By introducing the

flux function, the proposed consensus protocol can enhance the connection of the agents

in the topological graph. Moreover, By embedding the flux function in the speed-down

and speed-up term, the proposed consensus protocol can provide extra force to make this

protocol converge quickly. After that, the privacy of the agents is analyzed. By borrowing

the notation of the sensitivity, we can apply the differential privacy to the proposed consensus

protocol. Thus the proposed consensus protocol can protect the privacy of the agents in

the network. Also, we show that this new consensus protocol is convergence with the

expectation taken over the coin-flip. Finally, we use the deep reinforcement learning method

to achieve the goal of the consensus. The reason we use it mainly because we want to get rid

of the complex mathematical model when designing a consensus protocol. We extend the

deep deterministic policy gradients (DDPG) algorithm to multi-agent scenario. By carefully

designing the reward function for the agents, the algorithm can reach the consensus for this

multi-agent scenario.

The following conclusions can be drawn upon the fulfillment of this dissertation.

120

By borrowing the ability of the bat searching algorithm, the proposed consensus protocol

can guide the agreement state to converge the solution of the optimization problem. In order

to improve the speed of the convergence, the flux function is introduced to be incorporated

to the speed-up and speed-down term. When we consider the linear case of the flux

function, the proposed consensus protocol can be transformed into a matrix form. By matrix

paracontracting technique and matrix rank notation, both two types of convergence, namely

quadratic monotone convergence and orthant invariant convergence, can be proven and

shown in simulation result.

The nonlinear case of the flux function is also considered in this dissertation. Because of

the nonlinear term including the flux function, the consensus protocol cannot be transformed

to the matrix form. Thus, in order to prove the convergence, the Lyapunov theory is used.

We first define the error term according to the state information, then define the Lyapunov

function based on this error term. Moreover, we consider the proposed consensus protocol

with the external disturbances. In this situation, we prove that the protocol can robustly

reach consensus with the performance γ.

Moreover, the privacy of the agents is considered in this dissertation. By defining the

sensitivity of the two initial states, we can measure the two different initial states and thus

we can define the notation of ε-differential privacy. This technique can prevent others to

acquire the exact initial information of the agents in the network topology if certain condition

is satisfied. Also, we prove that this revised consensus protocol is convergent under the

differential privacy condition and determine the accuracy of the consensus state.

Finally, the deep reinforcement learning is used to reach the consensus agreement. The

reason why we use it is that we want to get rid of complex mathematical model of the

controller when designing the traditional consensus protocol. The deep deterministic policy

gradients method is used and extended to the multi agents scenario. The reward function is

designed to make the consensus problem to be fitted for the reinforcement learning algorithm.

121

This algorithm is performed in the mobile robots. Thus the consensus is transformed to

the formation control for the multi agents and the results show that the deep reinforcement

learning can reach the consensus agreement.

7.2 Contributions of This Dissertation

The contributions of the dissertation are summarized as follows:

• A review of consensus protocol and its applications were provided in the dissertation.

• The bio-inspired consensus protocol is proposed. Moreover, the matrix paracontraction

is introduced and the characteristics of the linear case of the bio-inspired consensus

are studied.

• By using matrix paracontraction technique, two types of convergence, namely quadratic

monotone convergence and orthant invariant convergence, are proven for the linear

case of the consensus protocol.

• Nonlinear case of the bio-inspired consensus is also studied. In this case, the Lyapunov

theory is applied to the nonlinear case of the consensus protocol to show that it is

convergent.

• We also consider the nonlinear case of the bio-inspired consensus protocol with

external disturbances and prove it is convergent.

• The sensitivity of two different initial states of the consensus is defined. Then the

differential privacy of the bio-inspired consensus protocol is proposed and discussed.

After that, the convergence of this new type of consensus is also studied. The upper

bound of the accuracy of the proposed consensus algorithm is discussed.

122

• The DDPG algorithm is extend to the multi agents scenario and we apply this extended

version to solve the consensus problem. The extended algorithm is tested on the mobile

robots platform.

7.3 Recommendation for Future Research

Some of the recommendations for future research are listed as follows:

• The mobile robots platform can be used to test the bio-inspired consensus protocol

to further confirm the convergence of the bio-inspired consensus. These tests and

validations are the important step to verify the effectiveness of the proposed consensus

protocol.

• Some of the assumptions, such as the semi-Lipschitz condition and the convex of

the optimization problem, should be relaxed for future research direction. Also, the

discontinuous flux function should be considered in the further research.

• The proposed bio-inspired consensus protocol can be applied in multi-layer, multi-

dependent cyber-physical network systems.

• The time consumption for the DDPG algorithm should be investigated. Moreover,

the implemented formation control should also be added the ability to guide the

convergence direction to the solution of the optimization problem.

123

BIBLIOGRAPHY

[1] A. Rogers, E. David, N. R. Jennings, and J. Schiff, “The effects of proxy bidding

and minimum bid increments within ebay auctions,” ACM Transactions on the Web

(TWEB), vol. 1, no. 2, p. 9, 2007. 1.1

[2] N. Schurr, J. Marecki, M. Tambe, P. Scerri, N. Kasinadhuni, and J. P. Lewis, “The

future of disaster response: Humans working with multiagent teams using defacto.”

in AAAI spring symposium: AI technologies for homeland security, 2005, pp. 9–16.

1.1

[3] R. Sun and I. Naveh, “Simulating organizational decision-making using a cognitively

realistic agent model,” Journal of Artificial Societies and Social Simulation, vol. 7,

no. 3, 2004. 1.1

[4] J. Ferber and G. Weiss, Multi-agent systems: an introduction to distributed artificial

intelligence. Addison-Wesley Reading, 1999, vol. 1. 1.1

[5] C. W. Reynolds, “Flocks, herds, and schools: A distributed behavioral model,”

Comput. Graph., vol. 21, pp. 25–34, 1987. 2.1

[6] J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory of flocking,”

Phys. Rev. E, vol. 58, pp. 4828–4858, 1998. 2.1

[7] K. Warburton and J. Lazarus, “Tendency-distance models of social cohesion in animal

groups,” J. Theoretical Bio., vol. 150, no. 4, pp. 473–488, 1991. 2.1

124

[8] D. Grunbaum and A. Okubo, “Modelling social animal aggregations,” in Frontiers

in Mathematical Biology, ser. Lecture Notes in Biomathematics. Springer-Verlag,

1994, vol. 100, pp. 296–325. 2.1

[9] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen, and O. Shochet, “Novel type of

phase transition in a system of self-deriven particles,” Phys. Rev. Lett., vol. 75, pp.

1226–1229, 1995. 2.1

[10] F. Cucker and S. Smale, “Emergent behavior in flocks,” IEEE Trans. Autom. Control,

vol. 52, no. 5, pp. 852–862, 2007. 2.1

[11] D. Ye, M. Zhang, and A. V. Vasilakos, “A survey of self-organization mechanisms

in multiagent systems,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 47, no. 3, pp.

441–461, 2017. 2.1

[12] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous

agents using nearest neighbor rules,” IEEE Trans. Autom. Control, vol. 48, pp.

988–1001, 2003. 2.1, 3.1

[13] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents

with switching topology and time-delays,” IEEE Trans. Autom. Control, vol. 49, pp.

1520–1533, 2004. 2.1, 3.1, 5.1

[14] L. Moreau, “Stability of multiagent systems with time-dependent communication

links,” IEEE Trans. Autom. Control, vol. 50, pp. 169–182, 2005. 2.1

[15] Q. Hui and W. M. Haddad, “Distributed nonlinear control algorithms for network

consensus,” Automatica, vol. 44, pp. 2375–2381, 2008. 2.1, 3.1.1

125

[16] Q. Hui, W. M. Haddad, and S. P. Bhat, “Finite-time semistability and consensus for

nonlinear dynamical networks,” IEEE Trans. Autom. Control, vol. 53, pp. 1887–1900,

2008. 2.1

[17] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans, “Distributed asynchronous

deterministic and stochastic gradient optimization algorithms,” IEEE Trans. Autom.

Control, vol. 31, pp. 803–812, 1986. 2.1, 5.1

[18] V. Borkar and P. P. Varaiya, “Asymptotic agreement in distributed estimation,” IEEE

Trans. Autom. Control, vol. 27, pp. 650–655, 1982. 2.1

[19] J. R. Marden, G. Arslan, and J. S. Shamma, “Cooperative control and potential games,”

IEEE Trans. Syst. Man Cybern. Part B: Cybern., vol. 39, no. 6, pp. 1393–1407, 2009.

2.1

[20] Q. Hui and H. Zhang, “Optimal balanced coordinated network resource allocation

using swarm optimization,” IEEE Trans. Syst. Man Cybern.: Syst., vol. 45, no. 5, pp.

770–787, 2015. 2.1, 3.1.2

[21] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the study

of distributed multi-agent coordination,” IEEE Trans. Industrial Informatics, vol. 9,

no. 1, pp. 427–438, Feb 2013. 2.1

[22] S. Knorn, Z. Chen, and R. H. Middleton, “Overview: Collective control of multiagent

systems,” IEEE Trans. Control Netw. Syst., vol. 3, no. 4, pp. 334–347, Dec 2016. 2.1

[23] M. Nourian, P. E. Caines, and R. P. Malham’e, “A mean field game synthesis of initial

mean consensus problems: A continuum approach for non-Gaussian behavior,” IEEE

Trans. Automat. Control, vol. 59, no. 2, pp. 449–455, Feb 2014. 2.1

126

[24] Q. Hui, W. M. Haddad, and S. P. Bhat, “Semistability, finite-time stability, differential

inclusions, and discontinuous dynamical systems having a continuum of equilibria,”

IEEE Trans. Autom. Control, vol. 54, no. 10, pp. 2465–2470, 2009. 2.1

[25] F. Xiao, L. Wang, and T. Chen, “Finite-time consensus in networks of integrator-like

dynamic agents with directional link failure,” IEEE Trans. Automat. Control, vol. 59,

no. 3, pp. 756–762, March 2014. 2.1

[26] W. Chen, X. Li, W. Ren, and C. Wen, “Adaptive consensus of multi-agent systems

with unknown identical control directions based on a novel Nussbaum-type function,”

IEEE Trans. Automat. Control, vol. 59, no. 7, pp. 1887–1892, July 2014. 2.1

[27] A. Pilloni, A. Pisano, Y. Orlov, and E. Usai, “Consensus-based control for a network

of diffusion PDEs with boundary local interaction,” IEEE Trans. Automat. Control,

vol. 61, no. 9, pp. 2708–2713, Sept 2016. 2.1

[28] C. Altafini, “Consensus problems on networks with antagonistic interactions,” IEEE

Trans. Automat. Control, vol. 58, no. 4, pp. 935–946, April 2013. 2.1

[29] A. V. Proskurnikov, A. S. Matveev, and M. Cao, “Opinion dynamics in social networks

with hostile camps: Consensus vs. polarization,” IEEE Trans. Automat. Control,

vol. 61, no. 6, pp. 1524–1536, June 2016. 2.1

[30] M. Dorigo, M. Birattari, and T. Stützle, “Ant colony optimization,” IEEE

Computational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006. 2.1

[31] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc. IEEE Int. Conf.

Neural Netw., Perth, Australia, 1995, pp. 1942–1948. 2.1

127

[32] R. Storn and K. Price, “Differential evolution–a simple and efficient heuristic for

global optimization over continuous spaces,” Journal of Global Optimization, vol. 11,

no. 4, pp. 341–359, 1997. 2.1

[33] H. Zhang and Q. Hui, “Parallel multiagent coordination optimization algorithm:

Implementation, evaluation, and applications,” IEEE Trans. Autom. Sci Eng., vol. 14,

no. 2, pp. 984–995, 2017. 2.1, 3.1, 3.3.2, 5.1

[34] ——, “Binary multiagent coordination optimization with application to formation

control design,” in 2013 IEEE Congress on Evolutionary Computation (CEC),

Cancun, Mexico, 2013, pp. 1968–1975. 2.1

[35] X.-S. Yang, “A new metaheuristic bat-inspired algorithm,” in Nature Inspired

Cooperative Strategies for Optimization (NICSO 2010). Springer, 2010, pp. 65–74.

2.1, 3.1, 3.1.1, 4.2, 5.1, 5.2.1

[36] R. E. Mirollo and S. H. Strogatz, “Synchronization of pulse-coupled biological

oscillators,” SIAM Journal on Applied Mathematics, vol. 50, no. 6, pp. 1645–1662,

1990. 2.2

[37] S. H. Strogatz, “From kuramoto to crawford: exploring the onset of synchronization

in populations of coupled oscillators,” Physica D: Nonlinear Phenomena, vol. 143,

no. 1-4, pp. 1–20, 2000. 2.2

[38] G. B. Ermentrout and N. Kopell, “Frequency plateaus in a chain of weakly coupled

oscillators, i.” SIAM journal on Mathematical Analysis, vol. 15, no. 2, pp. 215–237,

1984. 2.2

[39] R. Sepulchre, D. Paley, and N. Leonard, “Collective motion and oscillator

synchronization,” in Cooperative control. Springer, 2005, pp. 189–205. 2.2

128

[40] A. Papachristodoulou and A. Jadbabaie, “Synchronization in oscillator networks:

Switching topologies and non-homogeneous delays,” in Proceedings of the 44th IEEE

Conference on Decision and Control. IEEE, 2005, pp. 5692–5697. 2.2

[41] J. Cortes, S. Martinez, T. Karatas, and F. Bullo, “Coverage control for mobile

sensing networks,” IEEE Transactions on robotics and Automation, vol. 20, no. 2, pp.

243–255, 2004. 2.2

[42] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: Algorithms and theory,”

CALIFORNIA INST OF TECH PASADENA CONTROL AND DYNAMICAL

SYSTEMS, Tech. Rep., 2004. 2.2

[43] J. Cortés, S. Martı́nez, and F. Bullo, “Robust rendezvous for mobile autonomous

agents via proximity graphs in arbitrary dimensions,” IEEE Transactions on Automatic

Control, vol. 51, no. 8, pp. 1289–1298, 2006. 2.2

[44] R. Olfati-Saber, “Distributed kalman filter with embedded consensus filters,” in

Proceedings of the 44th IEEE Conference on Decision and Control. IEEE, 2005,

pp. 8179–8184. 2.2

[45] Y. Mo and R. M. Murray, “Privacy preserving average consensus,” IEEE Transactions

on Automatic Control, vol. 62, no. 2, pp. 753–765, Feb 2017. 2.3, 5.1

[46] C. Dwork, “Differential privacy,” in Encyclopedia of Cryptography and Security.

Springer, 2011, pp. 338–340. 2.3, 5.1

[47] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on

Automatic Control, vol. 59, no. 2, pp. 341–354, Feb 2014. 2.3

129

[48] Z. Huang, S. Mitra, and G. Dullerud, “Differentially private iterative synchronous

consensus,” in Proceedings of the 2012 ACM Workshop on Privacy in the Electronic

Society. ACM, 2012, pp. 81–90. 2.3, 5.1

[49] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning. MIT press

Cambridge, 1998, vol. 135. 2.4

[50] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps: A framework

for temporal abstraction in reinforcement learning,” Artificial intelligence, vol. 112,

no. 1-2, pp. 181–211, 1999. 2.4

[51] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control

through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529, 2015. 2.4,

6.1

[52] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,

J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering the

game of go with deep neural networks and tree search,” nature, vol. 529, no. 7587, p.

484, 2016. 2.4

[53] M. Lauer and M. Riedmiller, “An algorithm for distributed reinforcement learning in

cooperative multi-agent systems,” in In Proceedings of the Seventeenth International

Conference on Machine Learning. Citeseer, 2000. 2.4

[54] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent control using

deep reinforcement learning,” in International Conference on Autonomous Agents

and Multiagent Systems. Springer, 2017, pp. 66–83. 2.4

130

[55] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson, “Counterfactual

multi-agent policy gradients,” in Thirty-Second AAAI Conference on Artificial

Intelligence, 2018. 2.4

[56] H. Zhang and Q. Hui, “Multiagent coordination optimization: A control-theoretic

perspective of swarm intelligence algorithms,” in 2013 IEEE Congress on

Evolutionary Computation (CEC), Cancun, Mexico, 2013, pp. 3339–3346. 3.1,

5.1

[57] W. M. Haddad, V. Chellaboina, and Q. Hui, Nonnegative and Compartmental

Dynamical Systems. Princeton, NJ: Princeton Univ. Press, 2010. 3.1.1, 3.2.2

[58] J. M. Berg, D. H. S. Maithripala, Q. Hui, and W. M. Haddad, “Thermodynamics-based

control of network systems,” ASME J. Dyna. Syst. Meas. Control, vol. 135, no. 5,

2013. 3.1.1

[59] H. Zhang, F. Zhang, and Q. Hui, “A speed-up and speed-down strategy for swarm

optimization,” in 2014 ACM Genetic and Evolutionary Computation Conference

(GECCO), Vancouver, Canada, 2014, pp. 1481–1482. 3.1.1

[60] Z. Jin and R. M. Murray, “Multi-hop relay protocols for fast consensus seeking,” in

Proc. IEEE Conf. Decision Control, San Diego, CA, 2006. 3.1.1, 5.2.1

[61] Q. Hui, “Optimal semistable control in ad hoc network systems: A sequential

two-stage approach,” IEEE Trans. Autom. Control, vol. 58, no. 3, pp. 779–784,

2013. 3.1.1

[62] ——, “Further results on paracontracting matrices and correction to ‘Optimal

semistable control in ad hoc network systems: A sequential two-stage approach’,”

131

IEEE Trans. Autom. Control, vol. 60, no. 12, pp. 3305–3309, 2015. 3.1.1, 3.1.2, 3.1.2,

3.1.2, 3.1.2, 3.1.2

[63] L. Elsner, I. Koltracht, and M. Neumann, “On the convergence of asynchronous

paracontractions with applications to tomographic reconstruction from incomplete

data,” Linear Alg. Appl., vol. 130, pp. 65–82, 1990. 3.1.1, 3.1.2, 1

[64] D. P. Bertsekas and J. N. Tsitsiklis, “Comments on ‘Coordination of groups of mobile

autonomous agents using nearest neighbor rules’,” IEEE Trans. Autom. Control,

vol. 52, no. 5, pp. 968–969, 2007. 3.1.1, 3.2, 3.2.2, 3.2.2, 9

[65] S. Nelson and M. Neumann, “Generalizations of the projection method with

applications to SOR theory for Hermitian positive semidefinite linear systems,” Numer.

Math., vol. 51, no. 2, pp. 123–141, 1987. 3.1.2, 3.1.2

[66] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms,”

IEEE Trans. Inform. Theory, vol. 52, pp. 2508–2530, 2006. 3.1.2

[67] X. Wang and Z. Cheng, “The convergence of infinite product of uniformly

paracontracting matrices and its application in consensus of the Vicsek model,” J. Sys.

Sci. Math. Scis., vol. 33, no. 6, pp. 724–731, 2013. 3.1.2, 3.1.2

[68] D. S. Bernstein, Matrix Mathematics, 2nd ed. Princeton, NJ: Princeton Univ. Press,

2009. 3.1.2, 3.1.2, 3.1.2

[69] W. M. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and Control: A

Lyapunov-Based Approach. Princeton, NJ: Princeton Univ. Press, 2008. 3.1.2, 4.3,

4.4

[70] Q. Hui, “Semistability of nonlinear systems having a connected set of equilibria and

time-delays,” IEEE Trans. Autom. Control, vol. 57, no. 10, pp. 2615–2620, 2012. 3.4

132

[71] J. A. Fax and R. M. Murray, “Information flow and cooperative control of vehicle

formations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1465–1476,

Sept 2004.

[72] T. Eren, P. N. Belhumeur, and A. S. Morse, “Closing ranks in vehicle formations

based on rigidity,” in Proceedings of the 41st IEEE Conference on Decision and

Control, vol. 3, Dec 2002, pp. 2959–2964 vol.3. 4.1

[73] R. Vidal, O. Shakernia, and S. Sastry, “Formation control of nonholonomic mobile

robots with omnidirectional visual servoing and motion segmentation,” in Proceedings

of the 2003 IEEE International Conference on Robotics and Automation, ICRA ’03.,

vol. 1, Sept 2003, pp. 584–589 vol.1. 4.1

[74] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” ACM

SIGGRAPH computer graphics, vol. 21, no. 4, pp. 25–34, 1987. 4.1

[75] J. Toner and Y. Tu, “Flocks, herds, and schools: A quantitative theory of flocking,”

Physical review E, vol. 58, no. 4, p. 4828, 1998. 4.1

[76] J. Cortés and F. Bullo, “Coordination and geometric optimization via distributed

dynamical systems,” SIAM Journal on Control and Optimization, vol. 44, no. 5, pp.

1543–1574, 2005. 4.1

[77] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of agents

with switching topology and time-delays,” IEEE Transactions on Automatic Control,

vol. 49, no. 9, pp. 1520–1533, Sept 2004. 4.1

[78] J. Cortés, “Distributed algorithms for reaching consensus on general functions,”

Automatica, vol. 44, no. 3, pp. 726–737, 2008. 4.1

133

[79] P. Lin, Y. Jia, and L. Li, “Distributed robust H∞ consensus control in directed

networks of agents with time-delay,” Systems & Control Letters, vol. 57, no. 8, pp.

643–653, 2008. 4.1

[80] R. Carli, F. Bullo, and S. Zampieri, “Quantized average consensus via dynamic

coding/decoding schemes,” International Journal of Robust and Nonlinear Control,

vol. 20, no. 2, pp. 156–175, 2010. 4.1

[81] T. Li, M. Fu, L. Xie, and J. F. Zhang, “Distributed consensus with limited

communication data rate,” IEEE Transactions on Automatic Control, vol. 56, no. 2,

pp. 279–292, Feb 2011. 4.1

[82] Y. Hong, G. Chen, and L. Bushnell, “Distributed observers design for leader-following

control of multi-agent networks,” Automatica, vol. 44, no. 3, pp. 846–850, 2008. 4.1

[83] M. Areak, “Passivity as a design tool for group coordination,” in 2006 American

Control Conference, June 2006, pp. 6 pp.–. 4.1

[84] K. Warburton and J. Lazarus, “Tendency-distance models of social cohesion in animal

groups,” Journal of Theoretical Biology, vol. 150, no. 4, pp. 473–488, 1991. 4.1

[85] D. Grünbaum and A. Okubo, “Modelling social animal aggregations,” in Frontiers in

mathematical biology. Springer, 1994, pp. 296–325. 4.1

[86] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile autonomous

agents using nearest neighbor rules,” IEEE Transactions on Automatic Control,

vol. 48, no. 6, pp. 988–1001, June 2003. 4.1

[87] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under

dynamically changing interaction topologies,” IEEE Transactions on Automatic

Control, vol. 50, no. 5, pp. 655–661, May 2005. 4.1

134

[88] Q. Hui, W. M. Haddad, and S. P. Bhat, “Finite-time semistability and consensus for

nonlinear dynamical networks,” IEEE Transactions on Automatic Control, vol. 53,

no. 8, pp. 1887–1900, Sept 2008. 4.1

[89] H. Zhang and Q. Hui, “Multiagent coordination optimization: A control-theoretic

perspective of swarm intelligence algorithms,” in 2013 IEEE Congress on

Evolutionary Computation, June 2013, pp. 3339–3346. 4.1

[90] Q. Hui and W. M. Haddad, “Distributed nonlinear control algorithms for network

consensus,” Automatica, vol. 44, no. 9, pp. 2375–2381, 2008. 4.2, 5.2.1

[91] W. M. Haddad, V. Chellaboina, and Q. Hui, Nonnegative and compartmental

dynamical systems. Princeton University Press, 2010. 4.2, 5.2.1

[92] J. M. Berg, D. H. S. Maithripala, Q. Hui, and W. M. Haddad, “Thermodynamics-based

control of network systems,” Journal of Dynamic Systems, Measurement, and Control,

vol. 135, no. 5, p. 051003, 2013. 4.2, 5.2.1

[93] H. Zhang, F. Zhang, and Q. Hui, “A speed-up and speed-down strategy for

swarm optimization,” in Proceedings of the Companion Publication of the 2014

Annual Conference on Genetic and Evolutionary Computation, ser. GECCO Comp

’14. New York, NY, USA: ACM, 2014, pp. 1481–1482. [Online]. Available:

http://doi.acm.org/10.1145/2598394.2602285 4.2

[94] A. Zemouche and M. Boutayeb, “A new observer design method for a class

of Lipschitz nonlinear discrete-time systems with time-delay: Extension to H∞

performance analysis,” in 46th IEEE Conf. Decision Control, 2007, pp. 414–419. 4.4

[95] J. Le Ny and G. J. Pappas, “Differentially private filtering,” IEEE Transactions on

Automatic Control, vol. 59, no. 2, pp. 341–354, 2014. 5.1

http://doi.acm.org/10.1145/2598394.2602285

135

[96] W. M. Haddad, V. Chellaboina, and S. G. Nersesov, Thermodynamics: A Dynamical

Systems Approach. Princeton, NJ: Princeton Univ. Press, 2005. 5.1

[97] H. Zhang, Q. Hui, and Q. Liu, “Bio-inspired consensus under suggested convergence

direction,” in 2017 American Control Conference (ACC), Seattle, WA, May 2017, pp.

4262–4267. 5.2.1

[98] Q. Liu and Q. Hui, “The convergence analysis of bat-inspired consensus protocols

with nonlinear dynamics,” in 13th IEEE International Conference on Automation

Science and Engineering, Xi’an, China, Aug 2017. 5.2.1

[99] Q. Hui, W. Qiao, and C. Peng, “Neuromorphic-computing-based feedback control:

A cognitive supervisory control framework,” in IEEE Conf. Decision Control, Las

Vegas, NV, 2016. 5.2.1

[100] H. Zhang, F. Zhang, and Q. Hui, “A speed-up and speed-down strategy for swarm

optimization,” in Proceedings of the Companion Publication of the 2014 ACM

Conference on Genetic and Evolutionary Computation. ACM, 2014, pp. 1481–1482.

5.2.1

[101] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum, “Differential privacy under

continual observation,” in Proceedings of the 42nd ACM Symposium on Theory of

Computing. ACM, 2010, pp. 715–724. 5.2.2

[102] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, “A survey on recent

advances in distributed sampled-data cooperative control of multi-agent systems,”

Neurocomputing, vol. 275, pp. 1684–1701, 2018. 6.1

136

[103] M. Fields, E. Haas, S. Hill, C. Stachowiak, and L. Barnes, “Effective robot team

control methodologies for battlefield applications,” in Intelligent Robots and Systems,

2009. IROS 2009. IEEE/RSJ International Conference on, 2009, pp. 5862–5867. 6.1

[104] J. Ding, J. H. Gillula, H. Huang, M. P. Vitus, W. Zhang, and C. J. Tomlin, “Hybrid

systems in robotics,” IEEE Robotics & Automation Magazine, vol. 18, no. 3, pp.

33–43, 2011. 6.1

[105] H. Rezaee and F. Abdollahi, “Pursuit formation of double-integrator dynamics using

consensus control approach,” IEEE Transactions on Industrial Electronics, vol. 62,

no. 7, pp. 4249–4256, 2015. 6.1

[106] Q. Lu, Q.-L. Han, X. Xie, and S. Liu, “A finite-time motion control strategy for odor

source localization,” IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp.

5419–5430, 2014. 6.1

[107] H. Li, P. Xie, and W. Yan, “Receding horizon formation tracking control of

constrained underactuated autonomous underwater vehicles,” IEEE Transactions

on Industrial Electronics, vol. 64, no. 6, pp. 5004–5013, 2017. 6.1

[108] P. Millán, L. Orihuela, I. Jurado, and F. R. Rubio, “Formation control of autonomous

underwater vehicles subject to communication delays,” IEEE Transactions on Control

Systems Technology, vol. 22, no. 2, pp. 770–777, 2014. 6.1

[109] M. Ou, H. Du, and S. Li, “Finite-time formation control of multiple nonholonomic

mobile robots,” International Journal of Robust and Nonlinear Control, vol. 24, no. 1,

pp. 140–165, 2014. 6.1

137

[110] T. Liu and Z.-P. Jiang, “Distributed formation control of nonholonomic mobile robots

without global position measurements,” Automatica, vol. 49, no. 2, pp. 592–600,

2013. 6.1

[111] C. Ma and J. Zhang, “On formability of linear continuous-time multi-agent systems,”

Journal of Systems Science and Complexity, vol. 25, no. 1, pp. 13–29, 2012. 6.1

[112] X. Dong, B. Yu, Z. Shi, and Y. Zhong, “Time-varying formation control for unmanned

aerial vehicles: Theories and applications,” IEEE Transactions on Control Systems

Technology, vol. 23, no. 1, pp. 340–348, 2015. 6.1

[113] Z. Lin, L. Wang, Z. Han, and M. Fu, “Distributed formation control of multi-agent

systems using complex laplacian,” IEEE Transactions on Automatic Control, vol. 59,

no. 7, pp. 1765–1777, 2014. 6.1

[114] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent formation control,”

Automatica, vol. 53, pp. 424–440, 2015. 6.1, 8

[115] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems under

dynamically changing interaction topologies,” IEEE Transactions on automatic

control, vol. 50, no. 5, pp. 655–661, 2005. 6.1

[116] M. Aranda, G. Lpez-Nicols, C. Sags, and Y. Mezouar, “Formation control of mobile

robots using multiple aerial cameras,” IEEE Transactions on Robotics, vol. 31, no. 4,

pp. 1064–1071, Aug 2015. 6.1

[117] S.-C. LIU, D.-L. TAN, and G.-J. LIU, “Formation control of mobile robots with

active obstacle avoidance,” Acta Automatica Sinica, vol. 33, no. 5, pp. 529 –

535, 2007. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S1874102907600238 6.1

http://www.sciencedirect.com/science/article/pii/S1874102907600238
http://www.sciencedirect.com/science/article/pii/S1874102907600238

138

[118] H. Wang, D. Guo, X. Liang, W. Chen, G. Hu, and K. K. Leang, “Adaptive vision-based

leaderfollower formation control of mobile robots,” IEEE Transactions on Industrial

Electronics, vol. 64, no. 4, pp. 2893–2902, April 2017. 6.1

[119] Y. Kuriki and T. Namerikawa, “Consensus-based cooperative formation control with

collision avoidance for a multi-uav system,” in 2014 American Control Conference,

June 2014, pp. 2077–2082. 6.1

[120] R. Falconi, L. Sabattini, C. Secchi, C. Fantuzzi, and C. Melchiorri, “Edge-weighted

consensus-based formation control strategy with collision avoidance,” Robotica,

vol. 33, no. 2, p. 332347, 2015. 6.1

[121] A. Richards and J. How, “Decentralized model predictive control of cooperating

uavs,” in 43rd IEEE Conference on Decision and Control, vol. 4. Citeseer, 2004, pp.

4286–4291. 6.1

[122] A. T. Hafez, A. J. Marasco, S. N. Givigi, A. Beaulieu, and C. A. Rabbath,

“Encirclement of multiple targets using model predictive control,” in 2013 American

Control Conference, June 2013, pp. 3147–3152. 6.1

[123] R. Vidal, O. Shakernia, and S. Sastry, “Formation control of nonholonomic mobile

robots with omnidirectional visual servoing and motion segmentation,” in Robotics

and Automation, 2003. Proceedings. ICRA’03. IEEE International Conference on,

vol. 1. IEEE, 2003, pp. 584–589. 6.1

[124] W. Dong, “Distributed observer-based cooperative control of multiple nonholonomic

mobile agents,” International Journal of Systems Science, vol. 43, no. 5, pp. 797–808,

2012. 6.1

139

[125] ——, “Tracking control of multiple-wheeled mobile robots with limited information

of a desired trajectory,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 262–268,

Feb 2012. 6.1

[126] N. Hovakimyan and C. Cao, L1 adaptive control theory: guaranteed robustness

with fast adaptation. SIAM-Society for Industrial and Applied Mathematics, 2010,

vol. 21. 6.1

[127] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”

The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238–1274, 2013.

6.1

[128] B.-Q. Huang, G.-Y. Cao, and M. Guo, “Reinforcement learning neural network to

the problem of autonomous mobile robot obstacle avoidance,” in 2005 International

Conference on Machine Learning and Cybernetics, vol. 1, Aug 2005, pp. 85–89. 6.1

[129] C. Li, J. Zhang, and Y. Li, “Application of artificial neural network based on

q-learning for mobile robot path planning,” in 2006 IEEE International Conference

on Information Acquisition, Aug 2006, pp. 978–982. 6.1

[130] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint

arXiv:1312.5602, 2013. 6.1

[131] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and

D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint

arXiv:1509.02971, 2015. 6.1

140

[132] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver,

and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,”

in International conference on machine learning, 2016, pp. 1928–1937. 6.1

[133] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel, “Domain

randomization for transferring deep neural networks from simulation to the real

world,” in Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International

Conference on. IEEE, 2017, pp. 23–30. 6.1

[134] J. Foerster, I. A. Assael, N. de Freitas, and S. Whiteson, “Learning to communicate

with deep multi-agent reinforcement learning,” in Advances in Neural Information

Processing Systems, 2016, pp. 2137–2145. 6.2.3

[135] R. Lowe, Y. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-agent

actor-critic for mixed cooperative-competitive environments,” in Advances in Neural

Information Processing Systems, 2017, pp. 6379–6390. 6.2.3

[136] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,”

in Proceedings of the tenth international conference on machine learning, 1993, pp.

330–337. 6.2.3

[137] R. S. Sutton, A. G. Barto, et al., Reinforcement learning: An introduction. MIT

press, 1998. 6.2.4

[138] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for

real-time multi-agent navigation,” in Robotics and Automation, 2008. ICRA 2008.

IEEE International Conference on. IEEE, 2008, pp. 1928–1935. 6.4

141

APPENDIX A

LIST OF PUBLICATIONS

[1] Qishuai Liu, Emmanuel Moulay, Patrick Coirault, and Qing Hui,“Deep Learning

Based Formation Control for the Multi-Agent Coordination,” 16th IEEE International

Conference on Networking, Sensing and Control, Banff, Canada, May 2019.

[2] Fayrouz Isfoula, Emmanuel Bernuau, Emmanuel Moulay, Patrick Coirault, Qishuai

Liu, and Qing Hui, “Practical Consensus Tracking of Multi-Agent Systems with Linear

Controllers,” 2019 European Control Conference, Napoli, Italy, June 2019.

[3] Qishuai Liu and Qing Hui, “B-Splines-Based Fuzzy C-Means to Maximizing Overlap

Areas for Interconnected Power Systems,” 14th IEEE Conference on Industrial Electronics

and Applications, Xian, China, June 2019.

[4] Qishuai Liu and Qing Hui, “The Formation Control of Mobile Autonomous Multi-Agent

Systems Using Deep Reinforcement Learning,” 13th Annual IEEE International

Systems Conference, Orlando, FL, April 2019.

[5] Jie Cheng, Qishuai Liu, Qing Hui, and Fred Choobineh, “The Joint Optimization

of Critical Interdependent Infrastructure of an Electricity-Water-Gas System,” 16th

Annual Conference on Systems Engineering Research, Charlottesville, VA, May 2018.

[6] Qishuai Liu and Qing Hui, “The Bat-Inspired Consensus Protocols with Differential

Privacy,” 14th IEEE International Conference on Control and Automation, Anchorage,

142

AK, June 2018.

[7] Qishuai Liu and Qing Hui, “Hybrid Stability Analysis via Extended Small-Gain

Theorem for Networked Cyber-Physical Systems with Transmission Delay,” 13th

IEEE Conference on Automation Science and Engineering, Xian, China, August 2017.

[8] Qishuai Liu and Qing Hui, “The Convergence Analysis of Bat-Inspired Consensus

Protocols with Nonlinear Dynamics,” 13th IEEE Conference on Automation Science

and Engineering, Xian, China, August 2017.

[9] Haopeng Zhang, Qing Hui, and Qishuai Liu, “Bio-Inspired Consensus under Suggested

Convergence Direction,” 2017 American Control Conference, Seattle, WA, May 2017.

[10] Qishuai Liu and Qing Hui, “A Hybrid ACO Algorithm Based on Bayesian Factorizations

and Reinforcement Learning for Continuous Optimization,” 2016 IEEE Congress on

Evolutionary Computation, Vancouver, Canada, July 2016.

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	8-2019

	COOPERATIVE LEARNING FOR THE CONSENSUS OF MULTI-AGENT SYSTEMS
	Qishuai Liu

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Overview

	Literation Review
	Consensus Protocol
	Application of the Consensus Protocol
	Privacy Protection
	Deep Reinforcement Learning

	The Bio-Inspired Cooperative Learning Consensus under Suggested Convergence Direction: Linear Case
	Introduction
	Swarm-Intelligence-Inspired Consensus
	Mathematical Preliminaries

	Cooperative Learning Consensus
	Quadratic Monotone Convergence via Matrix Paracontraction
	Orthant Invariant Convergence via Nonnegative Matrices

	Simulation
	Verification
	Comparison

	Conclusion

	The Bio-Inspired Cooperative Learning Consensus under Suggested Convergence Direction: Nonlinear Case
	Introduction
	Bat-Inspired Consensus
	Convergence Analysis of Bat-Inspired Consensus
	Bat-Inspired Consensus with Disturbances
	Simulation
	Conclusion

	The Bat-Inspired Consensus Protocols with Differential Privacy
	Introduction
	Bat-Inspired Consensus and Differential Privacy
	Bat-Inspired Consensus
	Differential Privacy

	Convergence Analysis
	Simulation
	Conclusion

	The Formation Control of Multi-agent with Deep Reinforcement Learning
	Introduction
	Background
	Formation Control
	Markov Decision Processes
	Deep Q-Networks
	Policy Gradient Algorithms

	Algorithm
	Experiment
	Conclusion

	Conclusion and Future Work
	Conclusion of This Dissertation
	Contributions of This Dissertation
	Recommendation for Future Research

	Bibliography
	List of Publications

