
University of New Mexico
UNM Digital Repository

Nanoscience and Microsystems ETDs Engineering ETDs

Spring 5-15-2019

Microsphere-based Disordered Photonic
Structures: Control of Randomness in Langmuir-
Blodgett Assembly and Radiative Cooling
Applications
Sarun Atiganyanun

Follow this and additional works at: https://digitalrepository.unm.edu/nsms_etds

Part of the Nanoscience and Nanotechnology Commons

This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in
Nanoscience and Microsystems ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact
amywinter@unm.edu.

Recommended Citation
Atiganyanun, Sarun. "Microsphere-based Disordered Photonic Structures: Control of Randomness in Langmuir-Blodgett Assembly
and Radiative Cooling Applications." (2019). https://digitalrepository.unm.edu/nsms_etds/50

https://digitalrepository.unm.edu?utm_source=digitalrepository.unm.edu%2Fnsms_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/nsms_etds?utm_source=digitalrepository.unm.edu%2Fnsms_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/eng_etds?utm_source=digitalrepository.unm.edu%2Fnsms_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/nsms_etds?utm_source=digitalrepository.unm.edu%2Fnsms_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=digitalrepository.unm.edu%2Fnsms_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalrepository.unm.edu/nsms_etds/50?utm_source=digitalrepository.unm.edu%2Fnsms_etds%2F50&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:amywinter@unm.edu


 i 

	 	 	 	 	

	 	

     Sarun Atiganyanun 
       Candidate    

     Nanoscience and Microsystem Engineering 
     Department 

 

     This dissertation is approved, and it is acceptable in quality and form for publication: 

     Approved by the Dissertation Committee: 

               

     Sang Eon Han, Chairperson 
  

 

     Sang M. Han 
 

 

     Andrew Shreve 
 

 

     Terefe Habteyes 
 

 

       

 

 

 

 

 

 

 

 



 ii 

 

 

 

MICROSPHERE-BASED DISORDERED PHOTONIC 
STRUCTURES: CONTROL OF RANDOMNESS IN LANGMUIR-

BLODGETT ASSEMBLY AND RADIATIVE COOLING 
APPLICATIONS  

 

BY 

SARUN ATIGANYANUN 

B.S., Applied Physics, California Institute of Technology, 2013 

M.S., Nanoscience and Microsystem Engineering, University of New Mexico, 2018 

 

 

DISSERTATION 

Submitted in Partial Fulfillment of the  

Requirement for the Degree of  

 

Doctor of Philosophy 

Nanoscience and Microsystem Engineering 

 

The University of New Mexico 

Albuquerque, New Mexico 

 

May, 2019  



 iii 

Dedication 

 

 

This work is dedicated to my mother, Pratuangsri Likhitsan and my father, 

Sompong Atiganyanun. It is also dedicated to my grandmother, Kalang Sae Wang, and 

my brother, Pitchaya Atiganyanun.  



 iv 

Acknowledgement 

 

I would like to express my deepest appreciation to my advisors, Professor Sang 

Eon Han and Professor Sang M. Han, for offering me a chance to join in their research 

groups to conduct research. Their guidance and encouragement have helped me work 

through difficulty in the research. Their expertise and insight are invaluable and help me 

grow as a researcher. 

I would like to thank Professor Andrew Shreve for allowing me to access his 

equipment for my research and for being a part of my committee. 

I would like to thank Professor Terefe Habteyes for being a part of my committee 

and for his valuable comments given during my comprehensive exam regarding this 

work. 

I would like to thank Dr. Ying-Bing Jiang for his help with characterization of my 

samples.  

I would like to thank my group members and ex-group members, Mi Zhou, Dr. 

John Plumley, Dr. Swapnadip Ghosh, Dr. Seung Ho Lee, Dr. Omar Abudayyeh, Dr. Seok 

Jun Han, Kevin Hsu, Joseph Aldren, Jacob Cytrynbaum, Emma Clink, and all other 

group members for their inputs and stimulating discussion. It has been a rewarding 

experience working in a group with a great spirit of teamwork. 

 I would like to acknowledge generous financial support from the National Science 

Foundation and Air Force Research Laboratory.  



 v 

Finally, I would like to thank my mother Pratuangsri Likhitsan and my father 

Sompong Atiganyanun, my grand mother Kalang Sae Wang, and my brother Pitchaya 

Atiganyanun for their love and supports. 

 

 

  



 vi 

MICROSPHERE-BASED DISORDERED PHOTONIC 

STRUCTURES: CONTROL OF RANDOMNESS IN LANGMUIR-

BLODGETT ASSEMBLY AND RADIATIVE COOLING 

APPLICATIONS. 

by 

Sarun Atiganyanun 

B.S., Applied Physics, California Institute of Technology, 2013 

M.S., Nanoscience and Microsystem Engineering, University of New Mexico, 2018 

Ph.D., Nanoscience and Microsystem Engineering, University of New Mexico, 2019 

 

 

ABSTRACT 

Many biological photonic structures in nature exhibit a significant degree of 

disorder within their periodic framework that enhances their optical properties. However, 

how such disorder contributes to the unique photonic characteristics is not yet fully 

understood. To facilitate studies on this topic, we investigated self-assembly of 

microspheres as a method to controllably introduce randomness to photonic structures. 

Specifically, we examined Langmuir-Blodgett assembly, a layer-by-layer fabrication 

technique. We developed and experimentally verified a model for the process and 

determined a condition of surface pressure and substrate pulling speed that corresponds to 

a maximum structural order in a layer. Along the trajectory described by this condition, 

disorder can be controllably introduced by increasing the pulling speed. Our model also 
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describes a condition for maximum structural order for multilayer assembly: as the 

number of layers increases, the surface pressure should also increase at a fixed pulling 

speed. Overall, we have demonstrated that by carefully choosing assembly parameters 

along the optimal trajectory, disorders within Langmuir-Blodgett films can be 

systematically introduced.  

To further demonstrate usefulness of disordered photonic structures fabricated 

from self-assembly methods, we investigated radiative cooling performance of 

microsphere-based disordered materials under direct sunlight. Radiative cooling is a 

process in which an object passively loses heat via radiation and thus has a potential to 

reduce consumption of electricity used for thermal management. Toward a goal of 

making radiative cooling technology more accessible, we investigated two scalable, and 

inexpensive methods for fabricating microsphere-based structures that can achieve 

efficient radiation cooling. Specifically, colloidal sedimentation method and spray 

coating were employed to create coatings that consist of randomly arranged 

microspheres. With a systematic study of light scattering in microsphere-based 

disordered media, we showed how structural parameters influence radiative cooling 

performance. By combining this understanding with the two facile fabrication methods, 

we demonstrated that black substrates coated with our microsphere-based materials 

achieved substantial cooling below ambient temperature even under direct sunlight 

exposure. Our coatings also outperformed commercially available paints designed for 

daytime cooling, without use of sophisticated fabrication process or expensive materials. 

We demonstrated further that cooling capability of our microsphere-based structures was 

improved by using hollow microspheres instead of solid particles and that mechanical 
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durability was enhanced when the hollow microspheres were embedded in a silicone 

matrix. Overall, this work provides a path toward wider applications of radiative cooling 

achieved by microsphere-based disordered systems. 
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Chapter 1: Introduction 

1.1 Random photonics in nature and its importance 

Photonic crystals are synthetic materials that are periodic on the optical 

wavelength scale. They strongly interact with light and demonstrate unique optical 

phenomena, such as photonic bandgap [1–5] and absorption or emission 

enhancement. [6–12] Light of frequency within a photonic bandgap can be localized or 

guided through defects in photonic crystals. [4,13–18] However, light outside the 

bandgap can be randomly scattered by non-periodic structural defects and disorders. This 

random optical scattering in photonic crystals is generally considered a problem or an 

error in fabrication process.  

Nevertheless, various photonic structures found in animals and plants possess a 

significant degree of disorders in the periodic structures, which enhances their optical 

properties. [19–24] For examples, butterfly (Morpho rhetenor) wings and leaves of many 

plants of genus Selaginella exhibit bright iridescent blue color generated from their 

imperfect periodic structures. [25–27] In contrast, feathers from five species of bird-of-

paradise (Aves: Paradisaeidae) achieve absorptance up to 99.95% of incident light by 

employing vertically tilted barbules arranged in a disordered fashion to increase the 

number of absorption events that occur within the structures. [28] The fact that disorder 

in these biological photonic structures gives rise to beneficial optical properties suggests 

that such disorders should not be readily considered an error as traditionally thought. 

Notably, the degree of disorder in the biological structures is much greater than 

that in typical fabricated photonic crystals. This level of imperfection observed in nature 
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suggests that a certain degree of structural randomness, a result of millions of years of 

evolution, is favorable or necessary for the best optical performance to ensure their 

survival. Understanding the underlying physics of these optical phenomena and exploring 

fabrication techniques for mimicking these optical structures may give us guidance to 

novel optical properties and significant improvement in optical performance. Indeed, the 

usefulness of structural randomness has been explored and incorporated into some 

fabricated systems. For instance, introducing some structural disorder into solar 

photovoltaics can improve light-trapping efficiency over both periodic and highly random 

structures. [29–31] Because of the potential advantages in introducing disorder in 

photonic structures and fascinating and rich physics behind the phenomena, the field of 

disordered photonics has gained significant momentum over the past decade.   

 

1.2 Current works in introducing degree of randomness 

Methods for introducing disorder into photonic structures or fabricating such 

media with controllable degree of randomness are essential for understanding and 

eventually exploiting the useful photonic properties associated with the introduction of 

disorder. Nanofabrication continues to be a powerful and precise technique for this 

purpose. [32–36] For example, a single defect can be introduced in a two-dimensional 

photonic crystal during electron-beam lithography process to create a cavity that lases in 

a defect mode. [14] While nanofabrication remains a useful set of techniques, its high 

cost can be often prohibitive to introducing randomness in photonic structures for wider-

scale applications. 
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On the other hand, self-assembly of colloidal particles, while having less 

precision, provides simple, scalable, and less expensive techniques for fabrication of 

photonic crystals. If tailored for creating a highly ordered structures, this method can 

achieve a very low defect density (≤1 point defect per 1000 unit cells) over centimeter-

scale samples. [3,36,37] The convenience and long-range structural order resulting from 

self-assembly have contributed to advances in experimental research in photonic 

crystals. [39] Popular self-assembly methods include convective assembly of vertical 

substrates, [3,39,40] slow sedimentation of colloidal microspheres, [5,41] and Langmuir-

Blodgett (LB) assembly. [42–45] These works exploit the nature of uniformity in 

interaction of colloidal particles to create ordered structures. 

Furthermore, self-assembly techniques are also capable of creating highly 

disordered photonic structures by introducing instability in the colloidal interaction. [46–

48] For example, disruption in the balance between electrostatic potential and van der 

Waals potential in colloids can lead to random agglomerations of the particles, which 

once settled form a highly disordered film. [46] Forcing sedimentation of colloidal 

particles by introducing additional attractive force between colloids and a substrate can 

create a highly uniform film comprised of disordered arrangement of the particles. [47]  

However, the gap between the two opposite capabilities of self-assembly remains: 

to introduce controllable randomness in photonic structures, especially periodic ones, in a 

systematic manner. To address this gap, these self-assembly techniques must be 

investigated further. In this dissertation, we choose to study the Langmuir-Blodgett (LB) 

assembly of microspheres. Specifically, we aim to establish how LB process parameters 

can be manipulated to controllably introduce randomness. One important reason that LB 
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assembly is chosen for this study is that it is a layer-by-layer process. By controllably 

introducing randomness in each layer during deposition, systematic control of disorder in 

LB assembled films can be achieved. Generally, creating highly uniform and ordered 

films is an ultimate goal of LB assembly. Therefore, by tailoring the LB process for 

controllable introduction of disorder, we aim to expand the capabilities of LB assembly. 

 

1.3 Radiative cooling  

One important application of disordered photonic materials is in efficient 

management of solar energy. While the use of solar radiation for heating has been 

extensively explored [49,50], the possibility of cooling by preventing sunlight absorption 

and maximizing thermal radiation in mid-infrared spectrum, namely radiative cooling, is 

considered less developed. Nevertheless, because this radiative cooling mechanism does 

not require electricity to function, this technology is an efficient thermal management 

method that could reduce electricity consumption. According to federal surveyed 

data, [51,52] the number of surveyed U.S. households that are equipped with air 

conditioners increased from 83 percent in 2009 to 87 percent in 2015. Additionally, the 

electricity used for cooling in the U.S. is ~15% of the total energy consumption in 

households. [53] Because of this increasing trend in energy consumption for household 

cooling, the cost saving that can be achieved by incorporating radiative cooling 

technology can be substantial. Usage of this technology in other applications, such as 

automobile, transportation, and water collection, can reduce electricity consumption even 

further.  
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Researchers have demonstrated strong performance of radiative cooling back in 

1960s and achieved cooling almost 40°C below ambient temperature at night. [54–56] 

This subject has become of interest again with a seminal work in 2014 that demonstrated 

radiative cooling of an object by 5°C under direct sunlight. [57] The cooling structure in 

this work is a complex nanostructure, comprised of seven alternating thin layers of 

hafnium dioxide and silicon dioxide on top of a thin silver layer, which are all deposited 

on a silicon wafer via electron beam evaporation. In tandem with the solar-reflective 

silver layer, the dielectric layers reflect incident solar radiation in a manner similar to a 

Bragg reflector. The mid-IR emission in the structure mainly occurs in the first few 

dielectric layers due to intrinsically high mid-IR emission of silicon dioxide.  

This strong solar rejection can also be also achieved with reflective metal film 

alone. [58–60] For example, Zhai et al. [59] creates flexible films comprised of polymer-

based metamaterial backed by a silver layer that is responsible for rejection of incident 

solar radiation. While the films can be fabricated with a high throughput roll-to-roll 

process, the usage of silver has a significant impact on the cost of fabrication. Therefore, 

because both complex microstructure and metal films are expensive to fabricate, photonic 

structures designed for radiative cooling at a wider scale must be fabricated in less 

expensive and more scalable ways. 

In this dissertation, we investigate fabrication and use of disordered microsphere-

based coatings to achieve strong radiative cooling performance without using any metals. 

Microspheres are abundant and can be mass-manufactured at an economical cost. 

Coatings comprised of randomly arranged microspheres could scatter incident light many 

times due to their disordered nature. If the light scattering properties are systematically 
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studied and optimized, strong rejection of incident solar radiation could be achieved. Heat 

radiated in the mid-IR spectrum can also be improved by judicious selection of material 

that comprises the microspheres. We will also explore simple and less expensive 

fabrication methods to create such disordered microsphere-based structures. Cooling 

capabilities of the coatings will be compared to the coatings in the previous works and 

commercial solar reflective products. Our goal is to ultimately provide a path for 

radiative cooling to become a more mainstream technology for solar energy management. 

 

1.4 Organization of the dissertation 

Chapter 1 introduces the phenomenon of optical scattering in photonic media that 

incorporate a degree of disorder and its importance in nature. Methods to fabricate such 

media, particularly those made of microspheres, are mentioned. Langmuir-Blodgett 

assembly is proposed as a self-assembly method for introducing randomness into periodic 

structures. Radiative cooling is introduced as one significant application of such media. 

We justify our plan for creating disordered microsphere-based coating to achieve strong 

radiative cooling performance while keeping the cost of fabrication economical.  

Chapter 2 explores the Langmuir-Blodgett technique as a facile method of 

introducing a degree of randomness into photonic crystals. Although the technique is 

commonly used to create highly ordered structures, this work will show that by 

systematically and carefully detuning assembly parameters away from optimal ordering 

conditions, controllable degrees of randomness can be induced into otherwise ordered 

structures. This chapter investigates the dynamics of LB assembly via material transport 
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modeling and characterization techniques including optical scattering measurement and 

scanning electron microscopy. 

In chapter 3 radiative cooling properties of microsphere-based disordered 

structures are investigated. Two approaches to fabricate such structures, colloidal 

sedimentation and spray coating, are described. Diffusion theory of light transport in 

random media is invoked to introduce the concept of transport mean free path, which is 

related to scatter strength. A calculation is developed to predict how this value depends 

on structural parameters. Characterization of the optical properties of the structures via a 

spectrophotometer and an integrating sphere is employed to measure the transport mean 

free path, which is then compared to the theoretical results. The radiative cooling 

properties of the samples are tested in an outdoor environment and are compared with 

those of solar-rejection commercial paints.  

Chapter 4 further describes studies of radiative cooling with disordered structures 

comprised of hollow polymer microspheres. Based from the work described in chapter 3, 

we speculate that the hollow microspheres can improve solar scattering performance. The 

spray coating method is employed to fabricate the structures. The transport mean free 

path of the disordered hollow sphere-based structures is characterized and compared to 

that of the silica microsphere-based structures. Emissivity spectrum is also measured to 

predict radiative cooling performance of the structures. Radiative cooling performance of 

the media is also tested in an outdoor setup. We further improve both cooling 

performance and mechanical stability of hollow microspheres-based structures by 

embedding the microbubbles into silicone matrix. 
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Chapter 5 discusses conclusions and future directions of work described in this 

thesis.    
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Chapter 2: Control of Randomness in Langmuir-Blodgett Films 

*Reproduced in part with permission from S. Atiganyanun, M. Zhou, O. K. Abudayyeh, 

S. M. Han, and S. E. Han, Langmuir 33, 13783 (2017). DOI: 

10.1021/acs.langmuir.7b03060. Copyright 2017 American Chemical Society. 

2.1 Langmuir-Blodgett assembly overview 

Langmuir-Blodgett (LB) process is a self-assembly fabrication method where a 

layer or layers of particles or molecules are transferred from a horizontal liquid surface 

onto a vertical substrate in a layer-by-layer process. LB assembly, among other self-

assembly methods, has been widely used to create photonic structures. [42–45,61–66] In 

these LB works, it is desirable to achieve long-range order in the fabricated photonic 

crystals. Nonetheless, defects and disorder still remain in the structures. In our work, we 

approach the LB assembly from another perspective. Rather than considering defects as 

inherently undesirable, we seek to controllably introduce randomness into periodic 

structures in a systematic manner. Specifically, we aim to establish how LB process 

parameters, i.e. surface pressure, pulling speed, and number of layer, can be manipulated 

to controllably introduce randomness. 

In previous studies on microsphere LB assembly, much attention has been given 

to the surface pressure in the liquid surface. [61,63,65] A wide range of surface pressures 

(0 and ~25 mN/m) has been claimed to achieve high degree of order. [44,45,61,63,65,66] 

In this work, we demonstrate that the degree of randomness in photonic crystals can be 

controlled in LB assembly by manipulating the substrate pulling speed in addition to the 
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surface pressure.  We also modify a model proposed by Dimitrov and Nagayama [67] to 

describe the monolayer LB assembly and determine a condition that interrelates surface 

pressure and substrate pulling speed to achieve maximum structural order. Our 

experiment confirms that such a condition exists.  Further, we find that increasing the 

pulling speed, while this condition is met, gradually increases randomness.  We also 

investigate how the condition for maximum order changes as the number of layers 

increases. We show that, at a fixed pulling speed, to maintain maximum order, the 

surface pressure must increase when the number of layers increases. 

 

2.2 Key concept and process in Langmuir-Blodgett assembly 

 The process of fabrication in LB assembly is described in Fig. 2.1 below. A 

Langmuir Blodgett trough, generally made of PTFE or other low surface energy material, 

is first filled up with a liquid, called subphase. A common choice for a subphase is 

deionized water. Particles and molecules are dispersed on the subphase (Fig. 2.1(1)). Due 

to particles dispersed on the subphase, there is a change in surface tension. Decrease in 

surface tension is assigned as surface pressure (π) in LB assembly: 

 
 π = γ 0 −γ , 

  (2-1) 

where  γ 0 and γ  are surface tension of a pure subphase and the subphase with dispersed 

particles respectively. There are a number of factors that can affect the behavior of the 

surface pressure. For example, the factors are surface energy of particles and a subphase, 

the interaction between particles and subphase, and number density of particles. In 
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practice, the number density of particles on a subphase is set to be at a lower value before 

compression and thus the surface tension is approximately zero after particle dispersion. 

	

Figure 2.1 Diagram of LB assembly process. 

 In the next step (Fig. 2.1(2)), barriers gradually compress the dispersed particles 

by reducing an area that contains the particles. The goal of this compression step is to 

induce a formation of a monolayer of the particles on the subphase. Arrangement of the 

particles on this monolayer depends on many factors such as the degree of compression 

and particle surface energy. At the beginning of compression, particles are still far apart 

from one another and thus the surface pressure remains at zero. As the compression 

continues and the area per particle decreases, the particles enter a phase where they begin 

interacting and lead to an increase in surface pressure. There can also be more than one 

phase where surface pressure changes at different rates. This dependence of surface 

pressure on area per particle at a fixed temperature is called a Langmuir-Blodgett 

isotherm, which provides a clue into understanding the interaction between particles. In 
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other words, LB isotherm is equivalent to a pressure-volume isotherm in thermodynamic 

studies of gases.  

 Once a monolayer is compressed as desired, particles can be simply transferred to 

a substrate by vertically submerging it into the subphase and withdrawing it in an 

opposite direction (Fig. 2.1(3)). Depending on the nature of the particles and the 

substrate, particles can be deposited during the submerging, the withdrawal, or both. This 

process can be repeated to transfer multiple monolayers (Fig. 2.1(4)). At each transfer, a 

surface pressure is commonly maintained at a constant value. However, as the number of 

particles decreases due to them being deposited onto the substrate, barrier compression 

must accompany the deposition to maintain a constant value of area per particle and thus 

surface pressure.  

 

2.3 Experimental design and details 

 The crux of this work is to explore the assembly parameter space and investigate 

how it affects disorder of LB films. Therefore LB assembled samples are carefully 

created for many conditions and then are characterized by light diffraction to extract a 

parameter that represents degree of disorder. Due to the sensitive nature of LB assembly, 

prior preparations before the actual assembly are very important and should be followed 

closely. Studying of an LB isotherm is also recommended before fabricating any samples, 

since the isotherm provides a clue into inter-particle interaction and suggests appropriate 

values of the assembly parameters.     

i) Microsphere Solution Preparation 
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Non-functionalized silica microspheres were purchased from Polysciences (Cat. 

No. 24326-15). The microspheres were delivered in an aqueous solution, and the 

polydispersity of this batch was 15 % based on the vendor-provided product information 

as well as our electron micrograph images. The surface of silica microspheres (~900 nm 

in diameter) was functionalized with allyltrimethoxysilane.  This functionalization is 

essential because it is to provide a balance between hydrophobicity and 

hydrophilicity. [64] The attached allyl groups introduce hydrophobicity to the 

microsphere surface, prevent the aggregation of microspheres in solution, and allow them 

to remain near the surface of the water. [65] On the contrary, silicate bonds, intrinsic to 

the silica microspheres, provide enough counterbalancing hydrophilicity such that the 

microspheres are almost fully immersed just below the water surface in the LB trough 

(see Appendix A). This hydrophilicity also promotes adhesion to hydrophilic silicon 

substrates used in this work. However, excessive allyl functionalization can lead to large 

voids in final products. 

The method for the functionalization is as follows. 500 µL of 10 wt% microsphere 

solution was first centrifuged, so that the microspheres sediment to the bottom.  Then, the 

water was decanted, and the microspheres were dispersed in ethanol.  Ethanol helps 

solvate allyltrimethoxysilane and promotes its reaction with the silicate groups. The 

solution was sonicated for 45 minutes, and 10 µL of allyltrimethoxysilane was added to 

the solution. The solution was then further sonicated for 2 hours. It should be noted that, 

for consistency in results, the water in the sonicator should be kept at the room 

temperature. After sonication, the microspheres were washed in ethanol 3 times to 

remove residual allyltrimethoxysilane from the solution. The washing was done with 
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multiple cycles of centrifugation, extracting solvent, re-introducing ethanol, and 

sonication. Sonication should not be done for too long (> 5 minutes) as this may further 

affect the functionalization.  

Lastly, the microspheres were dispersed in 500 µL of chloroform. Sonication can 

be used to promote dispersion. Based on the microsphere density of 2.0 g/cm3 provided 

by the manufacturer, the total number of microspheres in the chloroform solution (50 µL) 

was estimated to be 6.9 × 1010. This final solution should be used in the assembly as soon 

as it is prepared since agglomeration can occur in the solution if it is left for too long. 

Another caution is that plastic centrifuge tubes cannot be used to contain the chloroform 

solution since chloroform reacts with the tubes and creates contaminants that 

significantly affect the LB assembly.  

ii) Substrate Preparation 

Substrates (3 cm × 1 cm) diced from n-doped (100) silicon wafers with a 

resistivity greater than 100 Ω-cm were used for LB assembly.  A substrate was first 

washed in deionized water and then treated for 3 minutes in a Piranha solution, which 

consisted of 125 mL of 96 wt% sulfuric acid and 75 mL of 30 wt% hydrogen peroxide. 

The substrate was washed again in deionized water and then cleaned for 2.5 minutes with 

a buffered oxide etchant, a 20:1 volume mixture of 40 wt% ammonium fluoride and 49 

wt% hydrofluoric acid.  The substrate was washed again in water and treated in the 

Piranha solution for 3 minutes, so that the silicon surface was oxidized and made 

hydrophilic. Finally, one last wash with water was done. Substrates prepared this way can 

be stored in an ambient environment up to three months before they must be prepared 
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again. As a result of this preparation, silicon dioxide layer is grown on the substrates, 

rendering them hydrophilic.  

iii) Langmuir Blodgett Isotherm Measurement 

The LB instrument is KSV NIMA 1212D1 from Nima Technology. The LB 

trough was first cleaned with deionized water and chloroform. Then the trough was filled 

up with deionized water, which acted as a subphase. The height of the water should be 

slightly above the trough’s perimeter barrier to facilitate compression at later stage and 

avoid water overflowing during the compression. A filter paper was used as a Wilhelmy 

plate to measure the surface pressure. For the first time usage, the surface pressure 

measurement system should be calibrated, such as by setting the surface pressure of pure 

D.I. water to 0 mN/m at 25 °C (since pure D.I. water was used as both reference and 

subphase). It is advised to check the purity of the water by compressing with two barriers 

of 20 cm in width and recording the surface pressure until the area between the two 

barriers is less than ~100 cm2. If the surface pressure does not rise above 0.5 mN/m at 

that point, then the water is considered clean enough for this experiment.  

The microsphere solution in chloroform was then carefully dispersed by a 

micropipette onto the subphase surface to form a monolayer of microspheres. Significant 

care should be taken during this dispersion. First, the tip of the micropipette should be a 

few millimeters or less above the water surface and should not touch it. Second, pushing 

out the solution should be done very slowly such that a small droplet is formed at the tip 

and drops down toward the water surface at a minimal initial velocity. These two 

considerations are to avoid microspheres gaining enough vertical momentum such that 

they are fully submerged and lost into the water. Solution droplets should be introduced 
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evenly across the water surface. Once the solution was dispersed, chloroform was let to 

evaporate for 5 minutes. The waster surface should look clear as if nothing is on the 

surface. If some material is visible, the surface may be contaminated, and it is advised to 

redo the experiment.      

Subsequently, the monolayer was compressed by two barriers moving toward the 

trough center line at 0.6325 cm/min, while the area between the two barriers and the 

surface pressure were recorded. If the monolayer is to be used for assembly, compression 

should be stopped before the monolayer collapses. The collapse is signified by slowing of 

the rate of increase in the surface pressure, which follows a sharp increase as the 

compression progresses. To avoid this collapse, once the pressure starts to rise sharply, 

the compression should be halted after ~2 seconds of the rise. However, for studying the 

isotherm behavior, a monolayer can be used solely for this purpose and the collapse can 

be allowed to occur. In this case, the monolayer cannot be used for assembly. 

   It is noted that the effective projected area occupied by a single microsphere in 

the monolayer, which includes part of the spacing between spheres, is slightly greater 

than the true projected area per microsphere. The projected area is calculated by dividing 

the area between the trough barriers by the number of microspheres.  An LB isotherm is 

obtained from plotting the effective area per microsphere and the surface pressure. 

iv) Langmuir-Blodgett Assembly 

The LB assembly was performed at ~22°C and ~20% relative humidity and with 

limited airflow. A prepared silicon substrate was first submerged into the water before 

dispersing the solution. The solution was dispersed as described previously. The 

monolayer of microspheres was compressed by the barriers, so that a target pressure was 
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reached. The substrate was then pulled out of the LB trough in the vertical direction at a 

set velocity while the surface pressure was held constant. The control of surface pressure 

was achieved by a program that adjusted the barrier movement to maintain a targeted 

pressure. In this work, it was observed that the target pressure should be slightly above 

the assembly pressure since setting the two pressures to be equal would result in the 

actual pressure being below the assembly pressure. Gain factor, a value which determines 

the sensitivity of the program, should be set to ~0.5. 

 During substrate pulling, a monolayer of microspheres was transferred onto the 

substrate in a close-packed arrangement.  To transfer additional layers, the cycle of 

dipping and pulling of the sample was repeated.  For each additional layer, we varied 

assembly parameters to determine the optimum pull speed and surface pressure.  Once 

the assembly was complete, the samples were dried in ambient air and characterized for 

their structural properties. 

v) Characterization 

The microstructures of the LB-assembled samples were imaged by a scanning 

electron microscope (FEI Q3D FIB/SEM DualBeam system, ThermoFisher Scientific) at 

10 keV electron beam energy.  The average domain size of the microsphere crystals was 

determined from light diffraction experiment.  For light diffraction, a He-Ne laser beam 

at 632.8 nm the sample at normal incidence.  Diffraction patterns were projected onto a 

screen and recorded by a digital camera.  The patterns approximately assumed circular 

symmetry because of the random distribution of the crystalline domain orientations and 

were fit to an intensity distribution given by 
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  I(r) = I0e
−3πG2
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⎦
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, 
  (2-2) 

where )(rI  is the intensity at a distance r from the pattern center, 0I  is the intensity at 

the center, λ is the wavelength of the laser, θ is the diffraction polar angle, R is the 

distance between the beam incident location and the center of the fringe pattern, and G is 

the representative crystal domain size. G values of samples created with various assembly 

parameters were extracted from the fitting of Eq. (2-2). 

 The derivation of the distribution is described here. The light diffraction 

experiment schematic is shown in Fig. 2.2 below. Light is incident on a sample consisting 

of crystalline domains that are randomly distributed in orientation. Light is then 

diffracted from the sample and forms a ring pattern. Because domain orientations are 

randomly distributed, the intensity of the ring pattern does not have azimuthal 

dependence. The directions of incident and diffracted light are given by unit vector    s0

!"
 

and   s
!

, respectively. We seek to describe the intensity profile as a function of distance 

from the primary peak in the radial direction of the diffraction ring. To do this, we 

consider a direction,    s'
!"

, that is slightly different from   s
!

. The difference between    s'
!"

and   s
!

, projected onto the plane perpendicular to the diffracted light, is   Δs
! "!

. First we consider 

the intensity profile of the pattern from a perfect crystal of a finite size. Then we relate 

the profile of the crystal to that of the randomly distributed orientation of crystal 

domains. 
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Figure 2.2. Schematic illustration of light diffraction from a 2-dimensional crystal with a 

disorder. Distance in the figure is normalized by the distance between the beam incident 

location and the center of the fringe pattern, R.† 

 For a 2-dimentional crystal, the diffraction pattern’s intensity profile is given 

by [68]  
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where I is the intensity, I0 is the intensity at the primary peak, λ is the wavelength of the 

incident light, N is the number of the unit cells under illumination, and    a1

!"
 and    a2

!"!
are 

lattice vectors of the crystal. For a hexagonal lattice, the vectors are 
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where a is the periodicity of the lattice. In a crystal, diffraction occurs in the direction of 

the reciprocal lattice vectors: 
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= 2
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Now suppose   Δs
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, we can evaluate the factor in the exponent in eq. (2-3) 

as following 

 

   
(Δs
! "!

⋅ a1

!"!
)

2
+ (Δs
! "!

⋅ a2

!"!
)

2
= Δs
! "! 2

( y#⋅a x# )2+( y#⋅( 1
2

a x#+ 3
2

a y# ))2⎧
⎨
⎩

⎫
⎬
⎭
=

3
4 a

2
Δs
! "! 2

. 
  (2-4) 

Note that, if we choose   Δs
! "!

 to align with    b1

!"
 instead, the same result is obtained. 

Therefore, since  Δs
! "!

 must be a linear combination of the two reciprocal lattices, Eq. (2-4) 

is always satisfied. In our experiment,   Δs
! "!

 is related to the distance x indicated in Fig. 2.2 

by 
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Applying Eq. (2-4) and (2-5) to Eq. (2-3) and setting the crystal domain size G to be 

equal to Na, we get 
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Note that this intensity profile is applicable for any direction that is a linear combination 

of    b1

!"
and    b2

!"
. Now if, we consider the case of many crystal domain orientations, the 
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reciprocal lattice vectors for these domains are still the linear combination of    b1

!"
and   b2

!"
, 

since all the domains rest on the same plane. Therefore, the diffraction pattern of 

randomly oriented crystals in this case can be described by Eq. (2-6). 

 

2.4 Modeling of Langmuir-Blodgett assembly process 

Our model is based on the work of Dimitrov and Nagayama [67] and aims to 

describe the LB process for microsphere assembly.  Our model relates the surface 

pressure and the substrate pulling speed that would induce the maximum structural order, 

i.e. highest G values.  Figure 2.3 shows the schematic of the LB assembly process where 

water is the subphase.  This model assumes that the top of the microspheres is close to the 

water surface.  This behavior happens when the microsphere surface has appropriate 

balance between hydrophobicity and hydrophilicity.  The assumption is approximately 

valid in our experiment as verified in the appendix A.  In the model, the submerged 

microspheres with a diameter d at the water surface are pushed laterally toward a vertical 

substrate by two barriers on either side of the substrate.  Each barrier is moving 

horizontally with a speed of vb, and the substrate is vertically pulled out of the water with 

a speed of vc. As the area between the two barriers close, packing of microspheres 

becomes denser, causing increase in the surface pressure, π. The assembly occurs when 

the substrate is being pulled out while the surface pressure is maintained at a constant 

value. During the pull, the microspheres on the liquid surface are transferred onto the 

substrate.  Water evaporates from the meniscus over the vertical layer exposed to the 

ambient air at a volumetric flow rate per unit substrate width, Jevap (cm3/cm-sec).  Jevap is 

approximately a constant determined by the humidity of the ambient air. [67] The 
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thickness of the water film at the lowest point of the assembled microsphere crystal is 

defined as hf.   

 

Figure 2.3. Schematic illustration of the LB assembly of microspheres and the definition 

of the assembly parameters.  Inset illustrates the true projected area and the effective 

projected area. † 

Multilayer structures can be fabricated by repeating the transfer process. In our 

case, a layer is deposited only in each upward movement. In this layer-by-layer approach, 

randomness is naturally introduced in each layer, and our goal is to control the overall 

degree of randomness via adjusting assembly parameters.  The thickness of each layer of 

the crystal is h, which is the same as d for a monolayer and 0.816d for hexagonally close-

packed multilayers. 

First we consider the material balance in water flow. At steady state, the upward 

volumetric flow rate of water through the area defined by hf and the substrate width (W) 
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is equal to the volumetric water evaporation rate from the meniscus above the area, and 

thus 

 evapfw Jhj = ,   (2-7) 

where jw is the volumetric flux of water in the vertical direction through the area (hf × W).  

jw consists of water flux from the surface layer (jw,s), induced when microspheres are 

pushed by the barrier, and water flux from the bulk solution (jw,b), induced by the upward 

substrate motion and Laplace pressure. Let α and 1 – α be the weighting factor of the two 

fluxes respectively, so that the total water flux can be written as 

 bwsww jjj ,, )1( αα −+= ,   (2-8) 

where we assume that α is a constant.   

Next, we consider the balance in microsphere flow. We define the surface layer as 

the layer of thickness d where flow of water and microspheres is induced by the barriers’ 

movement.  The surface layer extends from the area where hf is defined to the edge of the 

barrier.  The volumetric flux of microspheres from this surface layer is denoted by jp,s.  

Then the volumetric flow rate of microspheres in the surface layer is equal to that of 

microspheres formed in the top assembled layer: 

 )1(, ε−= hvdj csp ,   (2-9) 

where ε is the void fraction in the assembled layer.  For the ideal case where the 

maximum order is achieved, the assembled structure would consist of a single crystalline 

domain of hexagonally close-packed (hcp) microspheres. In that case, ε is calculated to 

be 0.395 for monolayers and 0.260 for multilayers. 
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To bridge the gap between the two material balance considerations, we assume 

that the ratio of volumetric flux of water to that of microspheres in the surface layer is 

equal to the ratio of volume fraction of water to that of microspheres in the layer 
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where φ is the volume fraction of the microspheres in the surface layer. This assumption 

is justified in our work because the assembly occurs at a fixed surface pressure. As we 

will see in the next section, a fixed surface pressure is equivalent to a fixed area per 

molecule, and thus the flow rate of a material from the surface layer must be proportional 

to the volume fraction of the material in the layer. 

From Eq. (2-7)-(2-10), the expression for the substrate pulling speed can be 

written as 
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For the assembly of nth layer, in Eq. (2-11), we approximate hf and h as nd and d, 

respectively, so that 
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Equation (2-12) approximately expresses a condition for maximum order, where vc 

increases linearly with increasing )1/( ϕϕ − .  As shown later, vc corresponding to the 

maximum order increases linearly with increasing )1/( ϕϕ − .  The figure also shows that 

the y-intercept is nonzero. Therefore to complete Eq. (2-12), the equation must have a 
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term independent of )1/( ϕϕ −  that corresponds to the non-zero y-intercept.  The only 

variable in Eq. (2-12) that can contain the independent term is jw,b.  Therefore, we 

separate jw,b into two terms: one that is dependent on and the other independent of 

)1/( ϕϕ − , when multiplied by )1/( ϕϕ − : 
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where j0 and j1 are constants.  By substituting Eq. (2-13) into Eq. (2-12), the expression 

for vc is 
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The microsphere volume fraction φ in the surface layer is simply the ratio between the 

volume occupied by the microspheres and the total volume: 

 
Ad
NVp=ϕ ,   (2-15) 

where A is the area between the substrate and the barrier, N is the number of 

microspheres confined in the area, and Vp is the volume of a single microsphere.  

Substituting Eq. (2-15) into Eq. (2-14), we have 
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  (2-16) 

Equation (2-16) indicates that as the area per microsphere A/N in the surface 

monolayer on the water subphase decreases, the substrate pulling speed must increase to 

maintain the constant porosity in the assembled vertical monolayer. In practical terms, 
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this implies that if more microspheres are introduced to the surface layer, the pulling 

speed must increase to achieve maximum order.  We also observe that the surface 

pressure increases as A/N decreases (as shown in the next section).  Therefore, as the 

surface pressure increases (i.e., as A/N decreases), the pulling speed must also increase to 

maintain the maximum order. This implication from our model is rather unexpected 

since, in previous studies in optimization of LB assembly, the optimal surface pressure 

has been determined irrespective of the pulling speed. [61,63,64] On the contrary, our 

modeling suggests that the two independent parameters must satisfy the relation in Eq. 

(2-16) to achieve maximum order. 

 

2.5 Langmuir-Blodgett isotherms 

As mentioned previously, LB isotherm is an equation of state that describes a 

relationship between area, occupied by particles, per particles and surface pressure. The 

isotherm gives insight into interactions between particles and between particles and a 

subphase. In practical terms, the isotherm provides guidance on finding appropriate 

conditions for LB assembly. Generally, it is advisable to measure an LB isotherm before 

fabricating samples with LB assembly, and it is useful to monitor the isotherm during LB 

assembly as well.  

The LB isotherm experimentally measured for our system is shown in Fig. 2.4 as 

black circles. For area per molecules (A/N) below ~1.23 µm2 the surface pressure remains 

approximately unchanged. This is due to distance between microspheres being 

significantly greater than their associated Debye length, resulting in microspheres not 

interacting with one another. The surface pressure increases sharply as the effective 
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projected area per microsphere approaches ~1.20 µm2, which represents the monolayer 

collapsing point.  Based on this area, the center-to-center average distance between two 

microspheres at the collapsing point is calculated to be ∼1.2 µm.  When the microspheres 

of 0.9 µm in diameter form a hexagonally close-packed monolayer, the center-to-center 

distance would be 0.9 µm, and the effective projected area per microsphere would be 

0.701 µm2.  Therefore, a monolayer in our LB system collapses when the average 

distance between the microspheres is close to but greater than their diameter.  This 

observation is in agreement with previous studies. [43,65]  

 

Figure 2.4. Experimentally determined LB isotherm (black circles) and a fitting to the 

2D van der Waals equation of state (red curve). † 

With this isotherm, we speculate that the sphere-to-sphere interaction is repulsive 

and thus, at the inter-distance close to 1.2 µm, it is more energetically favorable for the 

layer to collapse and form islands of multilayer instead of reducing the distance further. 
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Formations of such islands are confirmed in our experiments where the film is allowed to 

reach above the collapsing point (Figure 2.5). The slower rate of increase in the surface 

pressure above the collapsing point can also be explained in a similar fashion as well. 

Because formation of islands is more energetically favorable, the increase in surface 

pressure associated with this mechanism must be lower than that associated with 

reduction in the inter-distance below the collapsing value. We note that the difference 

between the distance at the collapsing point and the microsphere diameter can be 

smaller [66,69] than the current value of ∼0.3 µm. Such difference depends on many 

system parameters, such as barrier speed, microsphere charging, degree of 

functionalization, polydispersity, temperature, etc.   

 

Figure 2.5. Scanning electron micrograph of an LB film deposited at a surface pressure 

above the collapsing point. The red scale bar represents 10 µm. 

The isotherm also provides us guidelines for LB assembly in our work. First, for 

control of randomness, the monolayer should not be allowed to collapse and therefore the 

surface pressure should be below ~15 mN/m. In our work, it is observed that the pressure 
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rise becomes sharper as a function of time as the pressure approaches 15 mN/m. 

Therefore, it is recommended to use surface pressure lower than that value for the 

assembly. Second, surface pressure lower than 2 mN/m should not be used for LB 

assembly. Such low pressure corresponds to the lack of inter-particle interaction and thus 

significant voids between microspheres, which is not desirable for this work. 

We fit the isotherm to the following 2-dimensional van der Waals equation of 

state: 
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where a is the microsphere interaction parameter, b = πd2/2 is the excluded area of a 

particle, T is the solution absolute temperature, kB is the Boltzmann constant, and A0/N is 

the difference between the effective projected area per microsphere for the monolayer 

collapsing point and that for the ideal close-packing. Since this equation is used for 

describing 2-D interaction, it cannot describe the interaction beyond the collapsing point 

(where multilayer islands are form and the interaction becomes 3-D). Thus, we set a and 

A0/N as fitting parameters and fit only the data for A/N ≥ 1.195 µm2.  The model fit is 

shown as a red line in Figure 1.4 and is in good agreement with our experiment (a 

coefficient of determination of 0.984). The values, a = –4.053 × 10-13 N�µm3 and A0/N = 

1.191 µm2, are obtained from the fitting. The negative value of a indicates that the 

interaction between the microspheres is repulsive, suggesting that the electrostatic 

repulsion is stronger than van der Waals attraction. Thus, our speculation of the repulsive 

nature of the interaction is supported by the isotherm. However, 2-dimensional van der 
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Waals equation of state is only a simplified model for describing the interaction of 

microspheres in the LB trough and can only provide a semi-quantitative description. 

Therefore, while it is reasonable to conclude that the interaction is repulsive, we should 

not use the fitted value of a for a purpose of accurately quantifying the interaction. In 

practice in this work, the isotherm is mainly used for relating the area to the surface 

pressure as it is often more convenient to control surface pressure during an LB 

assembly.  

 

2.6 Experimental results and comparison to the model 

 To test our model, we measured the average crystalline domain size, G, at various 

pulling speeds and surface pressures.  Figure 2.6(a) shows the experimentally measured 

G values of a monolayer as a function of surface pressure (π) at different pulling speeds 

(vc).  For the surface pressures of 4.6, 6.0, and 8.0 mN/m, the pulling speeds that 

correspond to the maximum G values are 1.5, 1.8, and 2.25 mm/min, respectively (point 

c, d, e). This trend implies that pulling speed must increase as the surface pressure 

increases to maintain the maximum order. We can relate the optimal pulling speeds to the 

volume fractions, φ, by using Eq. (2-15) and Eq. (2-17).  Using the relations, we plot the 

vc at the maximum order for the three surface pressures as a function of φ / (1- φ) (black 

circles) and fit it to a linear model (dash red line) in Figure 2.6(b). The figure shows that 

vc increases approximately linearly as φ / (1- φ) increases.  This result is consistent with 

the prediction from our model in Eq. (2-14). 
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Figure 2.6. (a) Crystalline domain sizes determined at various values of surface pressure 

and pulling speed for a monolayer assembly. (b) vc as a function of j /(1– j) for the (c)-(e) 

points in (a).  (c)-(f) Representative SEM images corresponding to the monolayer 

assembly conditions indicated as (c)-(f) in (a).  For the convenience of view, the 

crystalline domains are colored depending on the orientation from blue to green and the 

disordered regions are painted red. † 

A key observation in Figure 2.6(a) is that the G values can be highly sensitive to 

the pulling speed at a given surface pressure, abruptly changing over a narrow range of 

vc.  For instance, at π = 6.0 mN/m, G dramatically decreases from >8.8 µm to 2.8 µm 

when the pulling speed decreases from vc = 1.8 mm/min to 1.7 mm/min (point (d) in Fig. 
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2.6(a)).  This high sensitivity suggests that the introduction of disorder in the LB 

assembly should be performed carefully at precise values of surface pressure and pulling 

speed.  Specifically, when the degree of randomness is to be increased slightly, change in 

pulling speed should be made along with the linear trajectory described by the model. 

Arbitrary adjustment in the pulling speed may lead to a significant change in G and a 

significant disruption in order. We note that, while significant disorder may be desirable 

in many applications, there are more efficient methods to fabricate such samples, which 

will be discussed in a later chapter. 

To visualize the dependence of G on the experimental conditions, we took 

scanning electron micrograph (SEM) 50µm×50µm images of the samples corresponding 

to (c)-(f) points in Fig. 2.6(a), as shown in Fig. 2.6(c) – (f). The disordered regions are 

highlighted in red and the crystalline domains in blue and green.  Small point defects in 

crystalline domains are ignored in the coloring.  The shades of color between blue and 

green represent different orientations of the crystalline domains.  The orientation is 

characterized by the angle between a lattice vector and the horizontal line in the figures.  

Due to the 6-fold rotational symmetry of the lattice, the angle is between ±30°. The total 

area of red regions (disorder) in Fig. 2.6(f) is much greater than that in Fig. 2.6(c).  This 

increase in disorder is consistent with the decrease in G for π = 4.6 mN/m in Fig. 2.6(a) 

as we expect. Another observation is that, in Fig. 2.6(c), the disordered regions form 

irregular thin lines between large single crystalline domains.  On the contrary, in Fig. 

2.6(f), the disordered regions take a large space between the small crystalline domains.  

Note that the G values are obtained from a large area of ~5 mm2 by laser diffraction, 

while the SEM images are taken over a smaller area of 2.5×10-3 mm2. Therefore, the G 
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value is a much better representation of the structural order/disorder than the SEM 

images. In our work, the trend in G value agrees well with the trend observed in the SEM 

images. 

From these observations from Fig. 2.6, we can surmise a mechanism of formation 

of structural order in the LB assembly.  Initially, microspheres are randomly positioned. 

As the area between barriers decreases, some microspheres start to form small crystalline 

domains on the subphase surface. [70] The small crystalline domains are randomly 

oriented on the liquid surface. As the microspheres are transferred onto a substrate at the 

optimum pulling speed and surface pressure, these small crystalline domains appear to 

grow to form larger domains, while microspheres that are not in the crystalline domains 

become disordered regions. When the assembly is not performed under the optimum 

condition, the microspheres are not closely packed, and the crystalline domains do not 

significantly grow. Consequently, the disordered areas are large and thus the LB film is 

more disordered.   

We also speculate that the growth of crystallographic domains has an associated 

characteristic time scale.  Since enough time must be provided for the domains to grow, 

the structural order is likely to improve with decreasing pulling speed, provided that the 

pulling speed and the surface pressure are both maintained at the optimum condition 

described by Eq. (2-16).  This speculation is supported by the results shown in Fig. 

2.6(a), where the maximum G value increases from 5.0 to 8.8 to 11.0 µm as vc decreases 

from 2.25 to 1.8 to 1.5 mm/min.  The visual comparison between Fig. 2.6(c)-(f) further 

supports our speculation that the crystalline domain orientation is random, and the 

domain size increases as the pulling speed decreases while meeting the optimum 
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conditions by Eq. (2-16).  However, when the optimum condition is not satisfied at the 

same pulling speed (1.8 mm/min), going from Fig. 2.6(d) to (f), the average domain size 

becomes smaller, while the orientation distribution still appears similarly random.  This 

understanding of structural ordering mechanism provides a simple method to introduce a 

small degree of randomness into the structure: we increase the pulling speed while 

adjusting the surface pressure to be at the optimum condition. In this way, the crystalline 

domains can grow and their sizes are controlled by the pulling speed.  

The level of structural order in multiple layers, where the number of layers (n) 

varies from 2 to 8, is also investigated.  To determine how the optimum surface pressure 

depends on the number of layers in the LB assembly, we fix the pulling speed at 1.5 

mm/min and determine the optimum surface pressure that maximizes G for each layer in 

the multilayer structure.  Figure 2.7(a) shows this optimum surface pressure as a function 

of n (red circles).  The results show that the optimum surface pressure must increase as 

the number of layers increases.  For the first three layers, the optimum surface pressure 

increases rather steeply as the number of layers increases.  For the number of layers 

greater than 3, the optimum surface pressure increases more gradually for the maximum 

order.  
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Figure 2.7. Dependence of optimum surface pressure on (a) the number of layers and (b) 

the pulling speed for various numbers of layers for maximum order in LB microsphere 

assembly. † 

This dependence of the optimum surface pressure on n again agrees with our 

model in Eq. (2-16).  From Eq. (2-16), we can express A/N in terms of n as 

 

( ) ( )⎥⎦
⎤

⎢
⎣

⎡
+−

−+⋅
+−

=
1

0

1 )1(
11

)1( jv
j

njvd
J

d
V

N
A

cc

evapp

εαε
.   (2-18) 



 36 

 

j1 is determined to be positive from the linear fit in Fig. 2.6(b), and therefore A/N 

decreases as n increases according to Eq. (2-18).  Also, according to the LB isotherm, 

A/N decreases as the surface pressure increases.  Therefore, the surface pressure increases 

as n increases, as observed in our experiment in Fig. 2.7(a).  In fact, the least square fit to 

Eq. (2-18) with two fitting parameters agrees well with the experimental data shown in 

Fig. 2.7(a) (a coefficient of determination of 0.995).  The two non-dimensional fitting 

parameters are ( )1)1( jvd
J

c

evap

+− αε
 and ( )1

0
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j
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ε

. All these results so far have 

shown that our model has successfully described the relationship between various 

assembly parameters for optimal conditions. 

To further show the implication of Eq. (2-16) that governs maximum order in LB 

assembly, we consider Fig. 2.7(b), which shows surface pressure as a function of pulling 

speed for the nth layer, using the two fitting parameters.  Each line represents a trajectory 

for optimum condition for maximum possible order.  The experimentally determined 

optimum points found in Fig. 2.6(a) and 2.7(a) are also displayed in Fig. 2.7(b) (circles).  

The model curve shows good agreement with the experimental data.  According to the 

model calculations, the surface pressure must increase as the pulling speed or the number 

of layers increases. For large vc and π, the optimum surface pressure increases sharply as 

the pulling speed increases. In prior studies, the pulling speed ranged from 1 to 10 

mm/min. [63,65,69,71] If one is to use a high pulling speed, extra care is required when 

controlling the optimum surface pressure because of the strong dependence between the 

two parameters. Another consideration is that the surface pressure cannot be increased 
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above the point where the monolayer collapses. Therefore to have the most flexibility in 

introducing the disorder, it is recommended to begin the LB process with low surface 

pressure and thus low pulling speed. 

In summary of the results, the guideline for controlled introduction of randomness 

in LB assembly is the following. The process should start from the optimum pulling 

speed and pressure, preferably at low values, for the given nth layer and then gradually 

increase the pulling speed while adjusting the surface pressure to satisfy Eq. (2-16). The 

surface pressure should also be lower than the collapse pressure. 

 

2.7 Conclusion 

In this Langmuir-Blodgett work, we have demonstrated how structural 

randomness can be controllably introduced into periodic structures during the LB 

assembly of microspheres.  Specifically, we have investigated the relation between two 

process parameters: surface pressure and substrate pulling speed. We have showed that, 

to maximize the structural order and thus for minimal randomness, the two parameters 

must satisfy a relation derived from material balance considerations and Langmuir-

Blodgett isotherm.  We observed that a small deviation from this relation can introduce a 

large degree of randomness and this destroy structural order.  To controllably introduce 

randomness, we find that one should start the assembly from optimum pulling speed and 

surface pressure that satisfy their interrelation (Eq. (2-16)) for a given nth layer, but 

gradually increase the pulling speed.  During this increase, one will have to adjust the 

surface pressure to satisfy Eq. (2-16).   
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Overall, we expect that our findings will prove useful in mimicking biological 

photonic structures, as they incorporated significant degree of randomness in periodic 

patterns. In our future work, we aim to investigate how the randomness in ordered 

structures influences optical properties such as angle-dependent reflectance and 

emissivity. Further studies on the control of disorder in LB assembly can also be pursued 

by considering energetics of 2D colloidal crystallization, in addition to material balance 

done in this work. Such studies would provide insight into fundamental physics that 

governs the LB assembly. 

  

  

 

 

 

 

 

 

 Portions of this chapter have been published as S. Atiganyanun, M. Zhou, O. K. 

Abudayyeh, S. M. Han, and S. E. Han, Langmuir 33, 13783 (2017) and are reproduced 

with permission of the publisher. 

†Figure reproduced with permission from S. Atiganyanun, M. Zhou, O. K. 

Abudayyeh, S. M. Han, and S. E. Han, Langmuir 33, 13783 (2017). 
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Chapter 3: Disordered Microsphere-based Coatings for Efficient 

Radiative Cooling 

*Reproduced in part with permission from S. Atiganyanun, J. B. Plumley, S. J. Han, K. 

Hsu, J. Cytrynaum, T. L. Peng, S. M. Han, and S. E. Han, ACS Photonics 5, 1181 (2018). 

DOI: 10.1021/acsphotonics.7b01492. Copyright 2018 American Chemical Society. 

3.1 Overview 

 Radiative cooling is a process where a net heat loss through thermal radiation is 

achieved. The thermal radiation from a terrestrial object in a select mid-infrared (IR) 

spectral range, known as the atmospheric transparency window, can transmit through the 

atmosphere into the space.  When this heat loss is greater than the heat gain from ambient 

sources, the object cools below ambient temperature until it reaches a thermal 

equilibrium where the net heat transfer is zero. [54,57,72] While radiative cooling 

technology has become a prominent topic in research recently, its capability has been 

demonstrated 50 years ago. In 1963, Trombe demonstrated that this cooling effect can 

reduce the object temperature by ~35 °C below the ambient temperature at night.  [54] 

Recently, a seminal work by Raman et al. in 2014 [57] showed that radiative cooling of 

an object by 5 °C below the ambient temperature under direct sunlight can be achieved. 

Indeed, commercial paint products that employ radiative cooling technology are already 

available in the market and achieved a similar degree of cooling during the day time. [73] 

 For daytime cooling, the other desired property is to strongly scatter or reflect that 

sunlight to minimize solar heating. To achieve this, sophisticated nanostructures were 

used in the past. [57,58] Alternatively, a thin silver film can maintain the solar 
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absorptivity below 4% without the nanostructures. [58] While other metal films can also 

reflect the sunlight, most metals absorb more strongly than silver. A 1% increase in the 

solar absorption over silver corresponds to an increase of the heat absorption by ~10 

W/m2. Because, at the ambient temperature, the cooling power is around 100 W/m2  [59], 

the 1% increase in solar absorption would lead to a decrease in the cooling power by 

10%. With this understanding, recent studies have combined a silver film with dielectric 

materials of high solar reflectance for efficient radiative cooling under sunlight. [57–60] 

In some of these studies, the cooling materials are in a form of a thin flexible sheet, 

where silver is the material primarily responsible for solar reflection. [59,60] Although 

the previous studies using silver have achieved great cooling performance, it would be 

desirable for practical applications to avoid the use of such expensive metal films and 

their deposition processes. It would also be preferable to have the cooling materials in a 

simpler format such as paint. [73–77] Indeed, some commercial solar reflective 

paints [73] achieve a cooling performance comparable to the recent works in academia. 

With these innovations in consideration, we aim to conduct a study of optical scattering 

in random media comprised of materials with intrinsically high mid-IR emission.  

 Common pigments found in commercial solar-rejection white paint include TiO2 

particles of 200-250 nm in size [78,79] and hollow spheres of relatively low refractive 

index (~1.5) with the size of 50-150 µm.  [73] While these particles have strong mid-IR 

emission, they suffer from strong UV absorption or weak solar scattering. Specifically, 

TiO2, a high refractive index material, has significant absorption of UV light, which 

accounts for 5% of total solar intensity. [79] For hollow spheres, low refractive index 

materials lead to inefficient light scattering. Because the intrinsic UV absorption in high-
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index particles is difficult to eliminate, we choose to use a low-index SiO2 microspheres 

to create solar scattering disordered media. Because silica also has an intrinsic high 

emissivity in the atmospheric transparency window, the goal of this work is to optimize 

the scattering in the solar region of the microsphere-based disordered structures. We will 

show that, with right particle size and disorder, these randomly packed microspheres, 

fabricated with inexpensive and facile techniques, can surpass the cooling performance of 

the commercial paint products. 

 

3.2 Fabrication of disordered microsphere-based structures 

Two fabrication methods used in this work are colloidal sedimentation and spray 

coating. Both are described below. 

The first method follows the work of Garcia et al. [46] who first introduced 

photonic structures that consisted of polymer monodisperse microspheres arranged in a 

completely disordered fashion. The fabrication method exploits the nature of the stability 

in a colloidal solution. While the subject of colloidal stability has a long history [46,80] 

and involves a large degree of complexity due to many-body Coulomb interactions, a 

recent work by Wu and Lai [81] has elucidated this nature of the interaction and 

succeeded in accurately describing the early stage coagulation of a colloidal suspension. 

In a short summary, the interaction between two colloidal spherical particles can be 

expressed as a sum of two potentials: the electrostatic repulsive potential and the 

attractive Van der Waals potential. The electrostatic repulsive potential acts as a barrier 

that prevents flocculation of colloids and maintains the stability. This repulsive potential, 

however, can be attenuated by a presence of electrolytes. This attenuation can be so 
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significant that the electrostatic potential becomes weaker than the Van der Waals 

potential, resulting in a net attractive interaction and thus flocculation. Disordered 

clusters formed during the flocculation sediment onto a substrate and leave a disordered 

coating once a solvent evaporates.  

 In this work, we adopt the fabrication method for silica microspheres. Essentially, 

silica microspheres are first dispersed in water and then filtered to improve 

monodispersity. An ionic aqueous salt solution is then introduced into the solution and 

causes the flocculation. The solution is transferred to a substrate and its solvent 

evaporates, leaving a disordered coating behind. The thickness of the coating is 

controlled by the total volume of the colloidal solution.  

 The spray coating method is a widely used technique for applying many coatings 

for a great variety of applications. In the spray coating process, a liquid is accelerated by 

high velocity fluid such as pressurized gas, which atomizes the liquid into small droplets. 

The droplets are deposited onto a substrate, creating a film. The complete picture of 

mechanism of the atomization process is complicated and dependent on various 

parameters such as air pressure, liquid flow rate, liquid viscosity, liquid surface tension, 

substrate temperature, and droplet travel distance. [82–87] Due to a stochastic nature of 

the atomization, droplets of a microsphere solution can be used to transfer the 

microspheres in a disordered manner onto a substrate, creating a coating of randomly 

arranged microspheres. One important consideration is that microspheres can rearrange 

when they are already deposited onto a substrate if there is still some solvent in the film. 

This rearrangement can induce order and therefore must be prevented. 
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 One important aspect for these two methods, especially the spray coating, is that 

they are very facile and scalable. They also do not involve costly instruments that are 

used in previous works. Since our films will consist of only silica microspheres, the 

material cost is significantly lower than other films that use expensive silver. If structures 

fabricated by these methods can achieve efficient radiative cooling, these techniques can 

serve as a way to bring the radiative cooling technology into wide scale applications. 

 

3.3 Transport mean free path of the disordered system 

 Light scattering in random media strongly depends on their structures and 

randomness. Because of the complexity of the light interaction in a random medium, 

diffusion approximation is invoked to model the light propagation. [88] In this model, the 

key parameter is a transport mean free path (l*), which is an average distance that light 

has to travel before its propagation is no longer correlated with its original propagation 

direction. The transport mean free path is related to the degree of the randomness: l* 

increases as the randomness decreases. More importantly, light scattering from a random 

medium increases as l* decreases. Thus, toward the goal of maximizing the solar 

scattering efficiency, we seek to minimize the transport mean free path of our disordered 

structures in the solar spectrum. 

 In an isotropic random medium, the transport mean free path is related to total 

optical transmittance (T) and the medium’s thickness (L) by [89,90] 

 

  
T =

l*(1+ ze )
L+ 2zel

* ,   (3-1) 
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where ze is an extrapolation length ratio, whose dependence on internal reflectance, R, is 

given by  

 

  
ze =

2(1+ R)
3(1− R)

.   (3-2) 

One can approximate the internal reflectance by using Maxwell-Garnett effective 

medium approximation to calculate the effective refractive index of the disordered 

layer. [91] We also note that T is a function of wavelength and, by applying linear 

regression to Eq. (3-1) to estimate the slope 1/(l*(1+ze)), l* as a function of wavelength 

can be extracted.  

	 We also seek to theoretically investigate how l* is related to fill fraction and 

microsphere size. We use mean field theory and coherent potential approximation [92,93] 

to calculate the dependence. The system is modeled by two scattering units surrounded 

by an effective medium. [93] One unit is en empty microsphere, and the other unit is a 

solid SiO2 microsphere concentrically surrounded by an empty sphere. Light propagation 

in the effective medium is characterized by a complex wave vector k + i/(2l), where l is 

the scattering mean free path, an averaged distance between scattering sites. The l is 

calculated by requiring that the forward scattering amplitude is zero on average when the 

scattering units are within the effective medium. Using a relation between l and l* in the 

low concentration limit [92] (applicable to our structures),  

 

  
l* = l

1− cosθ
,   (3-3) 

where cosθ is a value of cosine averaged over all scattering amplitudes, we calculate l* 

from the knowledge of l. 
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	 For a large-sphere system, we can apply Kubelka-Munk theory [94] to facilitate 

the l* calculation. For lossless sphere, the transmittance is given by 

 

  
T = 1

SL+1
,   (3-4) 

where S is the scattering coefficient and is related to the effective scattering efficiency, 

Qeff, by [95]   

 

  
S = 3 f

2d
Qeff .   (3-5) 

The value of Qeff is different from the scattering efficiency of a single sphere, Q, because 

of interactions between spheres. An empirical correlation between the two are given 

by [96] 

 
  
Qeff = Q10−100.25−5.1c/λ

,   (3-6) 

where c is estimated to be [97] 

 

  
c = d(0.905

f 1/3 −1) .   (3-7) 

For large spheres, the size parameter πd/λ is much greater than 1, and thus Q can be set 

equal to 1. Further, for random packing, f ≤ 0.64 and Qeff ~ Q for the large size parameter. 

Therefore, for large spheres, Eq. (3-4) becomes 

 

  

T = 1
3 f
2d

L+1
.   (3-8) 

Comparing this equation to Eq. (3-1), we see that ze = 1 and l* = d/3f. 
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3.4 Experimental methods 

i) Colloidal sedimentation method 

 0.9-µm-diameter and 2.0-µm-diameter solid silica microspheres were purchased 

from Fiber Optic Center (AngstromSphere) in a powder form. Before the microspheres of 

either size can be used, agglomerations must be broken down and filtered. First, the 

microsphere (of a same size) powder was dispersed in deionized water, and the solution 

was sonicated for an hour. Then the solution was filtered with a VWR Grade415 filter 

paper to remove any agglomerations left. The solution was diluted to 2% volume, and 

0.01M of KCl was added. The salt addition induced colloidal instability, and the 

microspheres flocculated and precipitated onto a glass slide as a randomly packed film. 

On a glass slide, we used a Scotch Magic tap to create a barrier that confined the solution 

and specified an area that the coating will be created. For the purpose of measuring 

transport mean free path, several coatings were fabricated with varying thickness and 

each coating was confined to a 2.5cm-by-2.5cm area.  

ii) Spray coating method 

 The same microspheres were used for the spray coating method. 2% volume 

aqueous solution of 0.9-µm-diameter microspheres (without KCl) was prepared. 

Optionally, a surfactant at a concentration lower or equal to 2×10-3 % can be introduced 

to the solution. The solution was then ejected through an air-brush nozzle (Badger 100G, 

Badger Air-Brush), shown in Fig. 3.1, at 69 kPa. In this process, the microsphere solution 

was added to the cup and the compressed air was introduced via the attached hose. The 
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flow of both fluids was regulated by the trigger and the needle. When the trigger was 

pulled, both fluids were mixed and the solution was atomized into droplets ejected 

through the head of the gun. For consistency of the flow, we pulled the trigger fully in 

during deposition. The spray coating condition was identical for a solution of 2 µm 

microspheres. The nozzle was located 22.5 cm above a glass substrate. To ensure 

uniformity, the substrate was subjected to a linear periodic motion and was heated at 

above 100 °C to quickly remove water. The rapid water removal is essential for 

preventing significant arrangement of microspheres, which can occur if the water 

evaporation is slow. It is noted that mechanical strength of the coating grows weaker as 

the thickness increases. Thus the spray coating should not continue once deposited 

microspheres on a sample begin to be ejected by the airflow.  

 

Figure 3.1. An image of a spray paint gun used in this work. Distance from the needle to 

the left edge of the image is ~8.5 cm. 

iii) Optical and structural characterization 
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 For transport mean free path measurement, randomly packed SiO2 microsphere 

films of thickness varying from 20 to 100 µm were fabricated via both colloidal 

sedimentation method and spray coating method. Total transmittance of the coatings was 

measured with an integrating sphere (ISO-50-8R, Ocean Optics) and a photospectrometer 

(USB4000-VIS-NIR, Ocean Optics). A scanning electron microscope (FEI Q3D 

FIB/SEM DualBeam system, ThermoFisher Scientific) was used to observe arrangement 

of microspheres on a coating surface and to measure the coating thickness. Using the 

refractive index of silica (n = 1.46) and the fill fraction range (f ~ 0.55 to 0.64), we 

applied Maxwell-Garnett effective medium approximation and calculated the 

extrapolation length ratio to be 1.4. [91] Knowing the ratio, we fitted for transport mean 

free path spectrum from the total transmittance spectrum and the thickness, using Eq. (3-

1). Emissivity spectrum, from UV to IR, of the disordered coatings was measured by a 

spectrophotometer with an integrating sphere (Vertex 70, Bruker). 

iv) Temperature measurement 

 For evaluating the radiative cooling performance of our coatings under the 

sunlight, we deposited 2-µm microspheres on 2.5 cm × 2.5 cm glass substrates, using the 

colloidal sedimentation method. To fabricate coatings appropriately thick for solar 

rejecting, the colloidal sedimentation method was repeated several times on a same 

substrate. The coating thickness was ~700 µm. The bottom of the glass substrate was also 

painted black (Specialty Black High Heat Ultra, Rust-Oleum). For comparison, we 

prepared a sample where our microsphere coating was replaced by a commercial solar 

reflective white paint (Spartacryl PM 60312, Chromaflo Technologies) with the same 

thickness (and the same black paint on the bottom side). This commercial paint was 
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selected because we experimentally determined that it had the lowest temperature under 

the sunlight among several different brands of solar reflective paints.  

 To characterize the cooling properties of the samples under the sunlight, we set up 

fixtures shown in Fig. 3.2. This experimental setup is designed to accurately measure the 

temperature of the air around the samples. Thus the setup allows the sample temperature 

to be properly compared to the ambient air temperature. Typically in other works, the 

ambient temperature is measured in a Stevenson screen, which comprises of a white-

painted box with slits on its side walls to allow air flow. The white surfaces minimize the 

solar radiative heating of the box. The inside of the box is also dark enough to prevent 

radiative heating of a thermometer in the box. The thermometer is generally located about 

1-2 m above the ground. Our fixtures are modified from a Stevenson screen to allow the 

temperature measurement of samples exposed to the sunlight. Our box had a 30 cm × 30 

cm window at the top which allows the sunlight to reach the sample. The bottom of the 

box is sealed by a low-density polyethylene (LDPE) film that is optically transparent to 

prevent the solar heating from the light coming through the top window. Additionally, the 

sides walls do not have slits and thus reduced the fluctuation in the inside temperature 

caused by air convection. The walls are made of Styrofoam covered with aluminum 

sheets on their exterior to minimize the sunlight transmitted through the walls. 
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Figure. 3.2. (a) Optical image and (b) schematic diagram of the outdoor setup for 

accurate temperature measurement. The height of this apparatus is ~1.5 m. † 

 Two LDPE enclosures of a 2360 cm3 volume are located inside the setup, one 

beneath the top window and the other beneath the top cover. Thermocouples for the 

sample and the ambient air are placed inside the two enclosures, respectively. Having the 

two separate volumes minimizes the heat transfer between the thermocouples. The 

enclosure for the ambient temperature measurement is located far from sunlight 

illumination even at the low sun’s altitude. Both thermocouples are located 2 m above the 

ground. This is to avoid any heat transfer from the heated ground to the thermocouples. 

In our design, the ambient temperature represents the temperature of the air surrounding 

the sample while minimally affected by the sample temperature and the ground 

temperature. This enables proper and fair characterization of the cooling performance in 

comparison to the ambient temperature. 
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 With this setup, the temperature of the samples and the ambient air under strong 

solar radiation in Albuquerque, New Mexico was measured in May when the sky was 

relatively clear. During the time, two setups, one for our coating and one for the 

commercial paint, were placed on a rooftop of a building. The temperature of the two 

samples and the ambient air was recorded for 3.5 days. 

 

3.5 Results and discussion 

For illustration purpose, an optical image of the silica microsphere-based coating 

under light illumination is shown below in Fig. 3.3.    

 

Figure 3.3. Our disordered silica microsphere-based sample under light illumination. 

i) Measured and modeled transport mean free path 
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 Both experimentally measured and theoretically calculated l* as a function of 

wavelength for the samples with 0.9-µm-diamter microspheres is shown in Fig. 3.4. The 

samples prepared by colloidal sedimentation and spray coating exhibit a similar l* 

spectrum. For these samples, the calculated result for the fill fraction of 0.64, which 

corresponds to random close packing [98], demonstrates an excellent agreement with the 

experimental result. Additionally our model also accurately captures the resonant 

behavior in l* that appears as valleys and peaks in Fig. 3.4. In comparison, the results 

from other theoretical models in previous studies [99,100] show a significant divergence 

from the experimentally measured l*. In these studies [99,100], the models predict a trend 

where l* decreases as the wavelength increases, which is opposite to the trend shown in 

the experimental results. 
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Figure 3.4. Comparison of experimentally measured and theoretically calculated l* for 

close (f = 0.64) and loose (f = 0.55) random packing of silica microspheres of d = 0.9 µm. 

† 

 While our calculation with the assumed value of the fill fraction of 0.64 

accurately described the experimental results, this agreement is not a definite proof that 

the fill fraction of our samples is 0.64. Our calculation does not fully account for short 

range ordering [93] and any degree of ordering that might occur in the actual structures 

would increase l* due to less efficient scattering. What these imply is that l* for a fill 

fraction lower than 0.64 (such as 0.55 as shown in Fig. 3.4) would start to increase from 

the calculated value shown in Fig. 3.4 in a presence of increasing level of ordering. This 

increased l* may match our experimental outcome. In other words, our experimental l* 

may correspond to l* of a sample with a fill fraction lower than 0.64 and some degree of 

short-range order. Indeed, in a previous study [99], the fill fraction of samples fabricated 

via colloidal sedimentation method was shown to be approximately 0.55 which 

corresponds to the lower limit of random loose packing. [98] Since the fill fraction of a 

structure of randomly packed microspheres is difficult to determine accurately, [101] this 

work only gives an estimated value of the fill fraction of our samples. 

 With our experimentally validated theoretical model, the sunlight scattering 

power,   
1/ l* , as a function of microsphere diameter and fill fraction, is calculated and 

plotted in Fig. 3.5. Here, the bracket represents the average value with the solar intensity 

spectrum as a weighting factor. In Fig. 3.5, the maximum scattering power (region A) is 

achieved when d = 1.5 µm and f = 0.375, and the maximum   
1/ l*  is 0.20 µm-1. 
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Therefore, according to our model, the lowest   
l*  is 5.0 µm. On the contrary, in many 

commercial solar paints, the common sizes of TiO2 particles (200-250 nm) and hollow 

spheres (50-150 µm) are very far from the optimum diameter determined for SiO2 

microspheres. While smaller size particles can help reduce the coating thickness and cost, 

TiO2 particles have pronounced absorption in UV and near-IR, which compromises their 

radiative cooling efficiency compared to our coating made of silica microspheres. For 

large diameter hollow spheres with diameter ranging from 50-150 µm and f = 0.6, l* = 28-

83 µm. This transport mean free path is much greater than the minimum value of   
l*  = 

6.4 µm that can be obtained for 2-µm-diameter microspheres with the same fill fraction 

(region B, Fig. 3.5). What this comparison suggests is that the commercial paint made of 

large hollow spheres must be 4 to 13 times thicker than our SiO2 microsphere coatings to 

achieve similar cooling performance. 
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Figure 3.5. Dependence of the solar scattering power,   
1/ l* , on the sphere diameter 

and fill fraction of randomly arranged silica microspheres. † 

 Regarding the fill fraction, f = 0.55 is generally considered to be the lower limit in 

loose random packing of microspheres. Nevertheless Fig. 3.5 shows that the fill fractions 

much lower than this limit can maximize the scattering power (region A). Thus, the issue 

is whether or how such low fill fractions can be experimentally achieved. Giera et 

al. [101] has recently discovered that the fill fraction can be as low as 0.4 when 

microspheres are subjected to high voltage and driven to sedimentation. At this fill 

fraction, the light scattering with properly sizes microspheres can be stronger than at the 

fill fraction above 0.55. For f < 0.55, we speculate that the size of air gaps can be larger 

than individual microspheres and that these gaps are non-uniformly distributed in the 
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coating. Depending on the scale, the current theory may require modification to 

accurately model the light scattering in such system.  

 To estimate the required coating thickness for effective sunlight scattering, we 

calculate absorptivity as a function of film thickness when the microspheres are coating 

on an absorbing substrate. Fig. 3.6 shows an example of absorptivity as a function of 

coating thickness for d = 2 µm and f = 0.6. We note that these conditions are not optimum 

for maximum scattering power, but the fill fraction of 0.6 can be easily realized in our 

current experiment. For this fill fraction, the minimum averaged l* occurs at the 

microsphere diameter of 2 µm, which we used for the fabrication. The two curves in Fig. 

3.6 represent two extreme values of the internal reflectance, Rs, at the coating-substrate 

interface. The two cases, Rs = 0 and Rs = 0.96, correspond to an ideal black body and a 

highly reflective metal as a substrate respectively. The difference in absorptivity becomes 

smaller as the coating thickness increases, because the reflection from the coating 

becomes dominant as its thickness increases. For samples made of 2-µm-diameter silica 

microspheres with f = 0.6, the absorptivity is less than 3% as the coating thickness 

reaches 500 µm. At this low absorptivity, previous works [57,58,60] achieved substrate 

cooling 5-10 °C below the ambient temperature. In this work, we will show that we can 

achieve a similar performance with silica coatings and without expensive metal coating.  
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Figure 3.6. Absorption of a substrate with a microsphere-based coating for d = 2 µm and 

f = 0.6 as a function of coating thickness for two extreme values of internal reflectance Rs 

at the coating-substrate interface. † 

 The mean field theory that we use for theoretical calculations does not take into 

account the correlations of microsphere positions except for short-range correlations 

induced by the sphere size. In practice, the short-range correlations may be stronger than 

the theoretical approximation and will depend on the microsphere deposition techniques 

and parameters. In a presence of strong correlations, experimentally determined l* may 

deviate from the mean field theory calculation. To study the impact of short-range 

correlations on l*, we compared coatings of randomly packed 2-µm-diameter 

microspheres, fabricated by the spray coating method at different surfactant 

concentrations. 
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 Fig 3.7 (a)-(c) shows scanning electron micrographs of the top surface of the 

microsphere coatings prepared with different surfactant concentrations. From these 

images, the microsphere arrangement appears to be quite random. Following the method 

described by Garcia et al. [46], we calculate autocorrelation functions from the images 

and confirm the randomness. The 2D autocorrelation functions are circularly symmetric 

which implies that the random arrangement is isotropic. The value of autocorrelation 

functions shows the maximum at the center and decay sharply along the line radially 

extending from the center. This behavior corresponds to a random microsphere 

arrangement (which is naturally isotropic). The functions also show small peaks 

approximately at integer multiples of d. These peaks correspond to short-ranged 

correlations that are present because of the nonzero size of the microspheres. [46] 

Because contrast and brightness in the SEM images vary from sample to sample and 

depend on many parameters, it is difficult to quantitatively compare the autocorrelation 

functions and evaluate the degree of randomness in the three samples. 
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Figure 3.7. (a-c) SEM images of silica microspheres of d = 2 µm deposited by spray 

coating when the surfactant concentration is (a) 0%, (b) 2×10-4 %, and (c) 2×10-3 %. The 

scale bar represents 20 µm. (d) l* spectrum for the three cases and the sample prepared by 

colloidal deposition. Theoretical predictions for close (f = 0.64) and loose (f = 0.55) 

random packing of silica microspheres are also shown in comparison in (d). † 
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 Because of the difficulty with comparing the autocorrelation functions, we 

measured the l* of the samples for comparison instead. As shown in Fig. 3.7 (d), l* for 

spray-coated samples increases as the surfactant concentration increases. In the visible 

spectrum, l* increases by 1.7 µm when 2×10-3 volume % of surfactant is added, compared 

to the l* of the sample without any added surfactant. We also observe that the spray-

coated sample without surfactant exhibits l* that is larger than that of the sample prepared 

by colloidal sedimentation method. While the spray coating method is a more convenient 

technique that the sedimentation method, the shorter l* for sediment sample implies that 

the sedimented microspheres are more randomly distributed or their fill fraction is lower 

than the spray-coated microspheres. However, in all cases, the measured l* shows 

deviations from theoretical predictions for both f = 0.55 and f = 0.64. This comparison 

with the theory suggests that, while the sphere arrangement shown in the SEM images 

appears random, the surface images alone cannot quantitatively represent the optical 

scattering strength in the bulk.  

ii) Emissivity spectrum 

 In Fig. 3.8, the emissivity spectrum (green) from the microsphere coatings is 

plotted against solar (red) and atmosphere (blue) radiation intensity. The emissivity, 

which is equivalent to absorptivity, of the sample is negligible in most of the solar 

radiation spectral range (0.3-3 µm). On the contrary, the emissivity is high in the 

atmospheric transparency window (8-13 µm) highlighted in orange. Emissivity peaks in 

the near IR (1.9-3 µm) are due to intrinsic absorption of SiO2 and correspond to a less 

than 0.1% increase in the solar absorptivity. The average IR emissivity of this coating 

over the atmospheric transparency window is greater than 0.94, which is greater than that 
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in reference [59] where 8-µm-diameter microspheres were used. The reason for the high 

emissivity in our random media is that our porous media provides better optical 

impedance matching with the air, compared to the case of a solid silica film. According 

to Maxwell-Garnett effective medium theory [102], we estimate that the average 

emissivity in the normal direction over the atmospheric transparency window for our 

media with a fill fraction of 0.55 would be greater than that of a solid silica film by more 

than 0.13.  

 

Figure 3.8. Experimentally measured emissivity spectrum of randomly packed silica 

microspheres (green) against solar (red) and atmospheric (blue) radiation intensity. † 

 The high emissivity outside the atmospheric transparency window decreases the 

cooling performance [72]. However, this effect is significant only when heat transfer by 
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convection and conduction from the ambient air is negligible [60,103]. Because the 

coating for outdoor radiative cooling would be exposed to the ambient air in many 

common applications, the convection and conduction of heat is substantial, and the high 

emissivity of our coating outside the window would not strongly affect the cooling 

performance. In fact, this high emissivity outside the window is actually desirable for 

cooling when the coating temperature is higher than the ambient air temperature. 

iii) Outdoor temperature measurement and cooling performance comparison 

 The results from our outdoor temperature measurement is shown in Figure 3.9. In 

the figure, our microsphere coating on a black substrate, without the use of expensive 

silver coatings, can reduce the substrate temperature below that of the ambient air by as 

much as 12 °C under the sunlight. Our coating also outperforms the commercial solar-

reflective white paint. At its peak performance, our coating achieves a substrate 

temperature 7 °C below that of the commercial paint. The average temperature of the 

substrate under our coating is 4.7 °C below that of the substrate coated with the 

commercial paint during the time of strong solar radiation (11am – 4pm). At night (9 pm 

- 7am), both microsphere and commercial paint both maintain the substrate temperature 4 

°C below the ambient. This result suggests that both films have similar radiative 

properties in the mid-IR, but our microspheres coating has better scattering properties for 

the solar radiation than the commercial paint. 
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Figure 3.9. Measured temperature variation over 3.5 days for our microsphere sample, 

commercial white paint, and ambient air. † 

 We also observe that substrate temperatures of microsphere coating and 

commercial paint both increase faster than that of the ambient air from 7 am to 12 pm. 

The reason is that the solar absorptivity of the solid coatings is still higher than that of the 

ambient air, even though the absorptivity in the substrate is approximately 0.02. From 7 

pm, when the sun’s altitude is lower than 10°, until 7 am, the substrate temperature starts 

to decrease before the ambient temperature does with a time lag of 1-2 hours. During this 

time, the solar heating is negligible, and the substrate is cooled by radiation in the mid-

IR. The radiative cooling of the sample is stronger than that of the ambient air, and thus 

the substrate temperature decreases below the ambient temperature. 
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3.6 Conclusion 

 In this chapter, we have shown that the random media comprised of silica 

microspheres can achieve strong radiative cooling under direct sunlight. This excellent 

performance is achieved with coatings where microsphere size and fill fraction are not 

yet fully optimized, and thus there is a strong potential to further improve its cooling 

performance. Our coating cools a black substrate below the ambient temperature by as 

much as 12 °C. On average, our coating also reduces the substrate temperature 4.7 °C 

below that of the commercial white paint during the period of strong solar radiation. 

Unlike other radiative cooling technologies that employ costly fabrication methods or 

expensive materials, our coatings are created with facile and scalable methods with a very 

low cost. We also note that, because our coatings are in a paint format, pigments can be 

easily incorporated for aesthetic and commercial purposes. Furthermore, in this study, we 

show that the optical scattering power can be maximized with appropriate choice of 

microsphere size, material, and fill fraction. We also note that the optimal parameters of 

random structures significantly differ from those in current commercial products. 

Therefore, our study offers a path toward low-cost coatings with substantially improved 

radiative cooling performance. In future works, we aim to investigate the fascinating 

ability of random media to separately control optical properties at different spectral 

bands. Such ability could have strong implication on other applications such as infrared 

sensors, water harvesting and purification, and thermal management in fabrics. For 

practical applications, works to improve durability and antisoiling properties would also 

be beneficial. 
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1181 (2018).  



 66 

Chapter 4: Radiative Cooling with Disordered Hollow Microsphere-

Based Structures 

*Reproduced in part with permission from J. D. Alden, S. Atiganyanun, R. Vanderburg, 

S. H. Lee, J. B. Plumley, O. K. Abudayyeh, S. M. Han, and S. E. Han, Journal of 

Photonics for Energy 9(3), 032705 (2019). DOI: 10.1117/1.JPE.9.032705. Copyright 

2019 SPIE. 

4.1 Overview 

 In the previous chapter, we have demonstrated that the paint-format materials of 

randomly packed monodisperse SiO2 solid microspheres can improve solar scattering 

efficiency dramatically by optimizing the size, fill fraction, and packing arrangement of 

microspheres. Under the intense solar radiation, these coatings can decrease the 

underlying substrate temperature by as much as 12°C. The observed temperature was also 

below the temperature of substrates coated with leading commercial solar-reflective paint 

by an average of 5°C. Unlike other cooling technologies employed in recent works, [57–

60] our coatings do not require precious metals such as silver or expensive processing 

steps such as metal deposition in vacuum.  

 Nevertheless, there are some improvements from our work that can be explored. 

First, we note that the sphere size and the fill fraction of the silica coatings are not yet 

fully optimized. Specifically, our calculation has shown that decreasing the fill fraction 

would increase the light scattering power (in solar region) further. However, it is 

currently difficult to decrease the fill fraction of randomly arranged solid monodisperse 

microspheres below 0.55, which is considered a theoretical lower limit. Therefore, to 
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decrease the solid fill fraction of such structures, we employ hollow polymer 

microspheres instead of solid silica microspheres for fabrication of the disorder 

structures. We will show that the coatings that consist of the hollow polymer 

microspheres achieve stronger light scattering than those that consist of the solid 

microspheres. 

 Second, our previous structures do not possess mechanical durability compared to 

commercial paints. This is due to the fact that, in our coatings, microspheres are merely 

touching and their surrounding matrix is air. To address this issue, we can slightly merge 

the hollow polymer microspheres to improve slightly mechanical strength without 

affecting the optical properties. However, even after merging, the mechanical properties 

are still far from those of commercial paints. To fully address this problem, we mix the 

polymer hollow microspheres with silicone. The continuous silicone network 

significantly enhances mechanical durability over the randomly packed solid 

microspheres in our previous work. In terms of optical properties, silicone reduces near-

IR absorptance to a value less than conventional acrylic polymers in most paint binders, 

and the hollow microspheres eliminate ultraviolet (UV) absorption of TiO2 particles in 

commercial paint. Because the hollow microspheres and silicone are inexpensive 

material, the coating thickness is not a significant economic concern. The coatings can be 

thick enough to achieve efficient radiative cooling without the need for fully optimizing 

the microsphere arrangement. The coatings can also be conveniently applied on any 

surface. Additionally, silicone is a space-flight-qualified material, and thus the coating 

has potential for radiative cooling in space environment. [104] 
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4.2 Optical properties 

 The physics behind light propagation in random media is similar to that described 

in the previous chapter. In summary, one important parameter in the diffusion model in 

light transport in random media is the transport mean free path (l*). The length is defined 

as the average distance that a photon energy packet travels before its propagation 

direction no longer correlates with its original direction. In general, l* depends on the 

wavelength λ. This length also relates total transmittance and thickness of a random 

medium: 

 

  
T =

1+ ze

L / l* + 2ze

,   (4-1) 

where ze is the extrapolation length normalized by l*, and the extrapolation length is the 

distance outside the film over which the diffuse light intensity approaches zero. [89,90] 

From Eq. (4-1), if a random medium is placed on a black substrate, the total transmittance 

can be replaced by absorptance A. Therefore, the goal is to minimize 1/l* to achieve the 

lowest absorptance. 

 In our previous chapter, we have shown that l* spectrum can be accurately 

calculated by the mean field theory [92,93] for solid microspheres. With the theoretical 

model that has been experimentally verified in our previous work, [105] we calculate 

sunlight scattering power,   
1/ l* , for randomly positioned spherical bubbles in a matrix 

of refractive index n = 1.5.  Here,  represents the average value with the solar 

intensity spectrum as a weighting factor.  
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4.3 Experimental methods 

i) Hollow microsphere film 

 The hollow microspheres (ROPAQUETM AF-1055, Dow Chemical Co.) consist of 

a shell made of polystyrene-polymethyl methacrylate copolymer. The inner and outer 

diameters of the hollow are 0.82 and 1.0 µm, respectively. To measure the refractive 

index of the polymer shell, we dispersed the hollow microspheres in an aqueous solution 

of zinc iodide at varying concentrations. [106] When the specular transmittance is 

maximized, the refractive index is matched between the microsphere shell and the liquid 

mixture. The refractive index of the shell is determined to be 1.504 at a wavelength λ = 

632.8 nm. 

We employ the spray coating method (similar to that in Chapter 3) to create 

coatings that consist of randomly arranged polymer microspheres. A solution of the 

hollow microsphere in pure isopropanol (IPA) was prepared. The volume fraction of the 

hollow spheres was 2%. Here, we use IPA as a dispersing medium instead of water as in 

the previous work to increase evaporation rate during spray coating. Because the hollow 

microspheres have lower glass transition temperature (~80 °C) than that of solid silica 

microspheres (≥ 800 °C), heated substrate temperature cannot be set as high as in the 

previous work during the deposition. Therefore, we select IPA due to its high vapor 

pressure to compensate for lower substrate temperature. The solution was ejected through 

an air-brush nozzle (Badger 100G, Badger Air-Brush) at 69 kPa. The nozzle was located 

22.5 cm above a glass substrate. The substrate was subjected to a linear periodic motion 

and was heated at ~50 °C. The thickness can be controlled by the total amount of the 

solution volume that is dispersed. For l* measurement, the thickness of coatings ranged 
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from 20-100 µm. For outdoor temperature measurement, the thickness was ~300 µm and 

the substrates were 6061 aluminum alloy wafers. This alloy is a commonly used material 

for roofing sheets and frames. For comparison, samples coated with a commercial paint 

(Spartacryl PM 60312, Chromaflo Technologies) of the same thickness on the alloy 

wafers were also prepared.   

To study effects of thermal merging of the hollow spheres, we heated the hollow 

sphere samples at 78 °C, using a furnace tube (TF55030A-1 Lindberg/Blue M, Thermo 

Scientific). After undergoing the heating, top surfaces of the samples were characterized 

with a scanning electron microscope (FEI Q3D FIB/SEM DualBeam system, 

ThermoFisher Scientific). 

 To characterize the coating optical properties, we measured the total transmittance 

in the solar wavelength region of the media with an integrating sphere (ISO-50-8R, 

Ocean optics) connected to a photospectrometer (USB4000-VIS-NIR, Ocean Optics). 

The thickness, needed for l* calculation, was measured by the scanning electron 

microscope The optical properties of our samples and commercial paints in IR 

wavelength were also measured with spectrophotometers with integrating spheres 

(Lambda 950, PerkinElmer for λ = 0.2 – 2.5 µm and INVENIO R, Bruker for λ = 2.5 – 50 

µm). 

 For characterization of cooling performances, four samples with the 6061 

aluminum alloy substrates were prepared: two with our coatings and two with the 

commercial coatings. We built a very simple setup that simulates a common usage of 

commercial paints exposed to the ambient environment (Fig. 4.1). In this setup, a 

thermocouple was attached to the backside of each sample. The samples were placed on a 
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large Styrofoam block of thickness 0.75 inches, which reduced the heat conduction from 

the floor. Before the setup was moved to a rooftop where the actual temperature 

measurement occurs, the samples were cover by another Styrofoam block, placed ~1 cm 

above the coatings. The setup was then moved to the rooftop of a building, the cover was 

removed, and the sample temperatures were measured for continuous 1.5 days in 

November in Albuquerque, NM. 

 

Figure 4.1. Optical image of our setup for outdoor temperature measurement. The left 

and right samples are a square substrate coated with the hollow microspheres and the 

commercial paint respectively. The width of the substrate is 4 inches. 

ii) Hollow microspheres in silicone matrix 

 To create random media consisting of the hollow microspheres embedded in 

silicone matrix, we mixed the same hollow microspheres (also called microbubbles in 

this work) with silicone monomers (ELASTOSIL® RT 601, Wacker Chemie AG). The 

silicone monomers were hardened by adding a platinum-based cross-linker catalyst to 
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form polydimethylsiloxane. The volume fraction of the hollow microspheres was 23%. 

Solutions of higher volume fractions require vigorous mixing due to increased viscosity. 

These films were then coated on a side of glass slides over a 1 in. × 1 in. area with a 

thickness of 2 mm. The other side of the substrates was painted black (Specialty Black 

High Heat Ultra, Rust-Oleum). The absorption of the black paint was measured to be 

0.97 in the visible spectrum. For comparison, samples coated with a commercial paint 

(Spartacryl PM 60312, Chromaflo Technologies) of the same thickness on the similar 

black-painted glass slides were also prepared. 

 The mechanical durability of these silicone coatings was tested by placing the 

samples inside a high vacuum chamber. The reflectance spectra of our sample, 

commercial paint, and 6061 aluminum alloy were measured by spectrophotometers with 

integrating spheres (Lambda 950, PerkinElmer for λ = 0.2 – 2.5 µm and INVENIO R, 

Bruker for λ = 2.5 – 50 µm). The thickness of our sample and the commercial paint was 

identical at 2 mm. Due to systematic errors in an integrating sphere measurement, [107–

109] we employed another setup comprised of an integrating sphere (ISP-50-8R, Ocean 

Optics) coupled to a detector operating mostly in the visible range (USB4000-VIS-NIR, 

Ocean Optics) and made error corrections to the measured reflectance using the 

procedures described in the appendix B. 

To quantify temperature rise due to absorption in the solar spectrum alone, we 

illuminated the samples by a solar simulator beam of AM1.5G spectrum (ABET 

Technologies, 1050), measured their temperatures, and compared them to the ambient 

temperature [Fig. 4.2]. Each sample was placed in a box (29 cm × 29 cm × 3.7 cm) made 

with an optically transparent, low-density polyethylene (LDPE) film wrapped around a 
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wood frame. The LDPE box provided a controlled thermal environment with a constant 

heat transfer coefficient to the surroundings.  The ambient temperature was measured 

inside the box near its corner far from the illumination area. Thermocouples were 

attached to the bottom surface of the samples. We measured the temperatures of our 

samples, commercial paints, and a block of 6061 aluminum alloy. 

 

Figure 4.2. Optical image of experimental setup for temperature measurement with a 

solar simulator. The incident solar simulator beam is AM1.5G spectrum. The sample area 

is 1 in. × 1 in for all the samples, and the light beam covers the entire sample area. † 

 To evaluate the cooling performance of the hollow microspheres-in-silicone 

coatings under the sky with exposure to actual sunlight, we prepared a fixture as shown in 

Fig. 4.3. We measured the temperature of a substrate coated with our hollow 

microspheres-embedded silicone, a substrate coated with commercial paint, and the 
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ambient air in Albuquerque, New Mexico on September 4, 2018. The sky was partly 

cloudy for the day. The samples and the ambient probe were located ~2m above the 

rooftop so that the temperatures were not strongly affected by the heated rooftop surface. 

The two samples were enclosed in two separate but identical LDPE boxes.  

 

Figure 4.3. Optical image of our outdoor experiment setup for temperature 

measurements. The white shading paper covers the ambient temperature probe for the 

experiment is partially peeled open to illustrate the probe. †  

 

4.4 Results and discussion 

i) Hollow microsphere film 
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 Scanning electron micrographs of merged hollow spheres are shown in Fig. 4.4. 

We observe that some hollow microspheres are partially merged when subjected to 

heating at 78 °C for 15 minutes (Fig. 4.4 (a)). However, when the thermal treatment is 

extended to 1 hour (Fig. 4.4 (b)), some hollow microspheres are deformed, showing the 

inner void. We speculate that, at the lower duration of heat treatment, the polymer only 

on the outer surface of the shells acts like a liquid and forms connected bridges between 

two or more microspheres. However, at a longer heat treatment, the polymer on the inner 

surface of the shell begins to flow as well and causes collapse of the shell structures, 

leading to the deformation. Therefore, the duration of heat treatment must be carefully 

chosen to achieve merging of the microspheres and avoid the collapse of their structures. 

 

Figure 4.4. Scanning electron micrographs of the hollow polymer microspheres 

subjected to a thermal treatment at 78 °C for (a) 15 minutes and (b) 1 hour. Merging 

between the particles occurs at both condition, but the microspheres are severely 

deformed in (b). The scale bar represents 5 µm. 

 The transport mean free path of the hollow microsphere coatings (red dots) 

compared to that of the 0.9-µm-diameter silica microsphere coatings studied in Chapter 3 



 76 

(black dots) is shown in Fig. 4.5. l* of the polymer coatings has been reduced by half 

from l* of the silica coatings in the solar spectrum. This indicates that the scattering 

efficiency in the solar region of our samples consisting of hollow microspheres increases 

by ~100% from that in our previous work. This is indeed a significant improvement. This 

change also agrees with our hypothesis that, by lowering the solid fill fraction of our 

random media via usage of hollow microspheres, l* would decrease. 

 

Figure 4.5. Transport mean free path of the disordered coatings that consist of solid silica 

microspheres (black dots) or polymer hollow microspheres (red dots) as a function of 

wavelength. 

Unlike the case of the silica microspheres, l* in the hollow polymer microsphere 

coatings do not exhibit resonance behavior, which would appear as bumps and trenches.  
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The lack in resonance is due to the air gap inside the hollow microspheres. In the solid 

microsphere structures, the resonance occurs inside the solid microspheres, which have 

higher refractive index than the surrounding matrix. Since, the diameter of the solid 

sphere matches with the optical wavelength, the resonance can be confined in the 

microspheres and occur in the solar regime. On the contrary, the high-refractive index 

material only exists inside the shells, in the case of the hollow microspheres. The shell 

only has thickness of 90 nm and thus cannot confine the light in the solar spectrum. 

Therefore, the resonance in the hollow microsphere is not observed. 

 Measured emissivity spectrum for the polymer hollow microspheres and the 

commercial paint is shown Fig. 4.6(a) for λ = 0.35 – 4 µm and (b) for λ = 4 – 40 µm. In 

the solar spectrum, our polymer hollow microsphere structures have lower emissivity 

than that of the commercial paint. This is beneficial for solar rejecting performance. At 

equilibrium, emissivity must be equal to absorptivity at a wavelength. Therefore, the 

hollow microsphere coatings absorb the solar radiation less than the commercial paint 

and thus are expected to perform better during daytime. 

In the IR spectrum (Fig. 4.6(b)) above 4 µm, we observe that the emissivity of the 

hollow microsphere samples is higher than that of the commercial paint except for λ = 8-

13 µm. Because this particular wavelength range corresponds to the atmospheric 

transparency window, this suggests that the commercial paint will lose heat more 

efficiently during the nighttime and when the substrate temperature is below the ambient 

temperature. Therefore, there is still some room for improvement in the hollow 

microsphere coating technology. In our previous work in Chapter 3, we demonstrated that 

solid silica microsphere coating maintain high emissivity in the transparency window due 
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to the intrinsic properties of silica itself and due to enhanced impedance matching. 

Therefore, we speculate that if hollow microspheres are made of silica itself rather than 

the PS-PMMA copolymer, emissivity in the transparency window can be improved. 
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Figure 4.6. Emissivity at (a) λ = 0.35 – 4 µm and (b) λ = 4 – 40 µm of the polymer 

hollow microsphere coatings (red line) and the commercial paint (black line) 

The measured temperature variation over time for both samples is shown in Fig. 

4.7. At the beginning of the measurement, the temperature of both samples decreases 

sharply as they are moved from inside a building (T~21 °C) to the outdoor (T~12 °C). 

This precipitous drop in temperature is due to the heat convection and conduction 

overwhelming radiative heat transfer. Around 10 am, effects of radiative heat transfer 

become dominant. It is observed that the temperature of the substrate coated with the 

hollow microspheres is ~2 °C lower than that of the substrate coated with the commercial 

paint on average during times where the solar radiation is strong (11am-3pm). This trend 

agrees with both measured l* and emissivity values in the solar spectrum. Because our 

hollow sphere structures have shorter l* and smaller emissivity in the solar region, the 

structures scatter incident solar radiation more efficiently and also absorb it less. 

Compared to the cooling performance of silica microsphere-based structures in Chapter 

3, the daytime cooling performance of our hollow microsphere-based sample seems to be 

weaker. This is likely due to the fact that solar radiation during fall where the temperature 

measurement in this work took place is significantly smaller than that during the summer. 

 During the night, the temperature of the substrate coated with the hollow 

microspheres is ~3 °C higher than that of the substrate coated with the commercial paint. 

This result is also expected because our emissivity measurement shows that the 

commercial paint has higher emissivity in the transparency windows and therefore can 

lose more heat via mid-IR radiation. This disadvantage of our hollow microsphere paints 

can be addressed in two ways. One aforementioned way is to use hollow microspheres 
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made of silica instead of the polymer. The other way is explored in another part of this 

chapter where our polymer microspheres are embedded within silicone, which is a 

material with high emissivity in the transparency window. 

 

Figure 4.7. Measured temperature variation over a 1.5 days for the hollow microsphere 

sample and the commercial paint sample, exposed to the ambient air. 

ii) Hollow microspheres in silicone matrix 

Results from the mean field theory calculation are shown in Fig. 4.8 as a function 

dimensionless inner sphere diameter,  nkd , and fill fraction f.  Here,   k = 2π / d  is the 

magnitude of the free-space wavevector and d is diameter of the spheres. The figure 
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shows that the sunlight scattering power can be maximized by selecting appropriate size 

of the hollow microspheres and fill fraction (red region). Commercially available hollow 

spheres are commonly made of low-refractive index materials and their size ranges from 

45-150 µm, [73] which is very far from the optimal conditions. While our hollow 

microspheres are not at the optimum, the calculated sunlight scattering power of our 

coatings far exceeds that of commercial paint with hollow spheres. Indeed, from the 

calculation, the commercial paint made of hollow spheres must be 3 to 18 times thicker 

that our hollow microsphere-based film to achieve similar scattering performance. 

 

Figure 4.8. Dependence of sunblock power,   
1/ l* , on dimensionless diameter and fill 

fraction of randomly distributed hollow microspheres in a medium of refractive index n = 

1.5.† 
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 When placed in vacuum, the hollow microspheres in the silicone matrix do not 

rupture, and the coating maintains its mechanical integrity. This suggests that, if the 

polymer-based hollow microspheres are replaced by radiation-resistance materials, such 

as silica hollow spheres, the coatings are likely to be qualified for extraterrestrial 

applications. Indeed, the pseudomorphic glass comprised of silica and silicone has 

already been tested for space voltaics, and thus this material combination strongly 

supports the potential space application of our coating. [110,111] 

Measured reflectance spectra of our sample, commercial paint, and 6061 

aluminum alloy are shown in Fig. 4.9. Our sample exhibits a slightly higher reflectance 

than the commercial paint over the visible spectrum. In contrast, the difference in 

reflectance is more significant in UV and near-IR region. The commercial paint is based 

on TiO2 particles, and their string UV absorption is detrimental to the cooling efficiency 

under the sunlight. The strong near-IR absorption of the commercial paint is due to the 

amplified absorption in the polymer matrix by scattering. [112] Silicone is intrinsically 

less absorptive in near-IR than polymers in commercial paint products and shows 

superior performance in solar reflection. The aluminum alloy has a significantly lower 

reflectance over 0.3 µm ≤ λ ≤ 1.4 µm than our sample. This indicates that the silicone-

based with embedded hollow microspheres would be highly effective in rejecting 

sunlight when applied on metal roofing sheets. Based on the reflectance spectra, the solar 

average absorptance of our silicone-hollow sphere sample and the commercial paint is 

calculated to be 0.20 and 0.26 respectively. 
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Figure 4.9. Reflectance spectrum of microbubble-embedded silicone (red solid line), 

commercial paint (blue dashed line), and 6061 aluminum alloy (black dash dotted line). 

The hollow microsphere-embedded silicon and commercial paint are coated on a black 

substrate. Inset shows the reflectance of the silicone measured using a single beam in an 

integrating sphere system after error correction.† 

 In mid-IR, our coating exhibits the highest emissivity (1-R0) among the three 

compared samples over most of the spectrum λ ≥ 5µm. We average the emissivity using 

the black-body radiation spectrum at T = 300 K as a weighting factor. The average 

emissivity of the microbubble-embedded silicone and the commercial paint is 0.93 and 

0.78, respectively. As the temperature is lowered, the difference between the two 

emissivity values increases. For example, at T = 100 K, the average emissivity for the 

microbubble-embedded silicone and the commercial paint is 0.91 and 0.78, respectively. 

These values represents how much cooling can be achieved by mid-IR radiation when the 

surrounding environment is a black-body, e.g. the outer space. For terrestrial cooling 

applications, the emissivity over the atmospheric transparency window (8-13 µm) is 

important. The average emissivity over this window is 0.93 and 0.94 for both our sample 
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and the commercial paint. This similarity shows that the heat loss by mid-IR radiation is 

similar for two materials under terrestrial conditions, whereas our sample would perform 

better in the outer space. Nevertheless, our coating shows stronger solar rejection than the 

commercial paint and would perform better under both terrestrial and extra terrestrial 

conditions. 

 To improve the accuracy of reflectance measurements as shown in Fig. 4.9, we 

employed the error corrections to the measured reflectance. The correct R0 spectra for our 

hollow microsphere in silicone sample (red solid line) and the commercial paint (blue 

dashed line) are shown in Fig. 4.9 inset. For our microbubble sample, the average 

reflectance, after the correction is made to the measurement by the Ocean Optics setup, is 

0.92 over 0.5 µm ≤ λ ≤ 0.9 µm, while it is 0.82 from the measurement by PerkinElmer 

setup. The error correction modifies the spectral dependence of the reflection. However, 

the error correction is not the source of a large difference in reflectance of 0.1 between 

the two setups. Even without the error correction, the average reflectance from the Ocean 

Optics setup is 0.92 ± 0.007, and the average reflectance of 0.92 remains almost 

unchanged by the correction. 

 While the origin of the difference in reflectance from the two setups is still under 

further investigation, both measurements consistently show that our microbubble in 

silicone sample has a higher reflectance than the commercial paint. For 2-mm-thick 

sample without a black coating, appreciable light transmission for our sample can be 

observed, while this transmission is absent for the commercial paint. From this 

observation and Fig. 4.9, we see that the commercial paint absorbs light significantly, 

which agrees with the simulation result in reference [112]. We also note that light 
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transmitted our microbubble film to a depth (≥ 2mm) comparable to the radius (4 mm) of 

the aperture of the Ocean Optics integrating sphere. This suggest that, in reflectance 

measurements with the integrating sphere, some diffuse photon flux of reflected light 

from the deep regions in the film cannot reach the sphere aperture, leading to an 

underestimation of the reflectance (same internal-diffused error in ref. [107]). Therefore, 

we speculate that the actual reflectance improvement of our hollow microsphere-silicone 

sample over the commercial paint would be even greater than previously shown. 

 An implication of our coating having higher reflectance in the solar spectrum is 

that, under the same solar radiation, the temperature rise in our sample will be smaller 

than that in the commercial paint. We’ve built a setup to test this hypothesis and the 

result is shown in Fig. 4.10. In the figure, the sample temperatures (T) relative to the 

ambient temperature (Tamb~20 °C), ΔT = T – Tamb, is shown as a function of time (t) 

averaged over seven measurements. ΔT begins to rise when the solar simulator light is 

turned on at t = 8 min and reaches a plateau for our hollow microsphere-embedded 

silicone sample and the commercial paint sample by t = 46 min, when the light is turned 

off. The aluminum alloy does not reach a steady-state temperature by t = 46 min. After 

the light exposure ends, the temperatures decrease exponentially over time. From these 

data, the solar average absorptance,  A , can be calculated from a heat balance equation: 

 

  
mĈp

dΔT
dt

= TLDPESbJ A − hSΔT − Sεσ (T 4 −Tamb
4 ) ,   (4-2) 

where m is the sample mass,   
Ĉp  is the specific heat capacity of each sample, TLDPE is the 

transmittance of LDPE film of the box, Sb is the illumination area, J = 1000 W/m2 is the 

solar radiation intensity, h is the heat transfer coefficient, ε is the mid-IR emissivity, σ is 
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Stefan-Boltzmann constant, and S is the surface area of the sample. In this equation, we 

assume that the sample surrounding is a mid-IR black body, and the temperature 

dependence of ε is negligible. At t = 46 min, the light is turned off, and J = 0 W/m2. For 

the aluminum alloy, ε is less than 0.08, and thus the radiation term (containing ε) is also 

negligible. Therefore, the only heat conduction term remains and the solution for Eq. (4-

2) for t > 46 min is 

 

  
ln

ΔTs

ΔT
⎛
⎝⎜

⎞
⎠⎟
= hS

mĈp

(t − 46min) ,   (4-3) 

where the subscript s denotes a state at t = 46 min. Eq. (4-3) is fit to the measured ΔT for 

the alloy. With   
Ĉp = 1.0J / (g.K ) , [113] we obtain h = 8.2 W/(m2.K). Then,  A ’s for our 

microbubble sample and the commercial paint are calculated from the steady-state 

solution to Eq. (4-2), 

 

  
A = S

TLDPESbJ
hΔTs + εσ Ts

4 −Tamb
4( )⎡

⎣
⎤
⎦ .   (4-4) 
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Figure 4.10. Temperature of a black substrate coated with microbubble-embedded silicon 

(red), a black substrate coated with commercial paint (blue) and 6061 aluminum alloy 

(black), relative to the ambient temperature. The samples are illuminated by a solar 

simulator beam of AM1.5G spectrum.† 

 Using the measured emissivity in Fig. 4.9, we find the  A  values to be 0.20 and 

0.26 for the hollow microsphere sample and the commercial paint, respectively, from Eq. 

(4-4). These values are the same as those obtained by averaging the reflectance spectra in 

Fig. 4.9 using the AM1.5G intensity as a weighting factor. Because our microbubble 

coating has a lower  A  than the commercial paint by 0.06, employing our materials 
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instead of the commercial paint would increase the solar rejection power by as much as 

0.06 × 1000 W/m2 = 60 W/m2. 

 The measured temperature variation over time from our outdoor experiment is 

shown in Fig. 4.11. During the time when the sunlight is intense, i.e., between 11 am to 4 

pm, the average temperature of the substrate coated with our microbubble-embedded 

silicone is 1.3 °C below that of the substrate coated the commercial paint. This difference 

is slightly smaller than that during the experiment with the solar simulator (1.9 °C as 

shown in Fig. 4.10). This is because the average solar intensity during the sunlight 

exposure on the partly cloudy day is lower than the standard beam intensity of J = 1000 

W/m2. We note that increasing the thickness of our silicone coating would further 

decrease the substrate temperature under the solar radiation by reducing the light 

absorption by the black paint at the bottom of the sample. On the contrary, one cannot 

reduce the substrate temperature of the substrate further by increasing the thickness of the 

commercial paint beyond 2mm, because the sunlight is absorbed almost completely in the 

paint. 
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Figure 4.11. Measured temperature variation over a day for microbubble-embedded 

silicone sample (blue solid line), commercial paint (red dot-dashed line), and ambient air 

(black dash line).† 

 At night, the temperatures of both samples are below the ambient temperature by 

~4 °C. This similarity shows that the cooling power due to mid-IR radiation through the 

atmospheric transparency window is nearly the same for two samples, which agrees with 

Fig. 4.9, where the emissivity values are similar within the window. Nevertheless, the 

solar scattering power is greater for our hollow microsphere-embedded silicone sample. 

Our sample temperature is higher than the ambient temperature between 8:15 am and 

1:50 pm. After 1:50 pm, our sample temperature falls below the ambient temperature. 

This indicates that the heat loss through mid-IR radiation is stronger after 1:50 pm than 

that in the morning despite that the solar intensity at 1:50 pm is higher than in the 
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morning. This time variation in mid-IR heat loss is likely due to a change in the 

atmospheric transparency window. 

 

4.5 Conclusion 

 We have demonstrated that the two types of white coatings, one based on hollow 

polymer microspheres and the other on the microspheres embedded in silicone, possess 

excellent radiative cooling properties under the sunlight. The coatings are fabricated with 

commercially available and inexpensive materials and low-cost processing steps. By 

using hollow microspheres instead of solid microspheres as in the previous work, the 

light scattering efficiency in the solar spectrum increases by around 100%. When 

embedding the hollow microspheres into silicone matrix, the resulting coating exhibits 

high mechanical durability and 6% less absorptance than that of commercial paint at the 

same thickness. Under the natural sunlight, the substrate coated with either of our 

coatings is cooler than that coated with commercial paint by ~2°C at most. For the 

microbubble-embedded silicone coating, the substrate temperature could be lowered 

further by simply increasing the coating thickness or by adjusting the size of the 

microspheres and fill fraction. Additionally, since silicone is a space-qualified stable 

material in outer space environments, our microbubble-embedded silicone coating could 

also be used for heat management in space. In this case, the radiative cooling would be 

even more improved from that in the terrestrial environment because the mid-IR radiation 

is no longer limited to the atmospheric transparency window. 
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Portions of this chapter have been published as J. D. Alden, S. Atiganyanun, R. 

Vanderburg, S. H. Lee, J. B. Plumley, O. K. Abudayyeh, S. M. Han, and S. E. Han, JPE 

9, 032705 (2019) and are reproduced with permission of the publisher. 

†Figure reproduced with permission from J. D. Alden, S. Atiganyanun, R. 

Vanderburg, S. H. Lee, J. B. Plumley, O. K. Abudayyeh, S. M. Han, and S. E. Han, JPE 

9, 032705 (2019). 
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Chapter 5: Conclusion and Future Work 

In this dissertation, we have explored the field of disordered photonics via 

microsphere-based structures. Two common themes shared among all the studies in this 

dissertation are the following. First, microspheres are versatile building blocks of 

disordered photonic structures and, by carefully investigating and systematically 

manipulating facile fabrication methods, we are able to control degrees of randomness in 

microsphere-based structures, which enable them to be used in photon management 

applications such as radiative cooling in this work. Second, the geometry of microspheres 

allows us to explore theoretical studies and build models to predict, describe, and 

understand the optical behaviors of our photonic media. By combining both the ease in 

fabrication of microsphere-based structures and the powerful theoretical approaches, the 

rich and useful phenomena associated with our disordered structures can be realized. 

In the Langmuir-Blodgett work, we have demonstrated that structural randomness 

can be systematically introduced into microsphere-based photonic structures by carefully 

controlling assembly parameters, i.e. surface pressure and pulling speed. Our material 

balance consideration, supported by our experimental results, provides a guideline for 

maximizing the structural order. To controllably introduce randomness, the assembly 

approach is to begin from optimum pulling speed and surface pressure and then gradually 

increase the pulling speed while adjusting the surface pressure according to our 

quantitative model. 

Following our findings in this Langmuir-Blodgett work, we can apply the 

fabrication method for mimicking biological photonic structures, since they incorporate 
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significant degree of randomness. Also in future work, optical properties, such as angle-

dependent reflection, that result from the randomness in ordered structures could also be 

explored using our fabrication method. The model developed in this work could be 

extended to consider other geometric particles in addition to spheres and thus expand the 

versatility of the LB assembly in inducing randomness in many photonic structures. 

Langmuir Blodgett assembly is widely used for creating ordered structures in many non-

photonic applications. By applying our model as a guide for introducing randomness, 

other interesting phenomena might be observed and be proven to be useful.  

We also demonstrate one important application of disordered microsphere-based 

coating: radiative cooling. Our coatings are able to achieve excellent cooling performance 

without the use of expensive material or fabrication methods. This is accomplished by 

employing facile, scalable, low cost methods, colloidal sedimentation and spray coating. 

We also improve the mechanical durability of the microsphere-based coating by 

incorporating silicone matrix, which also renders our structures appropriate for outer 

space applications. A model developed in these works shows that the optical scattering 

power can be maximized with judicious choice of microsphere size, material and fill 

fraction. Importantly, the model shows that there is still much room for improvement in 

radiative cooling efficiency in the disordered structures. Our future works, following the 

model’s prediction, will look into achieving even better radiative cooling performance 

while maintaining the facileness and the scalability. 

Radiative cooling, while important on its own, is not the only application that can 

be achieved with microsphere-based structures. One particular usage that interests us is in 

ambient water harnessing. In this field, one can design a disordered structure that 
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incorporates both radiative cooling properties and surface energy engineering to enhance 

water collection from air. A collector cooled with radiative cooling would increase 

condensation rate of water vapor into droplets, while efficient design of surface energy 

profile in the collector would promote movement of droplets and thus enhance water 

collection rate. Improvement in ambient water harnessing technologies can have a 

significant impact, especially in developing countries where clean water is scarce.  
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Appendices 
 

Appendix A: Verification of microsphere immersion at liquid surface 

 Here we validated the assumption that most of the microsphere volume is under 

the water surface. We consider a microsphere of radius R that has a surface tension ϒ as 

shown in Fig. A1. The meniscus shape is described by   y = f (x)  and becomes horizontal 

at a distance far from the microsphere. The meniscus forms a contact angle θc at the 

microsphere contact point. We consider a line that passes through the contact point and is 

tangent to the sphere and set the angle between the contact line and the y-axis to be α. 

The degree of microsphere immersion is measured by h, which us the distance between 

the microsphere center and the water surface in an absence of the microsphere. h is 

positive when more than a half of the microsphere volume is immersed in water.  

 

Figure A1. Schematic illustration of a microsphere at a water surface. † 
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The degree of immersion is determined by balance between surface tension, 

gravity, and buoyancy force. The y-direction components of these forces are denoted by 

fs, fg, and fb, respectively. The expressions for these components are given by 

 

  
fs = 2πRγ ⋅sinα ⋅cos

3π
2

−α −θc

⎛
⎝⎜

⎞
⎠⎟
= −2πRγ sinα sin(α +θc ) ,   (A-1) 

 

  
fg = − 4π

3
R3ρsg ,   (A-2) 

 

  
fb = (Ps − Pa )2π

0

α

∫ R2 cosθ sinθdθ ,   (A-3) 

where ρs is the density of the microsphere, g is the acceleration of the gravity, Pa is the 

atmospheric pressure, and Ps is the pressure acting on the microsphere by the water. The 

difference in pressures, Ps - Pa, is equal to   ρg(h+ Rcosθ ) , where ρ is the water density. 

Therefore, eq. (A-3) can be written as 

 

  
fb = ρg(h+ Rcosθ )2πR2 cosθ sinθdθ = 2π

3
R3ρg 1+ 3h

2R
sin2α − cos3α

⎛
⎝⎜

⎞
⎠⎟

  (A-4) 

At equilibrium, the sum of all three components must be equal to zero 

 

  
−2πRγ sinα sin α +θc( )− 4π

3
R3ρsg + 2π

3
R3ρg 1+ 3h

2R
sin2α − cos3α

⎛
⎝⎜

⎞
⎠⎟
= 0  (A-5) 

To express h in terms of α in Eq. (A-5), we invoke the Laplace-Young equation: 

 

  
P − Pa = γ

1
R1

− 1
R2

⎛

⎝⎜
⎞

⎠⎟
,   (A-6) 

where P is the pressure inside the liquid at the meniscus, and R1 and R2 are the radii of the 

principal curvatures of the meniscus. Considering a curve that is the intersection of the 
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meniscus and the xy-plane, we see that the curvature of this curve (1/R1) is much larger 

than that of a circle (1/R2) on the meniscus centered at the y-axis. Therefore, we can 

approximate the pressure difference as 

 

  

P − Pa = −γ y ''

1+ y '( )2( )3/2 . 
  (A-7) 

Further, we assume that   y ' <<1, which will be justified later. Because P-Pa is given by –

ρgy, eq. (A-6) can be written as 

 

  
y '' = ρg

γ
y .   (A-8) 

Integrating Eq. (A-8) with the boundary condition that   y '→ 0 as  y → 0 , we arrive at 

 

  
y ' = − ρg

γ
y .   (A-9) 

The assumption   y ' <<1 is justified from Eq. (A-9). In our experiment, y is of the order 

of a micron, ρ is 103 kg.m-3, g is 9.8 m.s-2, and γ is 0.072 J.m-2. Accordingly,   y '  is of the 

order of 10-4, which is significantly smaller than 1.  

 At the meniscus-microsphere contact point,   y ' = − tan(α +θc )  and 

  y = −(h+ Rcosθ ) . Thus, Eq. (A-9) becomes   

 

  
tan(α +θc ) = − ρg

γ
(h+ Rcosθ ) .   (A-10) 

Using this equation to eliminate h is Eq. (A-5), we have 
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γ
ρgR2 sinα sin α +θc( ) + 1

2
γ

ρgR2 tan(α +θc )sin2α − 1
3

+ 1
2

cosα − 1
6

cos3α + 2
3
ρs

ρ
= 0

.   (A-11) 

In our system, 
  

γ
ρgR2  is approximately 6000, and thus the first term dominates the other 

terms in Eq. (A-11). This happens when α is not very close to 0 or π, which corresponds 

to a very hydrophobic (or very hydrophilic surface). With these approximations, Eq. (A-

11) can be ultimately simplified to  

 
 α +θc = π .   (A-12) 

 Because 
  

γ
ρgR

sin(α +θc )  in Eq. (A-11) should be of the order of 1 for the first 

term to be comparable to the other terms, 
  

γ
ρgR2 tan(α +θc )  is much less than 1. This 

means that eq. Eq. (A-10) becomes 

 

  

h
R
= − γ

ρgR2 tan(α +θc )− cosα ≅ −cosα = cosθc ,   (A-13) 

where the last equality is from Eq. (A-12). Therefore, the degree of microsphere 

submersion is approximately a function of only the contact angle and the microsphere 

radius.  

 To determine the degree of the submersion we measure the contact angle on a 

silica surface that is functionalized with allytrimethoxysilane similar to our microspheres. 

Specifically, we functionalize a glass slide and measure its contact angle to 47 degrees. 

From Eq. (A-13) and the measured contact angle, the sphere immersion distance, h, is 
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307 nm for our microspheres of radius 450 nm. This means that 84% of the microsphere 

is under the water surface. 

 So far, we have considered the case of a single microsphere at the water surface. 

In our experiment, multiple microspheres are close to one another. Nevertheless, Eq. (A-

13) is still valid in this case. To see so, we consider the vertical distance between the 

contact point and the water level (y=0 surface) for the case of a single microsphere. This 

distance, which is   h+ Rcosα  (note the negative cosine value), is calculated to be 0.1 nm 

only. For closely packed microspheres, consider two microspheres in contact with each 

other. The distance between the two points of the lowest meniscus (each point from each 

sphere) is given by   2R(1− sinα ) = 242 nm. This distance is much larger than the vertical 

distance of 0.1 nm.  This implies that the meniscus near a microsphere is essentially flat 

and negligibly affected by the presence of surrounding microspheres. Therefore, for 

closely packed microspheres at the water surface, Eq. (A-13) is still applicable, and thus 

our assumption that most of the microsphere volume is under the water level is verified. 

 Portions of this chapter have been published as S. Atiganyanun, M. Zhou, O. K. 

Abudayyeh, S. M. Han, and S. E. Han, Langmuir 33, 13783 (2017) and are reproduced 

with permission of the publisher. 

†Figure reproduced with permission from S. Atiganyanun, M. Zhou, O. K. 

Abudayyeh, S. M. Han, and S. E. Han, Langmuir 33, 13783 (2017). 
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Appendix B: Error corrections in the measurement of reflectance. 

 

For error corrections in the integrating sphere measure of reflectance R0, we 

consider the following model. fd is defined as the ratio of diffuse light power exiting out 

of an integrating sphere to the preceding coming into the integrating sphere. When a 

sample film of reflectance R0 is placed on top of the open port of the integrating sphere, 

the power measured by the detector connected to the sphere is 

 

  
Pm = C(R0 + fd R0

2 + fd
2R0

3 + ...) = C
R0

1− fd R0

,   (A-14) 

where C is a constant. When a silver (Ag) film is placed at the port, the detected power is 

the same as Eq. (A-14) with R0 being replaced by the silver reflectance RAg. The 

measured reflectance of the sample film Rm is the ratio of the power between the two 

cases so that 

 

  
Rm =

R0(1− fd RAg )
RAg (1− fd R0 )

.   (A-15) 

To obtain R0 from Eq. (A-15), we need to determine fd.  

 To find fd, we consider an experiment where a Lambertian scattering white film is 

located above the integrating sphere with a separation distance δ as shown in Fig. A2. 

inset. We define the following fraction: 

f0 = ratio of diffuse light power entering into an integrating sphere to that 

precedingly scattered downward from the white film. 
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f1 = ratio of diffuse light power entering into an integrating sphere by being 

reflected from a white film to that precedingly exiting out of an integrating 

sphere. 

When transmittance of the film is T0, the transmittance Tm measured from the light power 

collected through the detector port in the integrating sphere is 

 

  
Tm(δ ) =

T0 f0(δ )
1− f1(δ ) fd

.   (A-16) 

 

Figure A2. Dependence of normalized transmittance on the distance δ between the white 

film and the inlet of our integrating sphere obtained from experiment (black circle) and 

model fit (red line). † 

 Because f0 = 1 and f1 =  R0 at δ = 0, Eq. (A-16) can be also expressed as 
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Tm(δ )
Tm(0)

=
(1− R0 fd ) f0(δ )

1− f1(δ ) fd

.   (A-17) 

We experimentally determined that the incident light intensity has a Gaussian profile with 

a beam width of 2σ = 1.91 mm at λ = 650 nm. In this case, we obtain f0 as 

 

  
f0 =

1
2πσ 2 ρexp(− ρ2

2σ 2 )
0

2π

∫
0

R

∫ sin2θmdϕdρ ,   (A-18) 

where 
  
tanθm = R2 − ρ2 sin2ϕ − ρcosϕ( ) / δ  with R being the radius of the light-inlet 

port of the integrating sphere. We also find an expression for f1 as 

 

  
f1 =

R0

π 2R2 ρ1 sin2θ2,max − sin2θ2,min( )
sinϕ2 ≤R/ρ2
∫

0

π /2

∫
0

2π

∫
0

R

∫ cosθ1 sinθ1dϕ2dθ1dϕ1dρ1 , (A-19) 

where
  
tanθ2,max = R2 − ρ2

2 sin2ϕ2 − ρ2 cosϕ2( ) / δ ,

  
tanθ2,min = − R2 − ρ2

2 sin2ϕ2 − ρ2 cosϕ2( ) / δ , and 

 ρ2 = ρ1
2 +δ 2 tan2θ1 + 2ρ1δ tanθ1 cosϕ1 . To find fd, we experimentally measured Tm(δ) 

and fit Tm(δ)/ Tm(0) to Eq. (A-17) as shown in Fig. 5. For the fitting, R0 is approximated 

by Rm. With coefficient of determination of 0.999 for the fitting, we obtain fd = 0.312 for 

the integrating sphere. Using this value of fd, we solve Eq. (A-15) for R0. 

Portions of this chapter have been published as J. D. Alden, S. Atiganyanun, R. 

Vanderburg, S. H. Lee, J. B. Plumley, O. K. Abudayyeh, S. M. Han, and S. E. Han, JPE 

9, 032705 (2019) and are reproduced with permission of the publisher. 
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†Figure reproduced with permission from J. D. Alden, S. Atiganyanun, R. 

Vanderburg, S. H. Lee, J. B. Plumley, O. K. Abudayyeh, S. M. Han, and S. E. Han, JPE 

9, 032705 (2019).  
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