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ABSTRACT 

We report the fabrication, properties, and bacteria-resistance of polyelectrolyte complex (PEC) 

coatings and free-standing films. Poly(4-styrenesulfonic acid), poly(diallyldimethylammonium 

chloride), and salt were spin-coated into PEC films. After thermal annealing in a humid 

environment, highly transparent, mechanically strong, and chemically robust films were formed. 

Notably, we demonstrate that PEC coatings significantly reduce the attachment of Escherichia coli 

K12 without killing the microorganisms. We suggest that forming bacteria-resistant surface 

coatings from commercially available polymers holds the potential for use across a wide range of 

applications, including high-touch surfaces in medical settings. 
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KEYWORDS: Antifouling, Complex coacervation, Escherichia coli, Polyelectrolyte, Spin-

coating  

INTRODUCTION

Inanimate surfaces in intensive care units (ICUs), such as bedrails, medical charts, and 

monitors, act as reservoirs for bacteria and cross-contamination, often leading to patient 

colonization and infections.1 Notably, approximately 60% of bacterial infections in ICUs are due 

to cross-transmission, necessitating effective and affordable means of preventing the initial 

attachment of bacteria.1 Typically, antifouling coatings feature hydrophilic polymers, such as 

poly(ethylene glycol) (PEG) or polymer zwitterions,2–4 which prevent bacterial adhesion by 

attracting water molecules to the surface, creating a hydration barrier to bacterial attachment.5,6 In 

particular for polymer zwitterion coatings, the close proximity of oppositely charged groups 

facilitates the formation of ionic bonds with water molecules, creating an aqueous layer that 

prevents the adsorption of organic and biological materials.5–8 While PEG and polymer zwitterion-

based coatings are highly effective at reducing bacterial adhesion by at least 85%,4,9–14 they often 

involve complex synthesis15–17 and substrate specific methods for surface immobilization.9,18–21 

PEG is used extensively in commercial applications,22–25 but it can degrade in biological 

conditions26–30 and PEG antibodies have been reported. Thus, developing alternative means of 

addressing biological fouling is needed.31–33 

Polyelectrolyte complexes (PECs) form through the electrostatic and entropic interactions 

between oppositely-charged polymers that lead to the release of bound counterions and the 

restructuring of the surrounding aqueous phase.34–36 The resulting complexes can undergo liquid-

liquid phase separation (i.e., complex coacervation) or liquid-solid phase separation depending on 
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the identity and length of the polymers, and the solution conditions, including the ionic strength 

and pH value.34,37,38 While PECs have been used in a range of applications including drug delivery, 

advanced adhesives, and food science,34,39,40 most of this work has been focused on liquid complex 

coacervates. The utility of solid PEC complexes has historically been limited as the strong 

electrostatic interactions that drive complexation prohibits traditional thermal and/or solvent 

processing methods. However, recent work has demonstrated that salt can be used to plasticize 

PECs to enable processing.41–48 To date, PECs have been extruded into single fibers,44,49 

electrospun into fiber meshes,41,42 processed into free-standing microchambers,46 spin-coated into 

films,43 cast into films45 and 3D-printed into material forms.50,51

Because PECs consist of oppositely-charged polymers, we hypothesized that their positive 

and negative charges might mirror the functionality of polymer zwitterions, creating a barrier 

against bacterial attachment.3,5,6 Notably, layer-by-layer films show changes in wetting, indicating 

a possible hydration barrier.52–54 Previously, researchers have studied the antibacterial (killing) 

properties of silver nanoparticle-embedded polyelectrolyte layer-by-layer films,55 the flux 

recovery of layer-by-layer coated membranes,56 as well as their antifouling performance against 

diatom cells and barnacles.56,57 Another study described how ultracentrifugated compact PECs 

from chitosan and alginate resisted the adhesion of Staphylococcus aureus.58 While this result is 

encouraging, there is a benefit to developing alternative processing strategies that are less energy 

intensive and can be performed at scale to enable the use of PECs as antifouling coatings. 

 Here, we report the fabrication of transparent, resilient, free-standing PEC films via spin-

coating and have investigated their application as bacteria-resistant coatings. PECs were formed 

using two low-cost, commercially-available commodity polyelectrolytes, poly(4-styrenesulfonic 

acid) and poly(diallyldimethylammonium chloride) with potassium bromide (KBr) salt. Spin-
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coated films were prepared using various post-processing techniques and their transparency, 

ultimate tensile strength, thickness, and resistance to the attachment of Escherichia coli K12 

MG1655 was determined. Our strategy for the aqueous processing of low-cost polymers into 

antifouling coatings and free-standing films represents a crucial step towards potentially using 

these coatings to prevent microbial attachment in high-touch applications. 

MATERIALS AND METHODS

Materials and Chemicals. All compounds, unless otherwise noted, were used as received.  

Poly(4-styrenesulfonic acid, sodium salt) (PSS, AkzoNobel, VERSA TL130, 15 wt%, ca. 70,000 

g/mol, N~340) was filtered using a 0.22 µm pore size filter (EMD Millipore) prior to use. 

Poly(diallyldimethylammonium chloride) (PDADMAC, Hyperfloc CP 626, 20 wt%, ca. 400,000 

g/mol, N~2,470) was purchased from Hychem (Tampa, FL). Poly(2-methacryloyloxyethyl 

phosphorylcholine) was purchased from Sigma-Aldrich and purified by washing with anhydrous 

diethyl ether. M9 minimal salts (M9 media), D-(+)-glucose, Luria-Bertani broth (LB), 

carbenicillin (BioReagent grade), dopamine hydrochloride, and propidium iodide (PI) were 

purchased from Sigma-Aldrich. Tris hydrochloride, Tris base, potassium bromide (KBr, ACS 

grade), hydrogen chloride (HCl, ACS grade), sodium hydroxide (NaOH, ACS grade), acetone 

(ACS reagent), and square glass coverslips (22 mm × 22 mm) were purchased from Fisher 

Scientific (Hampton, NH). Barnstead Nanopure deionized (DI) water was obtained from a Milli-

Q integral water purification system (resistivity of 18.2 MΩ cm, Millipore). The release layer LOR 

5A (poly(dimethylglutarimide)) was purchased from Microchem (Westborough, MA), and silicon 

wafers (3 inch, Type P, 100 orientation) were purchased from University Wafer (Boston, MA). 
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5

RD6 developer (2.25-2.30% tetramethylammonium hydroxide in water) was purchased from 

Futurrex (Franklin, NJ). 

Preparation of Complex Coacervates. Aqueous stock solutions of PSS and PDADMAC were 

prepared gravimetrically at a concentration of 0.5 M on a monomer basis and adjusted to pH 7.2 

with a few drops of concentrated HCl or NaOH. A stock solution of 4 M KBr was also prepared 

gravimetrically. Liquid complex coacervates were prepared at a total volume of 10 mL with a final 

concentration of 0.1 M polymer, on a monomer basis, and a total KBr concentration of 1.6 M 

unless otherwise specified. PSS, KBr, and DI water were added into a 15 mL centrifuge tube 

(Fisher Scientific) followed by PDADMAC. The system was then vortexed for 30 sec and placed 

into a bath sonicator (Branson Ultrasonic Bath 2800, 40 kHz transducer) for 15 min to facilitate 

mixing and equilibration. The resulting mixture was then centrifuged at 5000 rpm for 10 min 

(Sorvall ST 16R Centrifuge, Thermo Fisher Scientific) to coalesce the dense, polymer-rich 

coacervate phase. The polymer-poor supernatant phase was removed from the coacervate phase 

using a transfer pipette.

Fabrication of Immobilized Coatings and Free-Standing PEC Films. Clean substrates (silicon 

wafers and glass coverslips) were prepared by rinsing with acetone, drying using nitrogen gas, and 

an oxygen plasma treatment (Harrick Plasma) for 1 min. Next, 2 mL of isolated coacervate phase 

was uniformly dispensed and spin-coated (G3P-8, Specialty Coating System) onto the cleaned 

substrates. Varying spin rates from 1000 rpm to 3000 rpm were evaluated using a 5 sec ramp and 

a 1 min hold time for all samples. The resulting PEC coating was immediately immersed into a 23 

°C DI water bath (1 L) for 10 min to remove salt and to allow the film to solidify. After removing 
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the samples from the water bath, excess water was removed by blotting with a Kimwipe (Kimtech). 

This process produced PEC coatings that were immobilized on a substrate.

For free-standing films, a release layer of LOR 5A (poly(dimethylglutarimide)) was first 

spin-coated onto the cleaned substrate at 3000 rpm for 1 min, followed by heating at 190 °C for 3 

min and 1 min of oxygen plasma treatment. After spin-coating the coacervate using the procedure 

previously described, samples were immersed in RD6 developer (2.25-2.30% 

tetramethylammonium hydroxide in water) for 5 hr to dissolve the LOR 5A layer, which released 

the film. The released PEC film was then rinsed using DI water.

Figure 1. (a) General fabrication schematic and (b) photographs of transparent, opaque air-dried, 
and opaque lyophilized PEC films. For a schematic of the full process, see Figure S1.

Fabrication of Transparent and Opaque PEC Films. The transparency of immobilized and free-

standing films was modulated post spin-coating. Transparent films were produced by annealing 

the water-saturated film at 120 °C on a hot plate (Fisher Scientific) for 1 min. Opaque films were 

obtained by either allowing the films to dry at 23 °C or by freezing the water-saturated film at -80 

°C overnight, followed by lyophilization (FreeZone, Labconco) (Figures 1 and S1). 
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7

PEC Film Characterization. PEC films used for characterization tests were prepared from 

coacervates made in 1.6 M KBr and spin-coated at 2000 rpm. The transparency of PEC films was 

measured by placing films immobilized on glass slides on top of a 96-well plate. The transmittance 

of the film was measured in triplicate using a Synergy plate reader (BioTek) from 310 - 750 nm 

wavelengths. Film thickness measurements were determined using a stylus profilometer (Dektak 

3, Veeco/Sloan, Santa Barbara, CA) and a micrometer. Films attached to surfaces were first 

scratched using a razor blade to reveal the underlying substrate. Measurement scans were then run 

perpendicular to the scratches for a length of 2000 µm at a duration of 20 sec at 0.1 mm/s using 

500 point resolution.59 The thickness was determined to be the difference between the surface 

height and the lowest point of the scratch. Our profilometer data showed a clean substrate without 

roughness in the area of the scratch, confirming complete film removal. Film thicknesses were 

measured in triplicate. Free-standing films used for mechanical property characterization were 

measured using a Mitutoyo 293-330 digital micrometer by taking three measurements on each 

sample tested.

Small- and wide-angle X-ray scattering (SAXS/WAXS) was used to characterize the 

internal structure of the PEC films using a Ganesha SAXS-Lab with Cu K X-ray source (1.54 

Å). Samples were prepared by folding one free-standing PEC film many times to achieve a total 

thickness of 0.5 - 1.6 mm. Film samples were placed into the center opening of a metal washer and 

fixed using Kapton tape before being mounted on the X-ray beam. Exposure times of 10 min and 

3 min were used for SAXS and WAXS, respectively. Intensity data was normalized by the peak 

of WAXS region during analysis. Contact angle measurements were performed using 4 μL drops 

of DI water and glycerol using a home-built contact angle apparatus that was equipped with a 

Nikon D5100 digital camera with a 60-mm lens and 68-mm extension tube (Nikon, Melville, 
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NY).60 At least 9 measurements were acquired on each type of film and the images were analyzed 

using ImageJ 1.51j8 software (National Institutes of Health, Bethesda, MD). 

Uniaxial mechanical testing was conducted using a Texture Analyzer (Texture 

Technologies) on free-standing PEC films (1 cm × 3 cm). Ultimate tensile stress was calculated 

by dividing the measured maximum force by the cross-sectional area of the film. The cross-

sectional area was the product of the film width times thickness (based on micrometer 

measurements). The PEC films were mounted on two clips using a silicone rubber sheet 

(McMaster-Carr) as the mounting medium and stretched at an extension rate of ~3 mm/min until 

failure. Tests were conducted on 10 transparent films and 6 opaque films. 

Evaluation of Antibacterial and Antifouling Activity of PEC Films. The Gram-negative 

microorganism, Escherichia coli K12 MG1655 (E. coli, DSMZ, Leibniz-Institut, Germany) 

containing a green fluorescent protein (GFP) plasmid was used in antibacterial and antifouling 

tests. E. coli (inoculated with 100 μg/mL carbenicillin) was cultured overnight in Luria-Bertani 

broth at 37 °C to a concentration of 108 cells/mL, washed twice, and resuspended in M9 media 

before their use in either antibacterial or antifouling experiments. 

For antibacterial tests, PEC films and polymer zwitterion controls were placed in separate 

wells of 6-well polystyrene plates (Fisher Scientific), submerged in 5 mL of M9 media containing 

108 E. coli cells, and incubated without shaking at 37 °C for 2 hr. Internal glass coverslips (cleaned 

by submerging in acetone at room temperature for 15 min followed by rinsing with autoclaved DI 

water three times, dried at ~100 °C for 1 hr, and treated with UV/ozone (UV/Ozone ProCleanerTM, 

Bioforce Nanosciences, Ames, IA) for 15 min) were run in parallel for each experiment. Cells 

were stained in the dark with PI (60 µM, excitation/emission at 535 nm/617 nm), allowed to 
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incubate for 15 min,61 and  rinsed gently with M9 media before acquiring 15 random images taken 

over 3 parallel replicates for 3 biological replicates using a Zeiss Microscope Axio Imager A2M 

(20x objective). GFP expressing E. coli were considered viable, while PI-stained E. coli were 

considered dead. ImageJ 1.51j8 software was used to quantify the viable and dead cells and the 

percentage of viable bacteria was determined using Equation 1.

   (Equation 1)Viable 𝐸. 𝑐𝑜𝑙𝑖 (%) =  
Viable  𝐸.  𝑐𝑜𝑙𝑖

Viable  𝐸.  𝑐𝑜𝑙𝑖 + Dead 𝐸.  𝑐𝑜𝑙𝑖 ×  100

Antifouling tests were conducted on PEC films and polymer zwitterion controls, which 

were prepared based on a previously published method.9 Briefly, clean square glass coverslips (22 

mm × 22 mm) were immersed in a solution of 10 mM Tris buffer (pH 8.5), poly(2-

methacryloyloxyethyl phosphorylcholine) (polymer zwitterion, 2 mg/mL), and dopamine 

hydrochloride (2 mg/mL) for 6 hr at 23 °C. Excess polymer was removed via gentle rinsing with 

DI water, before the samples were air dried at 23 °C. Antifouling tests were conducted by placing 

PEC films and polymer zwitterion controls in separate wells of 6-well polystyrene plates and 

exposing them to 5 mL of E. coli (108 cells/mL of M9 media) without shaking for 24 hr at 37 °C. 

Samples were gently rinsed using M9 media and 15 randomly acquired images taken over 3 

parallel replicates for 3 biological replicates were analyzed using ImageJ software to calculate the 

bacteria colony area coverage over the acquired 5,504,455 μm2 area. Statistical significance was 

determined using a two-tailed, unpaired student t-test. 

RESULTS AND DISCUSSION

Characteristics of PEC Films. Spin-coating was used to successfully fabricate uniform coatings 

from complex coacervates formed from salt (KBr) and two commercially-purchased, strong 
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10

polyelectrolytes, poly(4-styrenesulfonic acid, sodium salt) (PSS) and 

poly(diallyldimethylammonium chloride) (PDADMAC), see Figures 1 and S1. Due to the 

hydrophilic nature of polyelectrolytes, substrates were first treated with oxygen plasma to facilitate 

good adhesion between the film and substrate and to avoid dewetting during the spin-coating 

process. This strategy allowed us to successfully prepare films on silicon wafers and glass slides 

in both the presence and absence of a polymeric release layer. 

Freshly spin-coated films were transparent, however, they became opaque after being 

immersed in a water bath, which removes the salt (Figure 1). The amount of salt removed from 

the films was not directly quantified, but diffusion calculations based on results from Ghostine et 

al. suggest that rinsing of the films for a few seconds should be sufficient to remove nearly all of 

the salt.62 However, the increased opacity of the films suggests the formation of a non-uniform 

structure, potentially clusters of ions and water that are large enough to scatter light. Films removed 

from the water bath remained opaque if they were dried under ambient conditions or if they were 

lyophilized, similar to the work by Costa et al.45 Furthermore, once dried, the opacity of opaque 

films persisted after being immersed in water. Interestingly, films that were annealed at 120 °C 

after salt removal immediately created a highly transparent film, and they maintained transparency 

despite subsequent humidity treatment. Similar film transparency could also be obtained by 

exposing a dried opaque film to hot steam or boiling water. Overall, annealing the films caused 

them to be very stable and more transparent than processing the films using steam or boiling water. 

We hypothesize that this transformation from opaque to transparent is the result of temperature 

and water-facilitated rearrangement of the polymer chains that allows for the relaxation of sub-

micron clusters of water and ions that would otherwise scatter light. The literature describes a 

decrease in the gas permeability of analogous PEC films after thermal annealing in humid 
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11

conditions.63 Transmittance experiments demonstrated that annealed PEC films had a similar 

transparency to glass slides in the wavelength range of 310 – 750 nm, while air-dried films 

prepared using the same spin speed transmitted only ~65% of the incident light, and lyophilized 

films were opaque (Figure S2). 

 

Figure 2. The thickness of immobilized transparent, opaque air-dried, and opaque lyophilized PEC 
films as a function of the as-prepared salt concentration and spin-coating speed. Error bars denote 
standard deviation. 

PEC film thickness was investigated as a function of initial salt concentration, spin-coating 

speed, and post-treatment strategy (Figure 2). Film thickness decreased with increasing salt 

concentration and increasing spin speed, consistent with a report by Kelly and Schlenoff.43 These 

results were expected because the viscosity of the PSS/PDADMAC coacervate used for spin-

coating decreases with increasing salt concentration,38,43,64,65 allowing for the formation of thinner 

films. Similarly, increasing the spin speed increases the centrifugal force, which subsequently thins 

the film. Comparing our results with those reported by Kelly and Schlenoff for the same polymer 

system,43 our films were significantly thinner (e.g., approximately 2.5 µm vs. 7.5 µm for samples 

prepared at 1.7 M KBr and 2000 rpm). The difference in thickness is not surprising because the 
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12

shorter polyelectrolytes used in our study lead to a coacervate solution that has a lower viscosity 

than the coacervate reported by Kelly and Schlenoff (i.e., 0.92 Pa s vs. 1.42 Pa s).64

Post-processing also had the potential to influence film thickness. Lyophilized films were 

the thickest and potentially had a greater porosity, as suggested by their increased opacity, while 

transparent films were the thinnest. Specifically, at a salt concentration of 1.6 M and a spin rate of 

2000 rpm, lyophilized films were roughly six times thicker than those prepared by thermal 

annealing and two times thicker than those prepared by air drying. Analysis via SAXS and WAXS 

suggest that the post-processing method did not significantly affect the molecular-level structure 

of the films (Figure S3). However, the scattering signal for the opaque films was consistently 

higher than the signal of the transparent films at low q, suggesting that differences in the structure 

may exist at larger length scales (i.e., smaller q-values) than what was accessible in the 

measurement. This possibility of larger aggregates agrees with the observed differences in 

transparency and the potential for sub-micron scale clusters.

DI water and glycerol are two liquids that have different surface tensions and viscosities. 

Therefore, we conducted contact angle experiments using these two different liquids to determine 

the wettability of the transparent and opaque PEC films, Figure 3. To be considered hydrophilic, 

a material typically has a contact angle less than 90°; notably, hydrophilic surfaces have been 

reported to have strong antifouling properties, including an improved resistance to adhesion by 

bacteria.5,6 Polymer zwitterion films with known hydrophilicity were used as controls.9 Water 

contact angles for transparent, opaque air-dried, and opaque lyophilized PEC films were 33.9 ± 

2.6°, 31.2 ± 2.7°, and 28.9 ± 4.2°, respectively, which are all statistically higher than the polymer 

zwitterion films (14.2 ± 2.7°). Similarly, the glycerol contact angles for transparent, opaque air-

dried, and opaque lyophilized PEC films were 50.7 ± 4.2°, 48.4 ± 4.3°, and 40.1 ± 2.7°, 
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respectively, again, statistically greater than the glycerol contact angle of the polymer zwitterion 

films (32.8 ± 3.7°). While the polymer zwitterion control was more hydrophilic than the PEC films, 

the PEC films are still considered hydrophilic.

Figure 3. DI water and glycerol contact angle measurements of transparent and opaque PEC films, 
as well as polymer zwitterion controls. PEC films were prepared using PSS/PDADMAC with 1.6 
M KBr and spin-coated at 2000 rpm. Three asterisks (***) denote 99.9% significance between 
samples. Error bars denote standard deviation. 

PEC materials have long been considered intractable for processing. Due to the 

electrostatic interactions driving their self-assembly, PEC materials have excellent resistance 

against dissolution by organic solvents.39 We have previously demonstrated this resistance for fiber 

mats that were electrospun using the same PEC system used in this work.41 Additionally, the strong 

polyelectrolytes used in this study are resistant to variations in pH value. As a result, we expect 

that our films would show similar durability to the previously demonstrated PEC materials, 

including our fibers. Most interestingly, while high concentrations of salt have been shown to 

plasticize PEC materials, our thermally annealed PEC films were unaffected by immersion in a 4 

M KBr solution, even after one month. This result suggests the possibility of using thermal 

treatment to further enhance the stability of a wide range of PEC-based materials.
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In addition to the transparency, wetting, and physical stability of our films, mechanical 

properties are critical for enabling the use of high-performance coatings in real world settings. To 

this end, we performed uniaxial tensile tests on free-standing transparent and opaque PEC films. 

The transparent PEC films exhibited an ultimate tensile strength that was remarkably 4.2-fold 

greater than the opaque air-dried PEC films and stronger than other reported PEC films (Figures 

4 and S4). The average Young’s modulus of the transparent films was found to be 29.07 ± 8.2 

MPa, whereas a value of 6.01 ± 0.9 MPa was obtained for the opaque air-dried films. As evident 

from our reported standard deviations and Figure S4, which displays the stress-strain curves from 

which the mechanical properties were calculated, the transparent films exhibited more sample-to-

sample variation than the opaque air-dried films. All free-standing PEC films exhibited a brittle 

fracture towards the middle of the films with a correspondingly low strain value of ~2%, previous 

reports also suggested that PECs have a low strain at break of ~5%.43 In general, our data is 

consistent with other reports that demonstrate increased mechanical properties after 

annealing,44,66,67 and we attribute the increase in ultimate tensile stress to an increase in the 

concentration of ionic bonds in the material, as well as a removal of stress-concentrating defects 

associated with the sub-micron clusters associated with the opacity of the untreated material. 
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Figure 4. Ultimate tensile stress of transparent and opaque PEC films. Inset photo displays the 
experimental setup. PEC films were prepared using PSS/PDADMAC with 1.6 M KBr and spin-
coated at 2000 rpm. Error bars denote standard deviation. Stress-strain curves acquired on the 
transparent and opaque PEC films are provided in Figure S4.

To determine if the PEC films inactivated microorganisms, we conducted a live/dead assay 

using E. coli (Figure 5). Transparent PEC films, polymer zwitterion control films, and glass had 

a negligible effect on E. coli viability, with statistically equivalent viability of at least 90%, 

indicating no killing. While cationic polymers, including the one we used to form our coacervate 

films, PDADMAC, have antibacterial properties,61 the ion pairing of equimolar concentrations of 

PSS with PDADMAC eliminated these antibacterial properties. Our findings are consistent with 

experiments conducted on ultracentrifugated compact polyelectrolyte complexes formed from 

chitosan and alginate, which also demonstrated negligible killing of Staphylococcus aureus.58 

Charge-neutral polyelectrolyte complexes do not exhibit the antibacterial properties of their 

cationic polyelectrolyte components. Liquid complex coacervates have also been reported to be 

biocompatible with mammalian cells.68,69
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Figure 5. (a) E. coli viability and (b) representative micrographs of E. coli after a 2 hr incubation 
with transparent PEC films, as well as polymer zwitterion and glass controls. Errors bars denote 
standard error and n.s. indicates no statistical significance. 

 
Figure 6. (a) Antifouling activity and (b) representative micrographs of transparent and opaque 
PEC films, as well as polymer zwitterion and glass controls after a 24 hr incubation with E. coli. 
Three asterisks (***) denote 99.9% significance between samples. Error bars denote standard error.  

The antifouling properties (how many bacteria adhere) to the PEC films were assessed 

using E. coli cultured in minimal media, Figure 6. In comparison to control glass slides, PEC films 
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reduced the adhesion of E. coli by over 75%, from ~11% for glass to ~2.5% for transparent and 

air-dried PEC films. Furthermore, we observed a statistically equivalent performance between the 

PEC films and the polymer zwitterion coatings. While quantification was not provided for bacterial 

adhesion on ultracentrifuged compact PECs formed from chitosan and alginate, qualitative 

comparisons suggest comparable performance.58 Our results demonstrate that PEC films are 

extremely antifouling to the microorganism E. coli, regardless of their transparency; and are 

equivalent to the polymer zwitterion films.

The hydrophilicity and strong microbial resistance properties of the PEC films are likely 

due to the proximity of positive and negative charges that bind PEC materials together. Sum 

frequency generation (SFG) spectroscopy measurements on zwitterionic and a 1:1 mixed charge 

polymer surface demonstrated strong levels of surface hydration, and thus antifouling character.3,5–

8 Furthermore, the use of polyelectrolyte complexation as a processing strategy allows for the 

formation of stable, water-insoluble films without the need for organic solvents. It should be noted 

that one limitation of our current PEC films is that they did not prevent the attachment of the 

protein, bovine serum albumin, Figure S5. While beyond the scope of this study, it is possible that 

by incorporating small concentrations of PEG or polymer zwitterions. nto the PEC films that their 

protein fouling resistance would be enhanced. The results from this study indicate that PEC films 

have the potential to offer an economic means of decreasing bacterial attachment.

CONCLUSION

We have established a straightforward method to fabricate robust, transparent, ultra-low bacterial-

fouling PEC films via spin-coating of complex coacervates, followed by thermal annealing in a 

humid environment. The ability to create such resilient materials using water-only processing 
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allows for environmentally friendly processing and can facilitate the use of PEC-based coatings in 

a wide range of applications. Notably, the absence of any organic solvents or crosslinking agents 

allows for the safety and biocompatibility necessary for implementing antifouling coatings. This 

work paves the way for future exploration of novel PEC-based materials, including their use in 

biomedical applications as coatings for inanimate surfaces in hospitals and non-invasive 

biomedical equipment.

Supporting Information. Schematic of film preparation, as well as the transmittance, SAXS, 

WAXS, stress-strain curves, and bovine serum albumin adsorption to films is provided. The 

Supporting Information is available and free of charge http://pubs.acs.org.
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