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Abstract

Turbulent mixing layers are a canonical free shear flow in which two parallel fluid

streams of different velocities mix at their interface. Understanding spatial devel-

opment of a turbulent mixing layer is essential for various engineering applications.

However, multiple factors affect physics of this flow, making it difficult to reproduce

results in experiments and simulations. The current study investigates sensitivity of

direct numerical simulation (DNS) of such a flow to computational parameters. In

particular, effects of the computational domain dimensions, grid refinement, thick-

ness of the splitter plate, and the laminar boundary layer characteristics at the

splitter plate trailing edge are considered. Flow conditions used in DNS are close

to those from the experiments by Bell & Mehta (1990), where untripped boundary

layers co-flowing on both sides of a splitter plate mix downstream of the plate. No

artificial perturbations are used in simulations to trigger the flow transition to tur-

bulence. DNS were conducted using the spectral-element method implemented in

v



the open-source code Nek5000. Mean flow statistics are presented for the spatially

developing self-similar flow, including high-order velocity moments. Such statistics

will be used for validation of high-order Reynolds-Averaged Navier-Stokes (RANS)

closure models.
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Chapter 1

Introduction

1.1 Motivation

Free shear flows develop away from boundaries or walls, where mean velocity gradi-

ents occur [64]. One type of free shear flows is a mixing layer, which occurs at the

interface of two parallel fluid streams that have different free-stream velocities.

In most applications, the two streams that form the mixing layer are initially

separated by an impermeable body, for example, a flat plate. A schematic of this

configuration is shown in Figure. 1.1, where U1 and U2 are the free-stream velocities,

x is the streamwise direction, y is the transverse direction and z is the spanwise

direction. Boundary layer velocity profiles have developed on each side of the plate.

Downstream of the trailing edge of the plate, waves of Kelvin-Helmholtz instabilities

appear due to the velocity difference between the free-streams [20, 32]. Large vortex

structures of spanwise vorticity, or vortex roll-ups, form from the initial instabilities

which interact and grow in diameter as more non-rotating fluid from the free-streams

is entrained or engulfed into the mixing layer, causing the mixing layer thicknes,

δ, to grow with streamwise location. Such vortex structures are present in both

laminar and turbulent flow, and persist at high Reynolds numbers. Figure 1.2 shows

a shadowgraph image of a turbulent mixing layer, where one can observe the small-
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Figure 1.1: Schematic of a typical mixing layer configuration.

scale turbulent structures riding the large-scale vortex structures.

Turbulent mixing layers are present in many engineering applications, where they

play a crucial role in the transport of momentum, heat and chemical species. They

occur inside spark ignition engines [2, 46], where the mixing of air and fuel in the

shear layer affects the rate of combustion and overall efficiency. In the design of gas

turbines, understanding the flow dynamics and heat release in the mixing layer is

one of the main challenges for controlling the combustion process [44].

The level of noise produced at the nozzle of turbine engines in commercial aircraft

has been linked to the level of turbulent kinetic energy in the shear layer formed by

exhaust gases [84]. To reduce noise, it is necessary to control the turbulence charac-

teristics in the mixing layer, which requires deep understanding the flow dynamics.

Mixing layers are also formed at the wake of wind turbines, where they interact

with other turbines downstream, affecting the performance of the wind farm [8].

Because of the important role that mixing layers play in such applications, increas-

ing the knowledge about the dynamics of turbulent mixing layers would potentially

benefit the aeronautical, aerospace, automotive and energy industries by allowing

engineers to improve the efficiency of combustion processes in engines and turbines,

reduce noise from turbine engines and increase power output from wind farms.

2
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Figure 1.2: Shadowgraph image of vortex structures in turbulent mixing lay-
ers [17].

Turbulent mixing layers have been studied for more than half of a century [42].

However, the seemingly “simple” flow encompasses many complex physical processes

which make it difficult to fully understand and predict the characteristics of the mean

flow and turbulence statistics.

The focus of the current work is to understand physics of an incompressible spa-

tially developing turbulent mixing layer flow, by using direct numerical simulations

to provide detailed description of mean flow statistics. The following section provides

a review of the state of art in the study of turbulent mixing layers.

1.2 State of the Art

In this section, a review of literature related to turbulent mixing layers is presented.

The scope of the review is limited to studies of incompressible flows. Experimental

results for such flows are reviewed first, followed by a review of numerical studies on

the subject.
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Experiments

Liepmann & Laufer [42] were among the first to measure the turbulence statistics

in mixing layers, including mean velocity, velocity moments and turbulent kinetic

energy balance, using hot-wire anemometry. Their results allowed to question the

validity of turbulence models based on the assumption of a constant “mixing length”

proposed by Prandtl [66], which had been used successfully to predict mean velocity

distribution in different turbulent flows, since the experiment showed that the mixing

length varied across the mixing layer. This highlighted the need for models based

on turbulent fluctuations and their correlations, in order to capture the physics of

the flow. In Wygnanski & Fiedler [82], mean velocity field and velocity moments

up to fourth order were measured for a single-stream mixing layer (U1 > 0, U2 =

0) using improved hot-wire techniques. While the results shed some light on the

validity of simple concepts, such as eddy viscosity and eddy diffusivity, data for

velocity moments was only available at limited streamwise locations and was far

from providing a full picture of the mean flow. Later studies have published profiles

for third-order moments (Bell & Mehta [10]) and fourth-order moments (Delville

et al. [22]), with such data often used as reference for developing and validating

turbulence models [1]. These datasets, however, also fail to provide full and accurate

description of the flow: only one third-order velocity moment is given in [10], while

data in [22] is available at limited streamwise locations.

Turbulence statistics provide significant information about the mean flow char-

acteristics. However, it is also important to understand the instantaneous behav-

ior of the mixing layer. The seminal work by Brown & Roshko [17] was the first

to identify coherent large-scale vortical structures of spanwise vorticity in the tur-

bulent mixing layer using flow visualization techniques. The images showed that

large-scale vortices, formed from the “roll-up” of initial Kelvin-Helmholtz instability

waves predicted by linear stability analysis [53, 56, 32], persisted at high Reynolds

numbers, where small-scale turbulent fluctuations would ride the large-scale coher-

ent structures. Experiments at moderate Reynolds numbers conducted by Winant
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& Browand [81] found that the coherent structures interacted in a “pairing” pro-

cess in which neighboring vortices merged to form a single vortex of larger diameter.

The “vortex pairing” was deemed by the authors to be the driving mechanism of

growth of the mixing layer. A later study conducted by Konrad [37] would find

that the entrainment process in mixing layers –the process through which surround-

ing non-rotating fluid is captured by the shear layer– occurs due to non-turbulent

fluid becoming engulfed by the large-scale structures, confirming that the spread-

ing of the shear layer is driven by the action of the large-scale vortices. However,

the development of the mixing layer, in particular the transition to turbulence and

the evolution of turbulence intensities, cannot be explained solely in terms of the

spanwise structures.

Miksad [54] discovered the presence of three-dimensional longitudinal (stream-

wise) vortices which appeared during the non-linear stages of transition in the mix-

ing layer. The structures were studied in depth by Bernal & Roshko [12]. They

characterized the secondary instability that generated the streamwise structures and

found that the mean normalized wavelength is independent of velocity ratio, density

ratio and initial shear-layer profile. It was also found that these vortices appeared

in pairs of counter-rotating structures. In a study conducted by Huang & Ho [33]

on the small-scale transition in plane mixing layers, the authors argued that random

small-scale eddies were produced by the merging interaction between streamwise and

spanwise vortices. Therefore, once the flow becomes turbulent the streamwise vor-

ticity decays due to the breakdown of the longitudinal structures into small-scale

structures [41].

Different studies have tried to pinpoint the location where transition occurs in

the mixing layer using different approaches. Konrad [37] used schlieren images of

different gas-phase mixing layers to observe the patterns in the flow, and noted that

three-dimensional behavior (appearance of streamwise lines) was generally observed

at a local Reynolds number of Re ∼ 104. Later studies used reactive and non-

reactive chemicals [15, 38] to determine the level of mixing between the two streams
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of the shear layer. Increased mixing of the transported chemicals was attributed to

transition to turbulence. This “mixing transition” was found to occur at Re ≈ 104.

The same behavior was observed for liquid-phase and gas-phase shear-layers [11].

In experiments where velocity fluctuations where measured [36, 33], the power-law

regime in the energy spectrum, with an exponent close to −5/3, which is indicative of

turbulence, developed in the neighborhood of 3×103 < Re < 104. As Dimotakis [27]

pointed out in his paper, different investigations support the notion that transition

to turbulence occurs in mixing layers at a minimum local Reynolds number of Re ≈

1− 2× 104.

In post-transition flows, theoretical studies show that at high-enough Reynolds

numbers and at a far-enough downstream distance from the splitter plate, the gov-

erning equations and boundary conditions of planar turbulent mixing layers yield

self-similar solutions [77]. Conditions for self-similarity far from the inlet boundary

are that the mean flow and its turbulence statistics become independent of stream-

wise location when normalized with respect to local length scale, δ, and ∆U , and

that shear layer thickness grows linearly with as a function of streamwise coordinate,

i.e. ∂δ/∂x = constant. Even though more rigorous conditions have been proposed to

define when a flow has reached self-similarity [18], it is generally accepted that, after

a sufficient development distance, all mixing layers achieve a self-similar condition.

Therefore, it is convenient to analyze the mean flow statistics of the self-similar flow

since they represent the asymptotic behavior of the turbulent mixing layer.

Although mixing layers under different flow conditions share features like the ones

mentioned above, there are inconsistencies in measured mean flow statistics from

different data sources [17], which were obtained in different experimental setups.

This is due to the high sensitivity of the mixing layer flow to inflow conditions,

making it difficult to obtain a general characterization of the flow.

The self-similar solution presented by Townsend [77] highlights the importance of

velocity ratio between the two free-streams, U2/U1, in determining growth rates and

maximum levels of turbulence intensity in mixing layers. This has been confirmed
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several times through experiments [56, 51, 52]. However, experiments conducted

under similar velocity ratios have produced significantly different mixing layer growth

rates. For example, the experiments from Liepmann & Laufer [42] and Wygnanski

& Fiedler [82], which were conducted for single-stream mixing layers under similar

conditoins, yielded significantly different growth rates. The same behavior can be

observed for two-stream mixing layers [17].

Flow regime (turbulent or laminar) of the incoming boundary layers at the trailing

edge of the splitter plate has been found to have significant effect on mixing layer

development. Experiments from Browand & Latigo [16] and Bell & Mehta [10]

showed that mixing layers formed from turbulent (tripped) boundary layers tend to

grow at slower rates than those formed from laminar (untripped) boundary layers,

with normalized turbulence statistics achieving the same form in both cases after

a certain streamwise location. In Ref. [10] asymptotic behavior was achieved faster

with turbulent inflow conditions than with laminar inflow conditions. Furthermore,

the study found that profiles of mean velocity and second-order velocity moments are

not sufficient to determine whether the flow had achieved self-similar behavior, since

profiles of third-order moments do not achieve asymptotic behavior until later in the

flow compared to lower-order statistics. Slessor et al. [70] further investigated the

effect of inflow conditions in perturbed and unperturbed shear layers using parallel

streams of non-reacting and reacting chemicals. Not only did they confirm that even

small variations in inflow conditions had an influence on the large-scale structure an

development of the flow, which had been previously documented, but also on the

level of molecular mixing, i.e. on the small-scale structure of the flow.

Patel [62] studied the effects of free-stream turbulence on free shear flows. He

found that turbulence in the free-streams has negligible effect on the flow when it

is below 0.6%, but has significant effect at higher intensity levels, particularly on

growth rate.

Dziomba & Fiedler [29] found that the influence of trailing-edge thickness, h, on

the shear-layer development becomes significant when it exceeds 50% of the sum of
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boundary-layer displacement thickness, δ∗1 + δ∗2, at the point of separation, where the

displacement thickness is defined as:

δ∗ =

∫ ∞
0

(1− U/U∞) dy.

The most affected flow variable is the location where self-similarity is observed, which

is shifted farther downstream as the plate becomes thicker. For plates with thick-

nesses below the specified threshold, the effect of thickness on the flow development

is negligible. Braud et al. [14] studied how the splitter plate thickness affects the

development of the mixing layer by comparing the flow produced by a thick splitter

plate, i.e. h > 0.5(δ∗1 + δ∗2), with a blunt trailing edge and a beveled (thin) trailing

edge. In both cases, turbulent inflow conditions were used. They found significant

differences in flow structure organization due to the strong effect of the wake from the

blunt trailing edge. Therefore, the shape of the splitter plate trailing edge affected

flow structure and mixing layer growth rate.

Dimotakis & Brown [28] argue that extent of the experimental apparatus might

also affect development of the flow due to a coupling mechanism between large struc-

tures by the end of the test section and smaller structures upstream by the action of

vorticity. A study conducted by Narayanan & Hussain [58] on forced plane mixing

layers supports this idea. They observed feedback-sustained states of large spatial ex-

tents which indicate spatial coupling between the Kelvin-Helmholtz instabilities and

the downstream pairing processes. Therefore, it is possible that the development of

the flow is a global response to inflow/outflow/confinement-geometry conditions [26].

Given the high sensitivity of mixing layers to multiple factors, experimental re-

sults are dependent on the experimental apparatus, leading to inconsistencies among

in experimental data. Therefore, it is beneficial to study turbulent mixing layers in

an environment where the sources of uncertainty could be controlled. This is where

numerical simulations, in theory, have an advantage over experiments, since they

provide complete control over inflow and boundary conditions, as well as other flow

parameters which could be replicated exactly in different simulations.
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Numerical Simulations

Numerical simulations of turbulent flows can be categorized into three groups de-

pending on the level of modeling used to represent the turbulent flow field. In

Reynolds-Averaged Navier-Stokes (RANS) based models, the transport equation for

mean velocity vector and velocity correlations are derived from the governing equa-

tions of fluid dynamics, the Navier-Stokes equations. However, such derivation results

in a system of infinite number of equations. To have a viable solution to the prob-

lem, the system of equations must be “closed” by approximating certain terms. The

approximated terms are often accompanied by arbitrary coefficients, which must be

fine-tuned for the specific flow being simulated for the approximation to work [64],

with most standard models being calibrated for idealized shear flows or boundary

layer flows [31, 84]. RANS turbulence models are attractive because the approxi-

mation allows to solve the mean flow without having to resolve the smaller scales

of motion, thus reducing the computational power required to achieve a solution.

Furthermore, if the flow is statistically stationary, a “steady-state” solution can be

found using RANS-models without having to solve the unsteady flow. However, be-

cause of the high level of approximation, many sources of uncertainty are included

in the solution of the mean flow and, therefore, existing RANS-based models cannot

be used to provide an accurate prediction of the turbulent mixing layer.

A second approach to simulating turbulent mixing layers is using large-eddy simu-

lations (LES). In LES, a filtering operation is applied to the Navier-Stokes equations

to decompose the velocity field into the sum of a filtered component and a resid-

ual (or subgrid-scale, SGS) component [64]. The filtered component represents the

large-scale motions of the flow, while the SGS component represents the motions with

scales smaller than the cutoff length of the applied filter. This procedure introduces

a residual-stress tensor (or SGS-stress tensor) into the governing equations, which

needs to be modeled. By modeling the small-scale turbulence, the cost is increased

compared to RANS-based models, but it is still significantly less than resolving all of

the scales of turbulent motions, making it an attractive alternative for researchers.
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Large eddy simulations were proposed by Smargorinsky [71] and Lilly [43] to

solve the large-scale motions of turbulent flows in meteorological applications. Nev-

ertheless, LES have been applied successfully to a variety of applications including

free-shear flows and wall-bounded flows. A collection of works can be found in Ref.

[30]. One of the first studies to use LES on a three-dimensional mixing layer was

Mansour et al. [47]. The authors simulated a temporarily evolving mixing layer,

where the flow evolves in time but is statistically homogeneous in the streamwise

direction. In such flows, the time coordinate is analogue to the streamwise coordi-

nate in a spatially developing mixing layer, and is generally represented by parallel

streams of opposite direction. They were able to reproduce certain features of the

flow, like the spanwise vortex structures and the vortex pairing mechanism observed

in experiments, showing the applicability of LES for this type of flow. Later studies

were also able reproduce streamwise vortices for temporarily evolving mixing lay-

ers [19], which are a necessary flow feature to trigger transition to turbulence [33].

As in experiments, numerical solution of mixing layers are also sensitive to ini-

tial/inflow conditions. The effect of initial conditions on the development of tem-

porarily evolving mixing layers were studied by Balaras et al. [7]. They used two

types of initial conditions: shear layer velocity field formed from two flow realizations

from turbulent boundary layers with free-streams moving in opposite directions, and

imposing a mean velocity profile based on the hyperbolic tangent function with su-

perimposed random perturbations. They found that the development of large-scale

structures, was different depending on the initial condition: if strong rollers were

formed early (as in the cases initialized by random noise), a well-organized pattern

persisted throughout turbulent state. The presence of boundary layer turbulence,

on the other hand, inhibited the growth of the inviscid instability, and delayed the

formation of the rollerbraid patterns. This difference in flow features was also clear

through the mean flow statistics. Flow initialized with superimposed random noise

had a slower growth rate than the flow initialized from boundary-layer flow realiza-

tions. Turbulence intensities varied as well among simulations.
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Similar studies have been conducted for LES of spatially developing mixing layers.

Tenaud et. al [75] found that the turbulence intensity of superimposed perturbations

affected growth rate of the mixing layer. McMullan & Garret [50] used laminar inflow

boundary layers with superimposed perturbations as inflow conditions. Two methods

were used to impose perturbations: pseudo-random noise imposed as velocity fluctu-

ations and physically correlated perturbations generated using a Recycling-Rescaling

method (RRM) [83]. Results showed that even though both methods produced the

same profiles of the root-mean-square (r.m.s) of velocity fluctuations at the trail-

ing edge of the splitter plate, the characteristics of the mixing layers produced by

such methods were significantly different in terms of the large-scale unsteady vortex

structures: inflow conditions with random noise seemed to suppress the formation of

streamwise vortices, while the RRM produced well organized streamwise and span-

wise vortex structures, with the mean flow being in better agreement with exper-

imental data. The effect of the mean velocity profile imposed as inflow condition

was studied by McMullan et al. [49]. Results showed that using laminar boundary

layers as inflow conditions instead of hyperbolic tangent mean velocity profile was

beneficial trigger transition at a streamwise location which agreed with experimental

data, which was obtained under similar flow conditions. Therefore, the sensitivity

of mixing layers to inflow conditions observed in experiments is also present in nu-

merical simulations, with the added complexity of being dependent on the choice of

perturbation method and shape of inflow mean velocity profile.

Large-eddy simulations have also been used to study how the size of the compu-

tational domain affects the flow. In their simulations, Balaras et al. [7] found that

a larger computational box resulted in increased three-dimensionality, represented

by spanwise fluctuations, when compared to a smaller box, which suggests that the

flow is not independent of domain size. Results from Biancofiore [13] conducted on a

spatially developing mixing layer supported this idea, having observed a more “two-

dimensional” behavior of the mixing layer in a confined domain, with an almost fully

two-dimensional flow observed when the momentum thickness is of the same order

of magnitude as the confining scale. A study conducted for a spatially developing
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mixing layer [48] analyzed how spanwise domain size affected the development of

the flow, and suggested that a minimum ratio between spanwise domain length and

mixing layer thickness of A ≡ Lz/θ > 10 is required to obtain results that are inde-

pendent of spanwise domain size, where Lz is the domain size in spanwise direction

and θ is the shear layer momentum thickness. While this criterion is a good starting

point for estimating domain sizes for subsequent studies, the study only considered

one type of inflow condition and it is not clear how other flow parameters would

affect its validity, given the high sensitivity of the flow to inflow conditions.

By definition, the small-scale turbulence is modeled in LES, and therefore, such

simulations are not free of model-form uncertainty. A comparative study using dif-

ferent SGS models, done by Vreman et al. [79], showed that LES results for mixing

layers are model-dependent. Since the accuracy of results depends on ad hoc SGS

models, it is not possible to make definitive conclusions from this type of simula-

tions. Therefore, to understand the fundamentals of the flow it is important to

eliminate model-form uncertainty in simulations, which can only be done through

direct numerical simulations.

In direct numerical simulations (DNS) numerical solutions for the Navier-Stokes

equations are computed without modeling any terms. These simulations can be

considered as “numerical experiments” [55] due to their high level of accuracy in

representing the turbulent flows. The main drawback of DNS is its high computa-

tional cost, since all the scales of motion in the flow, from smallest to largest, need

to be accurately resolved, resulting in very fine grids (solution with high number of

degrees of freedom). However, the accuracy of results provide important insight into

the flow physics of flows, making it an ideal tool for the fundamental research.

Comte et al. [19] conducted DNS of a three-dimensional temporarily developing

mixing layer from perturbed laminar initial conditions. The perturbations triggered

instabilities which turned into spanwise and streamwise vortices, as observed in ex-

periments. They found that transition happened at the second pairing of vortex

structures, in agreement with experimental observations from Huang & Ho [33].
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Rogers & Moser conducted an extensive investigation on the roll-up of Kelvin-

Helmholtz instabilities [67], transition and pairing process [57] and statistics of fully

turbulent, self similar shear layers [68] using temporarily developing mixing layers.

Results in Ref. [67] showed that simulations of mixing layers started from laminar

initial conditions but with perturbations of different amplitudes and wave numbers

produced significantly different flows in terms of the development and growth rate of

vortex roll-ups, as well as the three-dimensionality of the flow. Ref. [57], the authors

identified several mechanisms of transition in mixing layers. A pairing-induced tran-

sition was observed in agreement with experiments from Huang & Ho [33], where

small-scale are more significant at the roller core portion of the “rib plane”, that

is, where spanwise and streamwise vortices interact. Another mechanism occurs

when extremely large three-dimensional perturbations are present in the flow, trig-

gering non-linear behavior even before the initial vortex roll-up. In a more recent

paper, Rogers & Moser [68] extracted turbulence statistics in a “self-similar” tur-

bulent mixing layer. Because their case was temporarily evolving, they argued that

self-similarity was achieved when the normalized profiles of flow statistics, result-

ing from spanwise and streamwise averaging, became independent of time and when

linear growth of the mixing layer thickness in time was observed. The simulations

were initialized using two independent realizations from DNS of turbulent bound-

ary layers [72], and joining them at the point where the wall would be, so that

the free-streams are moving in opposite directions. Three simulations were con-

ducted: two with two-dimensional disturbances of varying strengths added to the

initial boundary layer turbulence, and one without additional disturbances. Pro-

files of Reynolds stresses from simulation without added disturbances were in good

agreement with experimental data from Bell & Mehta [10], while differences between

numerical and experimental data became more significant as the strength of the

added disturbances was increased. They also calculated budget terms (or balances)

for the different Reynolds stresses, which were not previously available. However,

their data showed a “breakdown” of self-similarity, meaning that towards the end of

the simulation the Reynolds stress profiles were no longer independent of time. The
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question arises whether the flow was still in an initial-transient state when statistics

where gathered. Furthermore, it is impossible to make a direct comparison between

the simulated temporarily evolving flow and the experimental spatially developing

flow in terms of the growth rate. For this reason, recent studies have focused on

modeling the spatially developing case.

Simulations of a spatially developing mixing layer were conducted by Wang et

al. [80] from laminar inflow conditions modeled by a hyperbolic tangent mean velocity

profile. They used sinusoidal velocity perturbations with a defined range of frequen-

cies to trigger transition to turbulence by exciting the most unstable wavelength from

linear stability analysis for the selected inflow profile [53]. They conducted a detailed

analysis on coherent small-scale structures by using an axis-tracing method to iden-

tify eddies. They found that the large-scale vortex structures did not disappear in

the transition process, but were composed by many coherent fine-scale eddies. This

study provided significant insight on the anisotropy and energy dissipation rate in

the small-scale motions, and was an important step towards showing the feasibility of

DNS on spatially developing mixing layers at high enough Reynolds numbers to pro-

duce turbulence. The study, however, did not include profiles of Reynolds stresses or

other turbulence statistics of the mean flow to assess whether the flow had achieved

self-similarity.

Attili & Bisetti [4] conducted simulations using similar inflow conditions as Wang

et al. [80], but on a much larger domain, reaching high Reynolds numbers that have

not been achieved in other DNS studies of mixing layers to this date. They used

white-noise velocity perturbations to trigger transition, but did not disclose details

on how the white noise was imposed. Flow statistics in their simulations showed

evidence of asymptotic behavior, indicative of self-similarity. Profiles of Reynolds

stresses and mean velocity were presented, which were in good agreement with ex-

perimental data from Bell & Mehta [10] and DNS data from Rogers & Moser [68],

but budget terms and higher-order moments were not included in their analysis.

Other studies from these authors looked at the fluctuations of a passive scalar in a
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turbulent mixing layer [5] and intermittency at the turbulente/non-turbulent edges

of the mixing layer [6].

The studies Wang et al. [80] and Attili & Bisetti [4] were conducted using modeled

inflow conditions (hyperbolic tangent function for mean velocity) which are a useful

approximation for the shear flow, but do not resemble how mixing layers occur in

experimental setups, making it difficult compare mixing layer development between

numerical results and experiments since, as LES studies have shown [49], the shape

if incoming flow influences the development of the flow downstream.

Laminar boundary layers separated by a thick splitter plate were used as inflow

conditions by Laizet et al. [40]. The simulations modeled the trailing edge geometries

studied experimentally in Braud et al. [14]. Numerical results showed that a thick

splitter plate with a blunt trailing edge, as those found in experiments, produce a

more three-dimensional mixing layer flow than a plate with thin trailing edge. In

an earlier study [39] they had found that the thin trailing edge produced a nomi-

nally two-dimensional flow if no perturbations were added, which is why simulations

in Ref. [40] used white-noise perturbations to excite the flow. Their simulations,

however, were conducted at much lower Reynolds numbers than the referenced ex-

periment [14], thus there was no quantitative comparison of numerical results against

experimental data. Self-similarity was not achieved in the simulations.

A recent study by Takamure et al. [73] used laminar boundary layers mean veloc-

ity profiles as inflow conditions assuming an infinitely thin splitter plate to analyze

the driving mechanisms of counter-gradient momentum transport (CGMT) which

occurs during during the transition stage due to vortical structures. White-noise ve-

locity perturbations were imposed at the inlet to trigger transition in the mixing layer.

Simulations were conducted at lower Reynolds numbers than experiments and pre-

vious DNS studies [4, 68, 80]. Mixing layer growh rate and profiles Reynolds stresses

showed signs of asymptotic behavior, however, it is not possible to say whether the

flow achieved self-similarity since higher-order statistics were not presented. Budget

terms from simulations showed that the mechanisms driving CGMT varied depend-
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ing on the location in the mixing layer. However, turbulence statistics were not

compared against experimental or numerical data available in the literature.

It is important to conduct simulations with flow parameters (velocity ratio, in-

flow conditions, Reynolds numbers) which are comparable to experimental ones so

that direct comparison can be made between experiment and numerical results for

validation purposes. However, such simulations are not found in published literature:

those that achieve Reynolds numbers comparable to experiments use inflow condi-

tions which neglect the effects of the splitter plate, which Laizet et al. [40] showed

has significant effect on flow development. Those that use co-flowing boundary lay-

ers, like those used in many experiments, were conducted at relatively low Reynolds

numbers and statistics were not compared against experiments. Furthermore, all

simulations are dependent on the selection of perturbation method which was used

to trigger transition, which is usually not described in detail and thus cannot be

replicated. Finally, to the best of the author’s knowledge, a detailed statistical de-

scription of the mixing layer produced by DNS has not been provided since there are

no published values for high-order velocity moments and budget terms from a single

simulation.

1.3 Objectives

The current work intends to fill a gap in present knowledge by conducting direct

numerical simulations of an incompressible turbulent mixing layer which develops

from inflow conditions that resemble experimental ones, such as laminar boundary

layers separated by a splitter plate, and that can be replicated in later works. Flow

parameters were chosen to make the Reynolds numbers in the simulations comparable

to those found in the experiments of Bell & Mehta [10].

The main objective of this work is to understand the flow physics of the spatially

developing planar turbulent mixing layer. To achieve this goal, a comprehensive

statistical description of the flow is provided by gathering data for mean velocity,
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Reynolds stresses and budget terms in the transport equation of Reynolds stresses,

and present profiles for higher-order moments, making this the first numerical study

to present such data for turbulent mixing layers.

For an exact representation of the turbulent flow, an infinite number of velocity

moments would be required. Since obtaining an infinite moments is not a realistic

task, for this study velocity moments up to fifth order are computed. These provide

enough information for accurate description of the flow by using the truncated Gram-

Charlier series expansions [21] that represent the probability density function (PDF)

of the non-Gaussian turbulent velocity field. Truncation of the series to the fourth

order allows to model moments of fifth order and higher in terms of lower-order ones

with minor loss of accuracy [65].

Direct numerical simulations have been used successfully in the past to validate

the truncated Gram-Charlier series expansion in shear flows such as turbulent channel

flows [35] and turbulent boundary layers [65]. However, such validation has not

been performed in free-shear layer flows, like the turbulent mixing layer. Therefore,

a secondary objective of the current work is to validate the Gram-Charlier series

expansion in a mixing layer flow using computed statistics.

The third objective of the this work is to analyze the sensitivity of DNS of tur-

bulent mixing layers to different geometrical and numerical parameters, in order to

identify the effect of different sources of uncertainty on numerical simulations of tur-

bulent mixing layers. Such parameters are varied while using fixed flow conditions.

Among the varied parameters are: domain size, thickness of the splitter plate, inflow

boundary layer conditions and grid resolution.

The document is structured as follows: Chapter 2 presents an overview of di-

rect numerical simulations and the numerical method used to solve the governing

equations for the incompressible flow. Chapter 3 describes the wind tunnel and flow

conditions of the experimental mixing layer used as reference for the numerical study.

Chapter 4 presents the computational setup for the different simulations conducted

in this study. Sensitivity of numerical results to different computational parameters

17



Chapter 1. Introduction

is analyzed in Chapter 5. Finally, mean flow statistics of the turbulent mixing layer,

including high-order moments and second-order transport equation budget terms,

are shown in Chapter 6.
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Chapter 2

Methodology

2.1 Direct numerical simulations

Direct numerical simulations (DNS) are used in this work to study the flow physics

of turbulent mixing layers. In DNS, the unsteady Navier-Stokes (N-S) equations are

solved using numerical methods. No model-form uncertainty is introduced to the

flow field, therefore, DNS are considered to be the most accurate representation of a

fluid flow attainable through computations.

The non-dimensional Navier-Stokes equations for incompressible flows are:

∂U

∂t
+ (U · ∇U) = −∇P +

1

Re
∇2U in Ω

∇ ·U = 0 in Ω, (2.1)

where U = (U, V,W ) is the velocity vector, P is the scalar pressure, and Ω is the

flow domain. Variables and coordinates in Eq. (2.1) have been normalized with

respect to a characteristic velocity, U , and a characteristic length scale, δc, so that

the non-dimensional values are given by:

U = U ∗/U ; x = x∗/δc; P = P ∗/(ρU2); t = t∗U/δc; Re = Uδc/ν

where the (∗) indicates a dimensional quantity and ν is the kinematic viscosity of
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the fluid. The equations have associated initial and boundary conditions

U(x, t = 0) = U 0(x), U = U v on ∂Ωv, ∇Ui · n̂ = 0 on ∂Ωo, (2.2)

where n̂ is the outward facing unit normal vector at the boundary, ∂Ωv is the region

of the boundary where velocity is imposed (Dirichlet boundary condition) and ∂Ωo

is where “outflow” condition is imposed (Neumann b.c.).

It is not possible to obtain an analytical solution of Eq. (2.1) [74], but an ap-

proximate solution may be obtained using numerical methods. Different approaches

to numerically solve the N-S equations include finite difference, finite element, finite

volume, global spectral methods and spectral element methods. Finite difference and

global spectral methods generally require structured computational grids, where the

solution nodes must be ordered and positioned in a specific manner for the method to

be applicable. Therefore, their use is generally restricted to very simple flow config-

urations. Finite element and finite volume methods can be applied on unstructured

grids, which provide greater adaptability to complex flow geometries. However, these

methods are inefficient for DNS since they require a high number of elements or nodes

to achieve the required level of accuracy. The spectral element method, developed by

Patera [63], combines the exponential rate of convergence of global spectral methods

with the flexibility of finite element/volume methods [24]. In this study, the numer-

ical solution to the N-S equations is obtained using the spectral element method,

implemented in the open source code Nek5000 [3], which has proven to be highly

scalable on massively-parallel computers [60].

Independent “snapshots”, or flow realizations, of an unsteady flow field obtained

through DNS are used as statistical samples for computation of the mean flow statis-

tics. Mean quantities are derived by decomposing the instantaneous fields into a

mean (average) components, 〈U〉 and 〈P 〉, and fluctuating components, u and p:

U = 〈U〉+ u,

P = 〈P 〉+ p, (2.3)

where 〈u〉 = 〈p〉 = 0. Equation 2.3 is known as Reynolds decomposition. Mean
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quantities are calculated using an ensemble averaging procedure:

〈Q〉E(x, y, z) =
1

NS

NS∑
n=1

Q(n)(x, y, z), (2.4)

where NS is the number of statistical samples or flow realizations, and Q(n) is the

value of random variable Q at the n-th flow realization. Since the mixing layer flow

is statistically homogeneous in the z-direction, spanwise averaging may be performed

to obtain statistics of the planar flow:

〈Q〉(x, y) =
1

Lz

∫ Lz

0

〈Q〉E(x, y, z)dz. (2.5)

In the current study, mean values are obtained by applying both ensemble and

spanwise averaging, Eqs. (2.4) and (2.5) respectively.

2.2 Spectral Element Method

The Navier-Stokes equations in Eq. (2.1), along with the corresponding initial and

boundary conditions, represent the strong formulation of the problem. In spectral

element method (SEM), the N-S equations are cast into the weak formulation [24]:

∂

∂t
(U ,v) + (U · ∇U ,v) +

1

Re
(∇U ,∇v) = (P,∇ · v) ∀v ∈ X0

−(q,∇ ·U) = 0 ∀q ∈ Y. (2.6)

where X0 and Y are function spaces described below. The weak form is obtained

by multiplying the equations by functions v and q and applying the inner product

(·, ·) defined as

(φ, ψ) ≡
∫

Ω

φ(x)ψ(x)dx. (2.7)

The problem consists in finding U ∈ X and P ∈ Y such that Eq. (2.6) is satisfied,

with X0 being the subspace of X satisfying homogeneous boundary condition: v = 0

at ∂Ω.
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The proper subspaces X and Y for U , v and P, q are defined as:

X = {v : vi ∈ H1(Ω), i = 1, 2, 3, v = U v on ∂Ωv}

X0 = {v : vi ∈ H1(Ω), i = 1, 2, 3, v = 0 on ∂Ωv}

Y = L2(Ω) (2.8)

The function space L2(Ω) is the space of square-integrable functions on Ω, mean-

ing that if φ ∈ L2(Ω), then (φ, φ) =
∫

Ω
φ2dx < ∞. The space H1(Ω) consists of

functions that are in L2(Ω) whose derivatives are also in L2(Ω).

The domain Ω is divided into E subdomains or spectral elements, Ωe. Discrete

analogs of spaces X and Y are chosen in the tensor product space of Nth-order

Legendre polynomial interpolation expansions, hNi (x), on Gauss-Lobatto-Legendre

(GLL) quadrature points, ξNi :

hNi (x) = − 1

N(N + 1)

1

LN(ξi)

(1− x2)L′N(x)

x− ξi
(2.9)

where LN(x) is the Nth-order Legendre polynomial, given by:

L0(x) = 1,

L1(x) = x,

(k + 1)Lk+1 = (2k + 1)xLk(x)− kLk−1(x), k ≥ 1. (2.10)

The polynomial interpolants satisfy hNi (ξNj ) = δij, where ξNj ∈ [−1, 1] denotes the

location in elemental (local) coordinates of the j-th GLL quadrature point, where

i = 0, 1, ..., N , and δij is the Kronecker delta:

δij =

1, if i = j

0, if i 6= j.

Each element contains (N+1)d quadrature (or collocation) points, where d is the

dimension of the problem. For a three-dimensional problem, the numerical solution
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inside the element, ue(x, y, z, t), is expressed in terms of the interpolating functions:

ue(x, y, z, t) =
N∑
i=0

N∑
j=0

N∑
k=0

uijk(t)h
N
i (x)hNj (y)hNk (z) (2.11)

where the coefficients uijk are the values of the solution at collocation points. Note

that interpolants in Eq. (2.11) are C0(Ω) continuous, meaning that the velocity and

pressure fields are continuous in the domain, but continuity is not enforced on their

derivatives across element boundaries.

The approach which has been described is based on the PN−PN formulation [24],

where both velocity and pressure fields are computed on the same mesh based on GLL

quadrature points with polynomial interpolants of order N . This is an alternative

to the PN − PN−2 formulation [63], where pressure is computed on Gauss-Legendre

quadrature points with polynomial interpolants of order N − 2. The latter approach

yields discontinuous pressure field at element boundaries. To ensure continuity of all

variables, the PN − PN formulation was chosen for the current study.

Discretization in time is done using a characteristics-based third-order time-

stepping scheme which calculates the solution along the pathlines (or characteristics)

associated with the convecting velocity field U . In this method, the time derivative

and the convection term are substituted by the material derivative:

DU

Dt
=
∂U

∂t
+ (U · ∇U ) (2.12)

For simplicity, the time-stepping scheme is explained in this section using the

strong form of the N-S equations, Eq. (2.1). The contributions from non-linear

convection term in the material derivative are treated explicitly, while the linear

terms in on the right-hand side of the equation are treated implicitly. By applying

third-order backwards finite difference (BDF3) to the material derivative, we obtain:

1

∆t

(
11

6
Un − 3Ũ

n−1
+

3

2
Ũ
n−2 − 1

3
Ũ
n−3
)

= −∇P n +
1

Re
∇2Un (2.13)
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where n is the current timestep, ∆t is the time-step size and Ũ
n−q

is the value of U

at an earlier point in time (q = 1, 2, 3) and at a point in space along the character-

istics. The values of Ũ
n−q

can be calculated using a semi-Lagrangian formulation,

which involves several off-grid interpolations of the velocity field over each time step,

increasing computational cost. The issue is bypassed by the operator-integration

factor scheme (OIFS) proposed by Maday, Patera and Rønquist [45]. The scheme

computes Ũ
n−q

by solving the initial-boundary value (IBV) subproblem

∂Ũ

∂s
+U · ∇Ũ = 0, s ∈ [tn−q, tn],

Ũ(x, tn−q) = U(x, tn−q) Ũ(x, t) = U(x, t) ∀x ∈ ∂Ωc, (2.14)

where ∂Ωc is the subset of the boundary ∂Ω where U · n̂ < 0, that is, the portion of

the boundary having incoming characteristics. Equation (2.14) is a pure convection

problem, and it has the effect of propagating the initial condition, Ũ(x, tn−q), forward

along the characteristics of the convecting field U . The IBV problem can be solved

using an inexpensive explicit time-stepping scheme such as fourth-order Runge-Kutta

(RK4), with step size ∆s ≤ ∆t. More details on the OIFS scheme are found in

Refs. [45, 24].

An alternative time-stepping scheme would be a high-order time-splitting method

[76], which treats differently linear and non-linear terms in Eq. (2.6). Specifically,

the non-linear part of the equation (convective term) is treated explicitly by third-

order extrapolation (EXT3), while all other terms are treated implicitly by third-

order backwards finite difference scheme (BDF3). In the BDF3/EXT3 method, the

Courant-Friedrichs-Levy (CFL) number must satisfy the condition,

CFL = |U |∆t/∆x < 0.5 (2.15)

throughout the domain to maintain stability of the solution, where ∆x is the grid

spacing based on GLL quadrature points. This constraint is relaxed when using the

OIFS scheme, since it is stable for CFL > 0.5 and allows for much larger time steps

than the BDF3/EXT3 scheme. Because of the increased stability of the BDF3/OIFS

method, this scheme was chosen for the current work.
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2.3 Computations

Simulations were conducted on the Pleiades supercomputer, which is part of NASA’s

High-End Computing Program [59]. It contains a total of 11,440 nodes, or 245,539

CPU cores, consisting of different types of Intel Xeon processors (Skylake, Broadwell,

Haswell, Ivy Bridge, Sandi Bridge). The cluster has a theoretical peak capacity of

7.24 Pflop/s and 935 TB of total memory.

Approximately 6 million CPU hours were used on computations presented in this

work. The cost of computations was about 3.24×10−05 CPU seconds/time-step/grid

point when using Broadwell processors. Computations were conducted using between

2000-5800 CPUs at a time, depending on the size of the computational grid. To have

a better understanding of the size of the simulations, it would take about 26 days of

wall-time to produce current data for the largest domain computation used in this

study, using 5800 CPUs.

About 30 Terabytes of raw data (velocity/pressure fields) were produced from

the simulation with the largest domain. Raw data from other simulations summed

up to 25 TB approximately, for a total of 55 TB of raw data. The data files are

stored on NASA’s Lou long-term storage system.
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Experiment

Data from the wind tunnel experiments of Bell and Mehta [10] are used as a reference

for our simulations. The design and calibration of the wind tunnel for this experiment

is explained in Ref. [9].

In the experiments, two co-flowing boundary layers were developed on both sides

of a tapered splitter plate and then, mixed downstream the sharp trailing edge of

the plate. The two streams were driven by individual centrifugal blowers, where one

has three times the flow capacity of the other. Downstream components of the wide-

angle diffusers were identical for the streams. A schematic of the mixing-layer wind

tunnel is shown in Fig. 3.1. The test section was 36 cm in the transverse direction,

91 cm in the spanwise direction, and 366 cm in streamwise length. A flexible wall on

the low-speed stream side was adjusted to give a nominally zero streamwise pressure

gradient.

Both turbulent and laminar inflow conditions were used in the experiment. Tur-

bulent inflow conditions were achieved by perturbing the boundary layers using a

round wire trip. Laminar inflow conditions correspond to untripped boundary lay-

ers. The high-speed stream had a free-stream velocity of U1 = 15m/s, while the

low-speed stream had a free-stream velocity of U2 = 9m/s, for a velocity ratio of

U1/U2 = 0.6. Free-stream values were constant to within 1% of the set velocities,
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Figure 3.1: Schematic of the mixing-layer wind tunnel, taken from Bell &
Mehta [9].

with free-stream turbulence intensity being below u/U∞ = 0.15%.

Simulations seek to reproduce conditions of untripped boundary layers in vicinity

of the splitter plate trailing edge, shown in Table 3.1. By reproducing velocity ratio

and inflow conditions, mean flow statistics and shear layer growth rate will be close to

experimental values. Therefore, experimental data will be used to validate current

numerical results. Untripped inflow conditions were selected for simulations over

the tripped case to avoid introducing uncertainty and complexity associated with

modeling the turbulent boundary layers.

Table 3.1: Experimental laminar boundary layer parameters at the splitter
plate trailing edge [10].

Condition U∞ (m/s) δ99 (cm) θ(BL) (cm) Reδ Reθ
High-speed side 15.0 0.40 0.053 3962 525
Low-speed side 9.0 0.44 0.061 2611 362

Statistics from numerical simulations are usually compared with those from ex-

periments to validate the simulation results. In the current study, experimental
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data are used only as a reference due to differences in the settings of physical and

numerical experiments, which will be discussed in the following chapters.
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Computational Setup

Flow conditions from the untripped case from the wind tunnel experiment performed

by Bell & Mehta [10] were described in Chapter 3, as well as inflow boundary layer

conditions near the trailing edge of the splitter plate. This chapter discusses the

setup of the numerical simulations conducted in this work, which attempt to mimic

experimental inflow boundary layer parameters at the trailing edge of the splitter

plate and nominally zero mean streamwise pressure gradient.

4.1 Dimensions of computational domains

Seven different computational domains (Cases I-VII in Table 4.1) were used in the

simulations. The computational domains have a similar cross-section in the (x,y)-

plane shown in Figure 4.1. In the figure, the thick black line represents the splitter

plate and thin lines indicate other boundaries of the domain.

Dimensions of the different domains are presented in Table 4.1. Hereafter, all

length scales are normalized using δ1 = δ99 = 0.4 cm at the high-speed flow side of

the splitter plate. Dimensions L1 and L2 are the development lengths of the high-

speed and low-speed boundary layers, respectively. The development region of length

L3/δ1 = 10 is added upstream of the splitter plate to avoid the singularities in the
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Figure 4.1: Computational domain geometry and the boundary conditions:
BCO - outflow, BCON - outflow/normal, BCV - uniform velocity, BCW - wall
(no-slip), BCSYM - symmetry (free-slip).

boundary conditions.

Table 4.1: Computational domain dimensions.

Case Description L1/δ1 L2/δ1 Lx/δ1 Ly/δ1 Lz/δ1
I Small domain 175 140 170 70 23.4
II Small domain, reduced Ly 175 140 170 50 23.4
III Small domain, increased Ly 175 140 170 90 23.4
IV Large domain 175 140 350 90 40.0
V Large domain, reduced Lx 175 140 170 90 40.0
VI Large domain, reduced Lx and Lz 175 140 170 90 23.56
VII Small domain, reduced L1 and L2 160 76 170 70 23.4

The trailing edge of the plate is located at x = 0. Positive x-values are in the

region, where two boundary layers mix (thereafter, mixing region). The mixing

region length, Lx, varies in the simulations between 170δ1 and 350δ1. To compare,

the mixing region length of the test section in the experiments was 915δ1, with self-

similarity being observed in some flow characteristics by Lx ∼ 312.5δ1.

The y-values are negative in the lower part of the domain and positive in its

upper part, with y = 0 being located at the splitter plate bottom in Cases I-III

and VII and at the middle of the splitter plate in Cases IV-VI due to different grids

used in these cases (see discussion on grids in Section 4.4). Minimum and maximum

y-values correspond to ±Ly/2, where Ly is the domain dimension in the transverse

direction. The z-values run from 0 to Lz between the domain boundaries, where Lz is
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the domain dimension in the spanwise direction. In the simulations, both Ly and Lz

vary as shown in Table 4.1. The largest value of Ly, 90δ1, corresponds to the length

of the experimental test section, 36 cm, in this direction. The largest dimension of

the computational domain in the spanwise dimension is 40δ1. The wind tunnel test

section size in this direction was 227.5δ1. A small difference in Lz in Cases III and

VI is due to different grids used in these cases.

The sharp-ended splitter plate is uniform in simulations, with its thickness being

h = 0.25mm = 0.0625δ1, which is the thickness of the experimental splitter plate at

the trailing edge. In experiments, however, the plate has a 1 degree taper. The taper

was not introduced in the simulated splitter plate, which allowed for easier control

of boundary layer parameters at the plate’s trailing edge.

4.2 Boundary conditions

In the Nek5000, boundary conditions are applied to the velocity field, while the

pressure values at the boundaries are computed . Boundary conditions used in our

simulations are shown in Figure 4.1 for all domain boundaries. They are the standard

options in Nek5000. At the inlet, the following velocity profile is assigned:

U(y) =

U1/U∞ = 1.0, if y > 0

U2/U∞ = 0.6, if y < 0,
; V = W = 0; (4.1)

where velocities are normalized with respect to the free-stream velocity on the high-

speed side, U∞ = 15 m/s. The no-slip boundary condition are applied everywhere on

the splitter plate. The symmetry condition are applied at the lower boundary of the

region upstream of the splitter plate. The convective outflow condition, [PI +∇U ] ·

n̂ = 0, are applied at the outlet. Here, I is the identity matrix, and n̂ is the

unit vector normal to the boundary and directed outwards. The convective outflow

condition is also applied at the lower boundary of the domain. The outflow-normal

condition is applied at its upper boundary. This condition implies that the velocity
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component normal to the boundary is free (∂V/∂n = 0), but the tangential velocity

components are fixed: U = U1/U∞ and W = 0. The outflow conditions ensure that

mean pressure gradient is equal to zero in the streamwise direction. In the spanwise

direction, the periodic boundary conditions are used.

4.3 Initial conditions

Velocity profiles in (4.1) are used in Cases I and IV-VII throughout the domain as

initial conditions. Cases II and III use a single flow realization from Case I at the

simulation time t = 500 for this purpose. (In the simulations, t is non-dimensional,

normalized with respect to U1 and δ1: t = (U1t
∗)/δ1 , where t∗ is the dimensional

time.) A spectrally accurate interpolation of the flow field from Case I was obtained

for Case II using Nek5000 tools. For Case III, the velocity field was interpolated

from Case I, where data was available (|y/δ1| < 35), while uniform velocity profiles

(4.1) were assigned at |y/δ1| > 35.

4.4 Grids

The base grid used in Cases I-III is shown in Figure 4.2 in terms of conforming

meshing zones in the (x, y)-plane. Coordinates of the enlarged black points that

indicate zones’ end points in the figure are shown in Table 4.2. The grid parameters

for each zone are given in Table 4.3. In the table, nx and ny are the number of

elements in the x and y directions, rx and ry are the growth rates in each direction,

and ∆x and ∆y are the element sizes in the respective directions. The growth rate

ry = ∆yi+1/∆yi is the ratio between the sizes of adjacent elements ∆yi+1 and ∆yi,

where the index i is increasing in the direction of +y. The rate rx is similarly defined

in the direction of +x. The description of zones M and N are omitted, since they are

the mirror reflections of zones H and G with respect to y = 0.
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Figure 4.2: Meshing zones for the base grid of Cases I-III (figure not to scale).

Table 4.2: Coordinates of enlarged black points in Figure 4.2.

Point P1 P2 P3 P4 P5 P6

x/δ1 -175. -50. 0. -140. -30. 0.
y/δ1 4. 9.7 12. -4. -10.3 -12.

A row of rectilinear elements (not listed in the table) was added downstream

of the thick plate in the region between zones H and M. In the y-direction, this is

an additional element, which size is equal to the splitter plate thickness in order to

maintain a conforming grid required by the solver. In the x-direction, the number

and dimensions of these elements are the same as in the adjacent zones H and M.

The base grid as described above is used in the Case I simulations. For Case

II, the base grid is modified by removing two elements (adjacent to the domain

boundaries) in the y-direction from each of the outer regions (A, C, E, G, J, L, N).

In Case III, two elements are added to the base grid in the y-direction to each of

the outer regions (A, C, E, G, J, L, N) of the base grid. Then, the grid is re-meshed

within the new boundaries of the zones using the same vertical growth rates ry shown

in Table 4.3 for the corresponding zones. As a result, the min. ∆y-value is decreased

Table 4.3: Parameters for the base grid for Cases I-III.

Zone: A B C D E F G H I J K L
nx 5 5 25 25 15 15 110 110 21 21 9 9
ny 6 8 6 8 6 8 6 8 8 6 8 6
rx 0.87 0.87 1.041 1.041 0.89 0.89 1.004 1.004 1.05 1.05 0.92 0.92
ry 1.15 1.06 1.15 1.06 1.15 1.06 1.15 1.06 0.943 0.87 0.943 0.87

Min. ∆x/δ1 1.5 1.5 3.33 3.33 1.74 1.74 1.17 1.17 2.1 2.1 2.34 2.34
Max. ∆x/δ1 2.6 2.6 8.4 8.4 5.6 5.6 1.75 1.75 4.58 4.58 4.55 4.55
Min. ∆y/δ1 3.54 0.41 2.79 1.03 2.63 1.17 2.63 1.17 0.92 3. 1.17 2.63
Max. ∆y/δ1 7.12 0.58 5.63 1.55 5.3 1.75 5.3 1.75 1.47 6.94 1.75 5.3
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Figure 4.3: Meshing zones for the base grid of Cases IV-VI (figure not to scale).

Figure 4.4: Schematic view of the single row of elements added in the region
between zones H and M in the base grid for Cases IV-VI.

by 8.5% and the max. ∆y-value is increased by 21% in each altered zone with respect

to their values in different zones shown in Table 4.3. Dimensions of the elements in

the x-direction are unchanged with respect to the base grid. Zones B, D, F, H, I, K,

and M in the domain inner region remain the same in Cases I-III.

In the spanwise direction, the three grids used in Cases I-III have twenty (20)

uniformly distributed elements of the size ∆z/δ1 = 1.17.

The total numbers of grid elements in Cases I-III are: 84,800, 73,000 and 96,600,

respectively.

The base grid used in Cases IV-VI is shown in Figure 4.3, with the zones end

points and parameters listed in Tables 4.4 and 4.5, respectively. Zones M and N are

the mirror reflections of zones H and G with respect to y = 0 and therefore, not

described in the tables.

One row of elements is added downstream of the plate, in the region between zones

H and M (Figure 4.4). The elements in this row adjacent to the trailing edge of the

splitter plate at x = 0, have the same thickness as the plate: h = 0.25mm = 0.0625δ1.
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Table 4.4: Coordinates of enlarged black points in Figure 4.3.

Point P1 P2 P3 P4 P5 P6 P7

x/δ1 -175. -140. 0. 350. -140. 0. 350.
y/δ1 4. 4. 7.69 21. -4. -7.69 -21.

Table 4.5: Parameters for the base grid for Cases IV-VI.

Zone: A B C D E F G H I J K L
nx 5 5 17 17 27 27 299 299 10 10 25 25
ny 7 9 7 9 7 9 7 9 9 7 9 7
rx 0.87 0.87 1.05 1.05 0.926 0.93 1.005 1.005 1.05 1.05 0.931 0.931
ry 1.1 1.06 1.1 1.06 1.1 1.06 1.1 1.06 0.943 0.909 0.943 0.909

Min. ∆x/δ1 1.5 1.5 2.78 2.78 0.91 0.91 0.45 0.45 3.1 3.1 0.91 0.91
Max. ∆x/δ1 2.6 2.6 6.06 6.06 6.66 6.66 1.53 1.53 4.8 4.8 5.04 5.04
Min. ∆y/δ1 4.32 0.35 4.32 0.35 3.93 0.67 2.53 1.53 0.35 4.32 0.67 3.93
Max. ∆y/δ1 7.66 0.55 7.66 0.55 6.97 1.07 4.50 2.44 0.55 7.66 1.07 6.97

Downstream, the element size ∆y increases linearly with x until it becomes equal to

the thickness ∆y/δ1 = 1.53 of the elements in the neighboring zones H and M at the

end of the computational domain (x/δ1 = 350). In the x-direction, the elements in

this row have the same sizes and growth rates as those in the adjacent zones H and

M (Table 4.5).

The grid has 34 uniformly distributed elements in the spanwise direction of size

∆z/δ1 = 1.178.

Overall, the area downstream the splitter plate is more refined in the base grid

for Cases IV-VI than in the base grid used in the Cases I-III simulations. The grid

resolution near the splitter plate trailing edge is shown for both grids in Figure 4.5

for comparison.

The base grid used in the Case IV simulations is modified by cutting it off at

x/δ1 = 170 to obtain the grid used in the Case V simulations. The total numbers of

the grid elements in Cases IV and V are 381,174 and 233,070, respectively.

The grid for Case VI was obtained from the Case V grid by cutting it off at

z/δ1 = 23.56, which is the closest point near the location of the grid boundary in

Case I (Lz = 23.4δ1). This domain dimension corresponds to 20 uniformly distributed

elements with ∆z/δ1 = 1.178. The total number of grid elements in Case VI is
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(a) (b)

Figure 4.5: Spectral element grid (thick lines) and quadrature points (inter-
section of thin lines) near the trailing edge of the plate in the base grids for a)
Cases I-III,VII and b) Cases IV-VI.

137,100.

Finally, the grid used in Case VII is the same as in Case I but with shorter

development lengths used in this case (Table 4.1), resulting in fewer elements over

the plate: Zones C/D have nx = 24, Zones E/F have nx = 11, and Zones I/J

have nx = 16. Coordinates of grid points points were also relocated accordingly:

P1 = (−160, 4), P2 = (−30, 10.5), P4 = (−76, 4) and P1 = (−30, 8.8).

Resolution in y and z-directions are left unchanged with respect to Case I. The

total number of elements in Case VII was 82,000.

The base grids from Figures 4.2 and 4.3 that include only spectral elements

without collocation points are shown in Figure . The number of quadrature points

located inside each element is (N+1)3, with theN+1 quadrature points being located

in each direction based on the distribution of Gauss-Legendre-Lobatto quadrature

points in local (elemental) coordinates. Polynomial interpolants of order N = 11 are

used in all cases. Therefore, the total number of grid points is 142 million in the

smallest grid (Case VII) and 659 million in the largest grid (Case IV).

All grids are designed to satisfy the requirement of (δx · δy · δz)1/3 < 4ηK ÷ 8ηK
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(a)

(b)

Figure 4.6: The base grids of spectral elements shown without internal collo-
cation points for a) Cases I-III and b) Cases IV-VI.

[61, 78], where δx,δy, δz is the average spacing between quadrature points within

elements in streamwise, transverse, and spanwise directions, ηK is the Kolmogorov

length scale ηK = (ν3/ε)
1/4

. Specifically, the grid resolution in Cases I III and VII

is (δx · δy · δz)1/3 < 5.33ηK , while in Cases IV-VI, it is (δx · δy · δz)1/3 < 4.9ηK ,

everywhere in the flow.

4.5 Temporal resolution

Simulations were conducted using the BDF3-OIFS temporal discretization scheme

described earlier. For Cases I-VI, a non-dimensional timestep of ∆t = 0.02, where

∆t is normalized with respect to U1 and δ1. In Cases I-III, this yields CFL =

0.75, and CFL = 1.8 in Cases IV-VI (due to a finer grid). The timestep size

was selected to target CFL < 2, which is recommended when using BDF3/OIFS

temporal discretization scheme for DNS [3]. Two different time steps were used in

Case VII simulations, ∆t = 0.02 and ∆t = 0.012, resulting in CFL = 075 and 0.45
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respectively.
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Sensitivity Analysis

Sensitivity of turbulence statistics in direct numerical simulations of mixing layers to

specific computational parameters is analyzed in this chapter. The parameters that

were varied in this study are the dimensions of the computational domain, the level

of development of inflow boundary layers at the trailing edge of the splitter plate,

computational grid refinement and splitter plate thickness.

5.1 Comparison of experimental and DNS data

Several differences between wind tunnel and numerical flow conditions were discussed

in Chapters 4, for example, domain size and taper angle of the splitter plate. Because

experimental flow conditions cannot be replicated exactly in the simulation, this leads

to differences in the characteristics of the boundary layers at the trailing edge of the

splitter plate.

Table 5.1 compares the shape factors and the skin friction coefficients of the

experimental boundary layers at the trailing edge of the splitter plate with their

values in the corresponding Blasius laminar boundary layers. Data in the table

demonstrate that conditions of both boundary layers and particularly, the one at

the low-speed side of the plate, are not laminar. There is also a difference in the
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Table 5.1: Experimental boundary layer characteristics near the splitter plate
trailing edge.

Stream U∞ Shape factor, H Skin friction coefficient, Cf × 103

m/s Exp. Blasius Ref. [10] Ref. [9] Blasius
High-speed 15 2.52 2.59 0.72 0.87 0.84
Low-speed 9 2.24 2.59 0.91 1.56 1.22

Figure 5.1: Velocity profiles of the boundary layers at the trailing edge of the
splitter plate in the Case I simulations. Notations: lines DNS results, circles
the Blasius solutions. Lines: solid at the high-speed side, dashed at the
low-speed side of the splitter plate.

experimental skin friction coefficient values reported in different publications and the

origin of this difference is unclear.

As discussed in [9], deviation of the experimental boundary layers from planar

laminar conditions can be linked to constructional features of a wind tunnel such as

screens. These features and upstream turbulence conditions cannot be accurately

reproduced in numerical experiments. Figure 5.1 compares velocity profiles of the

boundary layers at the splitter plate trailing edge obtained in the Case I simulations

with the Blasius solutions.

Corresponding velocity profiles from other cases overlap with those in Case I.

Calculated profiles are close to the theoretical ones in laminar boundary layers. All
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(a) (b)

Figure 5.2: Streamwise variations of experimental maximum and minimum
values of the secondary shear stress a) 〈uw〉 and 〈vw〉. Notation: circles -
maximum values from the experiments [10], lines - DNS data from Case IV.
Solid lines - maximum values, dashed lines - minimum values.

Reynolds stresses are zero at this location in all simulations. As an example, the shear

stresses 〈uw〉 and 〈vw〉 from Case IV are shown in Figure. 5.2. Both shear stresses

are equal to zero when the boundary layers leave the splitter plate. In contrast, the

boundary layers in the experiments are only “nominally laminar, meaning they have

well-defined three dimensional (3D) structure and turbulence level between 0.05%

and 0.15%, before they leave the splitter plate trailing edge. The 3D structure

of the boundary layers is indicated, in particular, by streamwise variation of the

maximum value of the shear stress, 〈uw〉, shown in Figure 5.2(a). The shear stress

values presented in the figure by solid circles are averaged in the spanwise direction.

The maximum peak value of 〈uw〉 is near the splitter plate trailing edge. In a

planar laminar flow, this shear stress would disappear, as in current simulations. The

three-dimensional structure of experimental boundary layers and their contamination

with turbulence may be responsible for the virtual origin of the mixing layer being

upstream from the trailing edge [10].

Table 5.2 lists conditions of the boundary layers at the splitter plate trailing edge

in the simulations. The boundary layer thickness and momentum thickness in Cases

I-VI are within 1.5% and 2.5% of corresponding experimental values provided in
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Table 5.2: Laminar boundary layer parameters at the splitter plate trailing
edge.

Case Condition U∞/U1 δ99/δ1 θ/δ1 Reδ Reθ Shape
factor,
H

Skin friction
coefficient,
Cf × 103

I-VI High-speed side 1 0.99 0.143 3930 565 2.35 1.15
I-VI Low-speed side 0.6 1.01 0.153 2412 364 2.22 2.48
VII High-speed side 1 0.95 0.136 3746 540 2.34 1.25
VII Low-speed side 0.6 0.74 0.118 1751 281 2.16 3.14

Table 5.1 on both sides of the splitter plate. Boundary layer parameters in Case VII

The Reynolds numbers are close to those in the experiments. The mixing layer

thickness and the Reynolds numbers obtained in different simulations vary within

1% of their values shown in Table 5.2.

Interestingly, the shape factor, H, and the skin friction coefficient, Cf , obtained

in the simulations deviate from the Blasius solutions. They show the evidence of a

slightly favorable pressure gradient at the trailing edge of the plate, with all calculated

shape factor values being even lower than in the experiments, whereas the skin

friction coefficients being higher than the corresponding values from the experiments

and the Blasius solutions. In preliminary simulations of a boundary layer developing

over a flat plate without the mixing layer being present, the Blasius solution was

reproduced exactly using the same grids and the flow conditions as in the current

simulations. This suggests that the mixing layer development downstream from the

splitter plate trailing edge affects the upstream flow. It also implies that the shape

factor and the skin friction coefficient may not be a good choice of parameters to

monitor for determining whether boundary layers are laminar in this particular flow

geometry, because all examined flow statistics point to them being laminar at the

trailing edge of the splitter plate.

Another difference between numerical and physical experiments is the way the

streamwise pressure gradient is controlled: via a flexible wall on the low-speed side of

the experimental test section vs. a choice of the boundary conditions in simulations

described in Section 4.2.
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Even though all listed differences between the simulations and the experiments

affect the mixing layer development, comparison of numerical and experimental re-

sults is still beneficial for better understanding of those effects, and particularly, in

the light that the numerical experiments generate the laminar planar boundary layers

prior to their mixing, reproducible in different simulations conducted in this study.

5.2 Collection of statistical data

Statistics were collected after the flow became statistically stationary. The flow was

deemed statistically stationary, when the volume-averaged statistics relevant to the

flow kinetic energy: 〈U2〉V , 〈V 2〉V and 〈W 2〉V , were stabilized. Here, 〈...〉V is the

volume average, and U, V, W are components of the instantaneous flow velocity.

In the simulations started at t = 0 (Cases I, IV-VII), the initial transient period

excluded from the data collection was ttrans = 500. Hereafter, all time intervals are

non-dimensional, normalized by δ1/U1. The initial transient period corresponds to

2.4 flow-through times τf = Lx/Uc in Cases I and V-VII, and to 1.15τf in Case IV.

In the τf -definition, Lx is the mixing layer region length from Table 4.1 (it is longer

in Case IV), and Uc = (U1 + U2)/2 is the centerline velocity.

Cases II and III were started from the Case I solution at t = 500. The initial

transient was extended to t = 1000. The total simulation time for these two cases

was also increased to compare with other cases, so that statistics for all cases, but

Case IV, were collected during the same number of flow-through times, 7.05τf . This

corresponds to the time interval t = [500, 2000] in Cases I and V-VII, and to t =

[1000, 2500] in Cases II and III.

Case IV has the longest mixing layer region of all considered cases in the stream-

wise direction: 350δ1 vs. 170δ1 (Table 4.1). To obtain statistics that are sufficiently

converged for the purposes of the current study, data were collected during 12.1τf cor-

responding to the time interval t = [500, 5780]. This is about twice the flow-through
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(a) (b) (c)

Figure 5.3: Time evolution of the volume-averaged statistics relevant to the
flow kinetic energy, a) streamwise component, 〈U2〉V , b) transverse component,
〈V 2〉V , c) spanwise component, 〈W 2〉V . Vertical lines mark the separation be-
tween transient and statistically stationary periods for Case I (dashed) and
Cases II and III (dotted). Lines: solid Case I, dashed Case II, dash-dot Case
III.

time used in the other cases.

Figures 5.3 and 5.4 demonstrate the convergence of 〈U2〉V , 〈V 2〉V and 〈W 2〉V for

Cases I-III and Case IV, respectively. Similar results were obtained for Cases V-VII,

now shown here. In the figures, vertical dashed and dotted lines indicate the start

times of collecting data. The dashed lines correspond to Cases I and IV, and the

dotted lines are used for Cases II and III.

(a) (b) (c)

Figure 5.4: Time evolution of the volume-averaged statistics relevant to the
flow kinetic energy in Case IV, a) streamwise component, 〈U2〉V , b) transverse
component, 〈V 2〉V , c) spanwise component, 〈W 2〉V . Vertical lines mark the
separation between transient and statistically stationary periods.
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In Cases I-III, and V-VII, Ns = 376 snapshots were analyzed when time step size

∆t = 0.02 was used. In Case VII simulation with ∆t = 0.012, Ns = 419 was used.

The number of snapshots used in Case IV was Ns = 529. That is, increasing the

domain dimension in the streamwise direction has several associated penalties: longer

averaging time and more statistical samples required for obtaining converged statis-

tics and a larger size of the output data files, which lead to substantially increased

demand for storage and computational resources.

Statistics where averaged using ensemble and spanwise averaging as explained in

Section 2.1.

5.3 Statistical convergence of collected data

In this section, statistical convergence of numerical results for Cases III and IV is

demonstrated. Case III is representative of Cases I,II and VII, as the domain for

this case is larger or comparable in the three directions than the domains used in

such cases. The three domains are discretized using the same base grid in the mixing

layer region. Time and the number of flow realizations used to collect statistics were

the same in most cases. When smaller time step was used in Case VII, the number

of flow realizations was increased, which accelerates convergence of statistics.

In Cases IV-VI, the different base grid is used than in Cases I-III as described

in Section 4.4. The Case IV domain is larger or comparable in different directions

to those used in the other two cases. In Cases V and VI, statistics converged when

collected for the same time using the same number of flow realizations as in Cases

I-III. Case IV required a longer simulation time and more flow realizations to achieve

similar convergence of statistics as in the other cases due to longer correlation times

of large-scale eddies growing with the downstream distance in the mixing layer.

To analyze the statistics convergence in Case III, their profiles obtained by the
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data averaging over three time intervals:

T
(III)
1 = [1000, 2100], T

(III)
2 = [1000, 2300], T

(III)
3 = [1000, 2500],

are compared. The difference between consecutive intervals is about one flow-through

time, τf . The number of flow realizations corresponding to each interval is: Ns1 =

276, Ns2 = 326, and Ns3 = 376, respectively.

A similar approach is employed to present the statistics convergence in Case IV,

with three intervals used to collect the statistics being:

T
(IV )
1 = [500, 4900], T

(IV )
2 = [500, 5340], T

(IV )
3 = [500, 5780].

The difference between the consecutive intervals is also about one flow-through

time for this case (defined based on the Case IV domain). The corresponding numbers

of the flow realization used for the data averaging are: Ns1 = 441, Ns2 = 485, and

Ns3 = 529.

Statistics considered in the current paper are mixing layer thickness, momentum

thickness, and the normal Reynolds stresses integrated across the mixing layer, all

evolving in the streamwise direction. Also presented are profiles of four Reynolds

stresses (〈u2
i 〉 and 〈uv〉) at different locations in the streamwise direction. The mixing

layer thickness, δML, is defined as in [10]:

δML = (y − y0)/η, (5.1)

where the normalized transverse coordinate η is obtained by computing the least-

squares fit of the mean velocity profile to the error function profile shape:

(〈U〉 − U2) /∆U ≈ [1 + erf(η)]/2. (5.2)

In Eq. (5.1), y0 is the centerline of the mixing layer calculated using the least-square

fitting procedure. The momentum thickness is given by:

θ =
1

∆U2

∫ ∞
−∞

(U1 − 〈U〉)(〈U〉 − U2)dy. (5.3)
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(a) (b)

Figure 5.5: Evolution of the mixing layer thickness: a) Case III, b) Case IV.
Notations: dotted line - DNS data averaged over T1, dashed line - DNS data
averaged over T2, solid line - DNS data averaged over T3, circles - experimental
data [10].

The normal Reynolds stresses integrated across the mixing layers are determined

as

Kx(x) = (1/∆U2)

∫ Ly/2

−Ly/2
〈u2〉dy, (5.4)

Ky(x) = (1/∆U2)

∫ Ly/2

−Ly/2
〈v2〉dy, (5.5)

Kz(x) = (1/∆U2)

∫ Ly/2

−Ly/2
〈w2〉dy. (5.6)

Evolution of the mixing layer thickness in the streamwise direction in Cases III

and IV is shown in Figure 5.5. The figure demonstrates that this parameter is not

affected by further increase in the averaging time in both cases. In this and following

figures, experimental data are shown as well (solid circles) for comparison.

The normal Reynolds stresses integrated across the mixing layer show more sen-

sitivity to the averaging time (Figures 5.6 and 5.7), with the most and the least

affected being Ky and Kz, respectively. Nevertheless, these parameters have con-

verged as well in both cases.

Convergence of the Reynolds stress profiles at x/δ1 = 160 (Cases III and IV) and
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(a) (b) (c)

Figure 5.6: Streamwise evolution of the normal Reynolds stresses integrated
across the mixing layer in Case III. a) Kx, b) Ky, c) Kz. Notations are the same
as in Figure 5.5.

(a) (b) (c)

Figure 5.7: Streamwise evolution of the normal Reynolds stresses integrated
across the mixing layer in Case IV. a) Kx, b) Ky, c) Kz. Notations are the same
as in Figure 5.5

x/δ1 = 320 (Case IV), is shown in Figures 5.8-5.10. These locations are chosen for

being close to the domain outlets in these cases. The figures demonstrate satisfactory

convergence of the Reynolds stresses at x/δ1 = 160 in Case III and at both locations

in Case IV. One of the observations from the data analysis is that convergence of the

spatial evolution of Ky guarantees convergence of other considered statistics in this

flow geometry.

48



Chapter 5. Sensitivity Analysis

Figure 5.8: Reynolds stresses from Case III at x/δ1 = 160. Notations are the
same as in Figure 5.5.

Figure 5.9: Reynolds stresses from Case IV at x/δ1 = 160. Notations are the
same as in Figure 5.5.

5.4 Transverse dimension effects

To investigate influence of the domain transverse dimension on the flow solution,

results of the Cases I-III simulations are compared in this subsection. In these

cases, the domain dimension Ly increases from 50δ1 in Case II to 90δ1 in Case III,

with Ly = 70δ1 in Case I being in the middle of the considered range The largest

dimension, 90δ1, corresponds to the size of the experimental test section in this

direction., and to the Ly value in Cases IV-VI. The Cases II and III simulations

started from the Case I solution at t = 500 as discussed in Section 4.3. The time of

collecting statistics, the number of flow realizations used to compute them, and other

Figure 5.10: Reynolds stresses from Case IV at x/δ1 = 320. Notations are the
same as in Figure 5.5.
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(a) (b)

Figure 5.11: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data, circles experi-
ment [10]. Line styles: Solid - Case I, dotted - Case II, dashed - Case III.

simulation parameters are the same in the three cases, including the other domain

dimensions: Lx = 170δ1 and Lz = 23.4δ1.

The mixing layer growth obtained in the three cases is shown in Figure 5.11 by

lines. Within the chosen range of Ly, the growth of the mixing layer appears to be

unaffected by variations in the transverse dimension, demonstrated by overlapped

dotted and dashed lines corresponding to the Cases II and III solutions. The differ-

ence between these two solutions and the Case I solution observed in Figure 5.11a

indicates sensitivity of the simulation results to the difference in the initial conditions.

Profiles of the streamwise mean velocity at various locations in the streamwise

direction: x/δ1 = 10, 20, 30, and 160, are unaffected by variation in the Ly-value

and by the difference in initial conditions (Figure 5.12).

Streamwise evolution of the integrated normal Reynolds stresses is affected when

the domain transverse dimension increases from 50δ1(Case II) to 70δ1 (Case I) (Figure

5.13). Their values are higher in the shorter domain of Case II. In the figure, K =

0.5(Kx+Ky+Kz). Differences in the parameters obtained from different simulations

appear when the mixing layer is already turbulent and they grow with x. The location

of the flow transition to turbulent remains close to x/δ1 = 15 in the three cases.

Further increase of Ly to 90δ1 (Case III) has no effect on these statistics. Observed
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(a) (b) (c) (d)

Figure 5.12: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Cases I-III). Notations are the same
as in Figure 5.11.

(a) (b) (c) (d)

Figure 5.13: Streamwise evolution of the turbulent kinetic energy and the
normal Reynolds stresses integrated across the mixing layer (Cases I-III). No-
tations are the same as in Figure 5.11.

changes in Kx can be attributed to the difference in the simulations initial conditions.

Comparison of the Reynolds stress profiles at various locations in the streamwise

direction (Figure 5.14) confirms that the Case II domain dimension in the transverse

direction in insufficient. All Reynolds stresses but 〈v2〉 are affected within the range

of ±3η and particularly, closer to the domain exit at x/δ1 ≥ 143. Comparing results

for 〈v2〉 on Figure 5.14 and Ky in Figure 5.13c, one can infer that there is more

turbulent kinetic energy in the transverse direction outside the range ±3η in the

shorter domain.

The flow area near the splitter plate is mainly influenced by the difference in the

simulations initial conditions. This is clear from comparing the Case I results with

those from the other two cases. Instead of falling in between, results from Case I

deviate from the group. The most affected Reynolds stress is 〈u2〉, with the effect

being noticeable through the entire mixing layer region. This is consistent with the
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Figure 5.14: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Cases I-III). First row – 〈u2〉, second row – 〈v2〉, third
row – 〈w2〉, fourth row – 〈uv〉. Experimental data given for comparison with
the simulation results at x/δ1 = 160 were obtained at the location of x/δ1 = 195.
Notations are the same as in Figure 5.11.

results shown in Figure 5.13b for Kx.

In sum, results presented in this section show that for the given Lx = 170δ1 and

Lz = 23.4δ1, the value Ly = 50δ1 is insufficient for the solution to be independent of

the domain transverse dimension and has to be increased to 70δ1. The insufficient

domain dimension in this direction leads to increase in the maximum values of the

Reynolds stresses, particularly of those in the plane normal to the transverse direc-

tion. As a result, one can expect the increased turbulence level when comparing with

the solution independent from this domain dimension.
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Table 5.3: Ratios used in criteria (5.7) and (5.8) to evaluate the domain trans-
verse dimension.

Ly/δω,max δω,max/δ1 Ly/ (δML)max
Case I 11.25 6.22 18.85
Case II 8.03 6.05 14.23
Case III 14.75 6.14 25.02
Case IV (x ≤ 170δ1) 13.84 6.55 23.9
Case IV (x ≤ 350δ1) 5.91 15.34 10.47
Case V 11.73 7.73 21.7
Case VI 12.31 7.37 21.22
Case VII 12.69 5.84 21.31

When choosing the Ly-values for simulations, we followed recommendations from

[4, 80]. In particular, this parameter is within the values used in such simulations:

6.96 < Ly/δω,max < 8.3, (5.7)

in Cases I-III (Table 5.3). It is also satisfied in Cases V-VII. In Case IV, with

the longer streamwise direction, criterion (5.7) is only satisfied at x/δ1 ≤ 170, but

relaxed in the entire domain, which is unavoidable if one keeps the numerical domain

dimensions within or equal to those of the experimental test section. However, results

of our simulations show that criterion x/δ1 ≤ 170 is not universal. From current

results, a more reliable alternative is proposed:

Ly/ (δML)max ≥ 17.5. (5.8)

This criterion is violated in Case II, but is satisfied in Cases I and III (see Ta-

ble 5.3). This criterion is again relaxed in Case IV, when applied to the entire

domain.

Results from Cases I-III also show sensitivity of the Reynolds stress profiles (their

maximum values) to the simulation initial conditions. The Reynolds stress 〈u2〉 is

affected everywhere in the flow by the difference in the simulations initial conditions,

whereas its effect on the other Reynolds stresses is mainly limited to the area near

the splitter plate.
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(a) (b)

Figure 5.15: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data, circles experi-
ment [10]. Line styles: Solid - Case III, dotted - Case VI.

5.5 Grid effects

Results from the Cases III and VI simulations are used in this subsection to evaluate

the grid effects. In these two cases, the domains are equivalent in the (x, y)-plane.

In the spanwise direction, Lz = 23.4δ1 in Case III vs. 23.56δ1 in Case VI. The Case

VI grid is finer than the one used in Case III in the (x,y)-plane and particularly, in

the splitter plate wake as described in Section 4.4. In the spanwise direction, the two

domains have the same number of uniformly-distributed elements. The simulations

run for the same time, and the same number of flow realization is used to collect

statistics in both cases.

Figures 5.15-5.17 show that while the streamwise mean velocity profiles at various

locations in the streamwise direction are essentially unaffected (Figure 5.16), the

mixing layer growth and the integrated Reynolds stresses, with the exception of Ky,

are influenced by changes in the grid. Differences become apparent at x/δ1 ≈ 50

(Figures 5.15 and 5.17), after the flow becomes turbulent. At the same time, when

analyzing the Reynolds stress profiles (Figure 5.18), the difference between the results

obtained using different grids does not appear to be significant except for 〈w2〉 close

to the domain exit.
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(a) (b) (c) (d)

Figure 5.16: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Cases III and VI). Notations are
the same as in Figure 5.15.

(a) (b) (c) (d)

Figure 5.17: Streamwise evolution of the turbulent kinetic energy and the
normal Reynolds stresses integrated across the mixing layer (Cases III and
VI). Notations are the same as in Figure 5.15.

It is interesting to notice that simulations produce higher level of turbulence in

the flow than in the experiment, but the mixing layer growth in Case VI agrees well

with the experimental results. One of the possible reasons is that in the simulations,

the Reynolds stresses in the stream- and spanwise directions are particularly high.

Comparing Figures 5.17 and 5.18, one can also infer that the flow area outside the

±3η range contributes substantially to the values of the integrated Reynolds stresses.

This is an indication of the grid stretching in the transverse direction in particular,

being a factor affecting the simulation results in both cases. Due to the current

project time constraints, a comprehensive analysis of this and other grid effects is

left for future studies.
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Figure 5.18: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Cases III and VI). First row – 〈u2〉, second row – 〈v2〉,
third row – 〈w2〉, fourth row – 〈uv〉. Experimental data given for compari-
son with the simulation results at x/δ1 = 160 were obtained at the location of
x/δ1 = 195. Notations are the same as in Figure 5.15.

5.6 Spanwise dimension effects

In this subsection, results from the Cases V and VI simulations are used to analyze

how the domain spanwise dimension affects the simulation results. The simulations

parameters are the same in both cases except for Lz, which is 40δ1 in Case V and

23.56δ1 in Case VI. These values are about the order of magnitude smaller than in

the experiments, where the test section dimension in this direction was Lz = 227.5δ1.

The mixing layer growth (Figure 5.19) and the streamwise mean velocity profiles

(Figure 5.20) are unaffected by variation of the domain spanwise dimension. The
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(a) (b)

Figure 5.19: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data, circles experi-
ment [10]. Line styles: Solid - Case V, dotted - Case VI.

(a) (b) (c) (d)

Figure 5.20: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Cases V and VI). Notations are the
same as in Figure 5.19.

effect on evolution of the integrated Reynolds stresses (Figure 5.21) is minor as well,

with Kz being the mostly influenced integrated Reynolds stresses near the domain

exit. Figure 5.22 confirms sensitivity of particularly 〈w2〉 close to the domain exit to

variation of Lz. Its maximum value reduces with reducing the domain dimension in

the spanwise direction. The maximum value of 〈uv〉 is also affected, but in a lesser

degree and only close to the trailing edge of the splitter plate in the transitional

region.

In a preliminary study conducted using simulations of mixing layers with an

infinitely-thin splitter plate, results were similar to those in the current study with a

thick plate. That is, from considered statistics, two Reynolds stresses were found to
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(a) (b) (c) (d)

Figure 5.21: Streamwise evolution of the turbulent kinetic energy and the
normal Reynolds stresses integrated across the mixing layer (Cases V and VI).
Notations are the same as in Figure 5.19.

Figure 5.22: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Cases V and VI). First row – 〈u2〉, second row – 〈v2〉,
third row – 〈w2〉, fourth row – 〈uv〉. Experimental data given for compari-
son with the simulation results at x/δ1 = 160 were obtained at the location of
x/δ1 = 195. Notations are the same as in Figure 5.19.
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Table 5.4: Ratios used in criterion (5.9) to evaluate the domain spanwise di-
mension.

A
Case I 15.6
Case II 15.5
Case III 16.1
Case IV (x ≤ 170δ1) 27.12
Case IV (x ≤ 350δ1) 11.4
Case V 11.4
Case VI 24.7
Case VII 17.1

be affected: 〈uv〉, in all considered locations within the turbulent mixing layer, and

〈w2〉, in the area close to the domain

Overall, one can infer that effects of considered variation of the domain spanwise

dimension on the statistics are negligible except for 〈w2〉 close to the domain exit.

The splitter plate thickness has no significant influence on the observed effects.

The obtained results confirm applicability of the criterion

A = Lz/θmax > 10, (5.9)

proposed in [48] for the flow to be independent of the domain size in this direction.

The values of A in Cases V and VI, as well as in other cases are presented in Table 5.4.

5.7 Streamwise dimension effects

Results from the Cases IV and V simulations are compared in this subsection to

analyze the impact of variation of the domain streamwise dimension or equivalently,

of the domain exit location on the mixing layer development. In Case IV, the do-

main exit is located at 350δ1 and in Case V, Lx = 170δ1. Therefore, all data are

compared at x/δ1 < 170. For comparison, the size of the experimental test section

in this direction was 915δ1 [10]. The base grid used in the two cases is the same.

However, longer simulation time and more individual flow realizations were required
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in Case IV to achieve the statistics convergence comparable to that in Case V (see

Section 5.3 for discussion). Parameters characterizing the mixing layer growth are

shown in Figure 5.23. Solid and dashed lines correspond to Cases IV and V; sym-

bols are experimental data. As the figure demonstrates, the effect from varying Lx

is substantial. The mixing layer growth is suppressed in the longer domain (Case

IV), with the parameters from the two cases starting to deviate from each other at

x/δ1 ∼ 50. Velocity profiles in Figure 5.24 provide an explanation for a faster growth

of the mixing layer. Specifically, the wake effect of the splitter plate vanishes more

rapidly in the shorter domain (Case V).That is, the flow mixing starts sooner than

in Case IV. Far from the splitter plate, the typical mixing layer mean velocity profile

is restored.

Increasing Lx also leads to a delayed transition to turbulence: at x/δ1 ≈ 25 in

Case IV and at x/δ1 ≈ 15 in Case V. The ratio of these two values is practically

the same as the ratio of the domain streamwise dimensions in the two cases. Once

transition initiated, the integrated normal Reynolds stresses Kx and Ky (and the

total turbulent kinetic energy K) grow similarly in both cases until x/δ1 ∼ 125

(Figure 5.25). Then, these statistics continue to grow in Case IV, but slow down in

Case V. This is an obvious effect of the flow proximity to the domain exit, which does

not appear in the converged solution of Case IV. Somewhat similar effects in a lesser

degree can be recognized in the Kx and Ky evolution, when the flow approaches

the domain exit in the Case IV solution that is not fully converged (dotted lines in

Figures 5.25a and 5.25b). The growth rate of Kz is consistently lower in Case IV

than in Case V. There is no suppression of its growth in both cases (Figures 5.25c

and 5.7c), when approaching the domain exit.

The Reynolds stress profiles shown in Figure 5.26 confirm conclusions made from

the results presented in Figures 5.23-5.25. In particular, the transition to turbulence

occurs sooner in Case V indicated by higher maximum values of 〈u2〉 and 〈v2〉 in

the area close to the splitter plate. However, far away from the splitter plate, these

Reynolds stresses are higher in Case IV. The Reynolds stress 〈w2〉 is higher in Case
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(a) (b)

Figure 5.23: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data, circles experi-
ment [10]. Line styles: Solid - Case IV, dotted - Case V.

(a) (b) (c) (d)

Figure 5.24: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Cases IV and V). Notations are the
same as in Figure 5.23.

V than in Case IV everywhere in the flow, where this statistics is presented. Interest-

ingly, the shear stress is not affected by the domain streamwise dimension far away

from the splitter plate, but is twice higher in Case V than in Case IV near the plate.

Overall, the domain dimension variation in the streamwise direction strongly af-

fects all considered statistics. There could be multiple triggers for this effect, physical

and numerical. For example, strong influence of the domain streamwise dimension

on the mixing layer development was observed in the experiments [28], where it was

suggested that large vortex structures near the experimental outlet boundary may

be coupled to small structures upstream, producing a feedback mechanism between

upstream and downstream flows. This makes the mixing layer structure and its de-
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(a) (b) (c) (d)

Figure 5.25: Streamwise evolution of the turbulent kinetic energy and the
normal Reynolds stresses integrated across the mixing layer (Cases IV and V).
Notations are the same as in Figure 5.23.

Figure 5.26: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Cases IV and V). First row – 〈u2〉, second row – 〈v2〉,
third row – 〈w2〉, fourth row – 〈uv〉. Experimental data given for compari-
son with the simulation results at x/δ1 = 160 were obtained at the location of
x/δ1 = 195. Notations are the same as in Figure 5.23.
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velopment dependent on the streamwise size of the experimental test section. Our

data appear to support a possibility for such a phenomenon, but not all possible

numerical causes were considered in the current study and thus, their effects cannot

be eliminated. Among them are the outlet and the boundary conditions that may

alter the mixing layer development. The grid effects: resolution near the domain exit

and the grid stretching throughout the whole domain, in particular, have yet to be

understood in full as mentioned above. In sum, with the current level of knowledge,

it is unlikely to expect solutions to be independent of this simulation parameter.

5.8 Inflow boundary layer conditions

Preliminary simulations conducted using Case VII showed that inflow boundary lay-

ers on this domain were underdeveloped compared to experimental boundary lay-

ers (Table 5.2). Therefore, the development lengths on both streams were elongated

resulting in the Case I domain. However, interesting results were obtained using

Case VII domain, which will be presented in this and the following sections.

Results from simulations on Cases I and VII were compared to analyze sensitivity

of the mixing layer development to the conditions of the laminar boundary layers

at the trailing edge of the splitter plate. In Case I, these conditions are in a better

agreement with the experimental data than in the Case VII simulations (Table 5.2).

It means in particular that the boundary layers are faster in Case I.

The mixing layer thickness and its momentum thickness are shown in Figure 5.27.

In the figure, solid lines correspond to Case I and dotted lines to Case VII; symbols

are experimental data. Similar notations are used in the following figures of this

sub-section. The mixing layer growth rate obtained at x/δ1 > 70 in Case I is the

same as in the experiments. In the area closer to the slitter plate, a difference in the

boundary layer conditions in two cases has little effect on the boundary layers mixing,

which is slower than in the experiments. The opposite tendency is observed in the

mean velocity (Figure 5.28). A difference in the boundary layers velocities in Cases
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(a) (b)

Figure 5.27: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data, circles experi-
ment [10]. Line styles: Solid - Case I, dotted - Case VII.

(a) (b) (c) (d)

Figure 5.28: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Cases I and VII). Notations are the
same as in Figure 5.27.

I and VII is apparent in the splitter plate vicinity, but disappears far downstream

from the plate.

Faster boundary layers in the Case I simulations increase the level of the tur-

bulent kinetic energy and all of the normal Reynolds stresses integrated across the

mixing layer (Figure 5.29). The values of K, Kx, and Ky are also higher than in

the experiments everywhere in the flow except at x/δ1 < 20 in this case. The value

of Kz is close to zero in this area and is not affected by the inflow conditions. The

transition location to turbulence is also insensitive to considered variations in the

boundary layer conditions.

The Reynolds stress profiles are shown in Figure 5.30. The figure confirms results
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(a) (b) (c) (d)

Figure 5.29: Streamwise evolution of the turbulent kinetic energy and the
normal Reynolds stresses integrated across the mixing layer (Cases I and VII).
Notations are the same as in Figure 5.27.

for the integrated characteristics presented in Figure 5.29. That is, the Reynolds

stresses are slightly higher in the Case I simulation everywhere in the flow except for

the area closest to the splitter plate. In this area, x/δ1 < 20, slower boundary layers

in Case VII mix more efficiently, whereas faster boundary layers in Case I “slip” over

each other until they slow down farther downstream. The simulated flow structure

obtained in both Cases is different from that of observed in the experimental flow

close to the splitter plate. Far away from the splitter plate, the effect from the

boundary conditions is still present, but less significant.

5.9 Time step

In this section, influence of the time step in the temporal discretization scheme on

the DNS results is discussed. For this analysis, simulations were conducted with two

different time steps ∆t1 = 0.012 and ∆t2 = 0.02 using the computational domain

and the grid for Case VII. With these time steps, the CFL values are 0.45 and 0.75,

respectively. That is, the traditional stability criterion for the corresponding explicit

scheme of the same order of accuracy in Nek5000, BDF3/EXT3, CFL = 0.5, is

satisfied with ∆t1, but not with ∆t2. The OIFS scheme in Nek5000 permits such

simulations and as a result, the simulation cost can be substantially reduced. On the

other hand, some of smaller scales may be filtered in the process, which, depending

on the filtered scales origin, physical or numerical, may or may not be beneficial for
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the quality of simulation results.

Figure 5.31 compares the mixing layer thickness and its momentum thickness

obtained at the two time steps. In the figure, dotted and solid lines correspond

to ∆t1 and ∆t2, respectively. Experimental data are shown by circles. The figure

demonstrates that the time step affects both parameters far downstream from the

splitter plate, with the mixing layer growth obtained with the smaller time step being

closer to the experimental data. Mean velocity profiles at four streamwise locations

downstream the splitter plate are shown in Figure 5.32. In the experiments, the

mean velocity profiles from different experimental sections including those close to

the splitter plate collapse on the error function shown in Figure 5.32d, which is

indicative of the boundary layers mixing very close to the plate trailing edge. In the

simulations, the mixing is delayed, regardless the time step used. Far away from the

splitter plate, the mean velocity profiles obtained with the different time steps are in

agreement with the experimental data. Overall, the time step has insignificant effect

on the mean velocity evolution.

Streamwise evolution of the turbulent kinetic energy and the normal Reynolds

stresses, all integrated across the mixing layer, is shown in Figure 5.33. The figure

demonstrates that transition to turbulence starts at x/δ1 ∼ 15 in the simulations

with both time steps. That is, the time step does not affect the transition location.

Influence of the time step on the integrated turbulent kinetic energy and its contribu-

tion from the streamwise velocity fluctuations becomes apparent at x/δ1 > 125. The

Reynolds stresses in the transverse and spanwise directions are affected everywhere

in the flow: Ky is increased and Kz is reduced in simulations with the larger time

step. This indicates that the scales filtered by the larger time step are responsible

for the energy transfer to the spanwise velocity fluctuations. In the absence of these

scales, the energy is re-directed to velocity fluctuations in the transverse direction.

At x/δ1 > 125, the larger time step leads to reduced energy in velocity fluctuations

in both directions tangential to the splitter plate plane: Kx and Kz, and in the

turbulent kinetic energy K. The effect is beneficial for K and Kx when comparing
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with the experiments, but reduced turbulent kinetic energy may be a cause of the

reduced growth of the mixing layer growth seen in Figure 5.31 in simulations with

∆t2.

The simulation time step affects all non-zero Reynolds stresses (Figure 5.34, but

particularly, 〈w2〉. A difference in the profiles obtained with different time steps

reduces as the mixing layer grows. Results for all Reynolds stresses but 〈v2〉 tend

to agree with the experimental data far downstream from the splitter plate in the

simulations with the larger time step. The Reynolds stress in the transverse direction

is over-predicted everywhere in the flow with both time steps.

Results show that a choice of the time step affects the mixing layer development

and its structure. However, its effect on the considered flow characteristics varies.

The most affected ones are those relevant to the energy re-distribution in the trans-

verse and spanwise flow directions, with the larger time step suppressing the energy

transfer in the spanwise direction and promoting it in the transverse direction. As the

mixing layer grows and become fully turbulent, the time step effect on the Reynolds

stress profiles diminishes. The total turbulent kinetic energy in the flow is reduced

far away from the splitter plate in the simulations with the larger time step. The im-

plication of such results is that while numerical results were not independent of time

step size, the overall behavior of evaluated turbulence statistics was improved with

the larger time step size when compared against experimental data, meaning that

the time step size used in preceding sections was appropriate to produce physically

meaningful results.

5.10 Splitter plate thickness

The effect of the splitter plate thickness is assessed in this section. For this purpose,

A special grid was created based on Case VII. In the new grid, the splitter plate

thickness was set to zero and the elements which were directly downstream of the

plate were removed. The high-speed and low-speed boundary layers are adjacent
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to each other in this case. The upper half of the domain (y > 0) was re-meshed

using the same number of elements and growth-rates as in Case VII, resulting in

∆y values that differ by less than 1% from those listed in Table 4.3 for zones A-H

(Figure 4.2). Hereafter, the original Case VII grid and geometry will be referred to

as Case VII.A, while the modified version with infinitely thin plate is referred to

as Case VII.B. Both cases used ∆t = 0.012.

The grids for both cases near the trailing edge of the splitter plate are shown on

Figure 5.35. In Case VII.B, the splitter plate is introduced by imposing the no-slip

boundary condition at y = 0 for x < 0. Grid for Case VII.B has 79800 elements.

Case VII.B required longer sampling time for statistics to converge to acceptable

levels, compared to other cases presented in Section 5.2. Therefore, Ns = 504 was

used for both simulations, with extended sampling period

T = [500, 2400].

Boundary layer parameters at the plate’s trailing edge in both cases are the same

(Case VII in Table 5.2).

Numerical results for mixing layer thickness and momentum thickness are below

experimental values in both cases (Figure 5.36), but Case VII.A is in better agreement

with experimental data, with the shear layer being thicker than in Case VII.B. Mean

velocity profiles in Figure 5.37 were also affected by the finite plate, particularly

near the splitter plate trailing edge, where the wake deficit vanished more rapidly

downstream of the thick plate. The wake deficit was not as significant in experimental

results from [10], therefore, it is clear that the thick splitter plate plays a role in

accelerating the transition from boundary layer velocity profile to the shear layer

profile. The typical shear layer mean velocity profile is recovered in both cases

further downstream (Figure 5.37d).

Turbulent kinetic energy and Reynolds stress integrated across the mixing layer

indicate that transition is delayed with the thin plate, with values remaining close to

zero in Case VII.B up to x/δ1 ≈ 42, compared to Case VII.A, which becomes non-
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zero at x/δ1 ≈ 20 (Figure 5.38). Further downstream, the growth rate of quantities

Kx, Ky and K is higher for Case VII.B than in Case VII.A, with the latter case

being closer to experimental data. Values of Kz are lower for Case VII.B, but Case

VII.A results are in closer agreement with wind tunnel data. Reynolds stress profiles

(Figure 5.39) confirm that the flow in Case VII.B is laminar at x/δ1 < 42. Close to

the outflow boundary, peak values of 〈u2〉 and 〈v2〉 are considerably larger in Case

VII.B versus Case VII.A, while profiles of 〈w2〉 are lower lower in the former case.

Levels of 〈uv〉 are similar in both cases. For all Reynolds stresses, Case VII.A results

are considerably closer to experimental data than Case VII.B.

Flow visualization using iso-surfaces of the λ2-criterion (Figure 5.40), introduced

in [34], show the coherent flow structures in Cases VII.A and VII.B. The large struc-

tures observed in figure are large-scale laminar vortex structures of spanwise vortic-

ity. On the top figure, these structures appear at x/δ1 ≈ 10 and are broken down

by streamwise vortices appearing at around x/δ1 = 40, which creates small-scale

turbulent structures further downstream. In the bottom figure (Case VII.B), the

appearance of large-scale structures is delayed until x/δ1 ≈ 30 and the flow never

turns fully turbulent, but shows scattered spots of “turbulence”, characterized by

the presence of streamwise vortices. These images are consistent with findings from

turbulence statistics, in the sense that the case with a thick plate produced more

three-dimensional flow, where large spanwise vortices have broken down to small

turbulent structures, while the thin plate produces a flow which is predominantly

laminar with the intermittent occurrence of turbulent spots. The different nature of

both flows explains the difference in growth rates (Figure 5.36) and distribution of

turbulent kinetic energy (Figure 5.38).

According to experiments conducted by Dziomba & Fiedler [29], splitter plate

thickness, h, has negligible effect on the mixing layer when this parameter is below

50% of the combined displacement thicknesses of the inflow boundary layers. This

condition is satisfied in current simulations. However, numerical results show that

the infinitely thin splitter plate represents a special case, with splitter plate thickness
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playing a significant role in triggering transition and the distribution of energy among

the different components of velocity fluctuations. The thin plate generates a more

two-dimensional mixing layer, with most of the energy being transferred to planar

components of velocity and suppresses spanwise fluctuations, while the thick splitter

plate produces a more three-dimensional flow which, according to statistics evaluated

in this section, is more representative of the mixing layer in wind tunnel experiments.

Current results are in agreement with numerical [40] and experimental results [14]

where the effect of the shape of the splitter plate trailing edge on the mixing layer

was analyzed. A thick splitter plate with a blunt trailing edge produced self-excited

turbulence while a beveled plate with a thin trailing edge produce a more two-

dimensional flow. In such studies, however, the thickness of the plate was large

relative to the thickness of the inflow boundary layers. Therefore, results presented

in this paper support the notion that having a splitter plate with finite thickness,

no matter how small, is beneficial for triggering self-excited turbulence which is

generated in wind tunnels due to the non-zero thickness in experiments, since it is

not possible to produce an infinitely thin plate physically.

Comparing the impacts of all simulation parameters considered in the work, varia-

tion of the domain streamwise direction and splitter plate thickness had the strongest

effect, which influence all considered statistics including the mean velocity profiles.

Next in line is the solution response to the grid changes, based on the strength of

their impact and the number of affected statistics. A perspective of obtaining the so-

lution independent of these parameters in this flow geometry requires further studies

and currently, is unlikely. Initial conditions are also a factor to consider unless all

simulations start from the fixed laminar solution. On the other hand, effects from the

domain spanwise and transverse dimensions, as well as time step size and boundary

layer parameters at the trailing edge of the plate, are easier to control to obtain the

solution independent of these parameters.
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Figure 5.30: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Cases I and VII). First row – 〈u2〉, second row – 〈v2〉,
third row – 〈w2〉, fourth row – 〈uv〉. Experimental data given for compari-
son with the simulation results at x/δ1 = 160 were obtained at the location of
x/δ1 = 195. Notations are the same as in Figure 5.27.
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(a) (b)

Figure 5.31: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data from Case VII,
circles experiment [10]. Line styles: dotted - ∆t1, solid - ∆t2.

(a) (b) (c) (d)

Figure 5.32: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Case VII). Notations are the same
as in Figure 5.31.

(a) (b) (c) (d)

Figure 5.33: Streamwise evolution of the turbulent kinetic energy and the nor-
mal Reynolds stresses integrated across the mixing layer (Case VII). Notations
are the same as in Figure 5.31.
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Figure 5.34: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Case VII). First row – 〈u2〉, second row – 〈v2〉, third
row – 〈w2〉, fourth row – 〈uv〉. Experimental data given for comparison with
the simulation results at x/δ1 = 160 were obtained at the location of x/δ1 = 195.
Notations are the same as in Figure 5.31.
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(a) (b)

Figure 5.35: Spectral element grid (thick lines) and quadrature points (inter-
section of thin lines) near the trailing edge of the plate in the base grids for a)
Case VII.A and b) Case VII.B.

(a) (b)

Figure 5.36: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data, circles experi-
ment [10]. Line styles: solid - Case VII.A, dashed - Case VII.B.

(a) (b) (c) (d)

Figure 5.37: Mean velocity profiles at different streamwise locations: a) x/δ1 =
10, b) x/δ1 = 20, c) x/δ1 = 30, d) x/δ1 = 160 (Case VII with thin and thick plate).
Notations are the same as in Figure 5.36.
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(a) (b) (c) (d)

Figure 5.38: Streamwise evolution of the turbulent kinetic energy and the
normal Reynolds stresses integrated across the mixing layer (Case VII with
thin and thick plate). Notations are the same as in Figure 5.36.

Figure 5.39: Profiles of the Reynolds stresses at different locations in the
streamwise direction (Case VII with thin and thick plate). First row – 〈u2〉,
second row – 〈v2〉, third row – 〈w2〉, fourth row – 〈uv〉. Experimental data given
for comparison with the simulation results at x/δ1 = 160 were obtained at the
location of x/δ1 = 195. Notations are the same as in Figure 5.36.
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Figure 5.40: Flow visualization of vortex structures in the mixing layer us-
ing iso-surfaces of λ2-criterion, colored by instantaneous spanwise velocity, W .
View normal to the x− z plane. Top – Case VII.A, bottom – Case VII.B.
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Mixing Layer Turbulence Statistics

The mean flow statistics of the turbulent mixing layer generated from Case IV sim-

ulations, described in Chapter 4, are presented in this chapter. Turbulence statistics

considered are mean velocity field, Reynolds stresses (second-order moments), veloc-

ity moments up to fifth order and budget terms from transport equations of Reynolds

stresses. Only moments necessary to solve the transport equations of the planar flow

are presented. Such statistics provide a full description of the turbulent flow.

Statistics presented in this chapter were computed from “on-the-fly” statistics,

meaning that statistical samples were taken at every time step, with Equation (2.4)

equivalent to a time average using the trapezoidal rule for integration in time, where

the time average is given by:

〈Q〉T =
1

T

∫ T

0

Q(t)dt. (6.1)

The non-dimensional time interval used to gather statistics was

∆T = [2530, 13130],

for a total period of T = 10, 600 or 24.23τf . With a time step of ∆t = 0.02, a total of

530,000 time steps or equivalently statistical samples were used. Spanwise averaging

(Equation (2.5)) was also applied to statistics. This procedure yielded well-converged

velocity moments up to fifth order.

77



Chapter 6. Mixing Layer Turbulence Statistics

(a) (b) (c) (d)

Figure 6.1: One-dimensional energy spectrum at y = 0 at streamwise locations:
a) x/δ1 = 200, b) x/δ1 = 225, c) x/δ1 = 250, d) x/δ1 = 325. Dashed line indicates
constant -5/3 slope.

6.1 Flow turbulence and self-similarity

In this section, the quality of generated turbulence in DNS is analyzed using the

one-dimensional energy spectrum [64]:

Exx(ω) =
1

π

∫ ∞
−∞

e−iωτRxx(τ)dτ =
1

π

∫ ∞
−∞

e−iωτ 〈u(t)u(t+ τ)〉dτ, (6.2)

computed at y = 0 at selected locations in the streamwise direction. The simulated

flow self-similarity is addressed as well.

The one-dimensional energy spectrum is shown in Figure 6.1. The constant slope

of -5/3 (dashed line) corresponding to the spectrum inertial range is observed between

x/δ1 ≈ 200 − 225, meaning the flow is fully turbulent downstream of this location.

Figure 6.1d shows that turbulence is maintained further downstream, close to the

domain outlet.

The flow is also examined for self-similarity. In the experiments [10], the mixing

layer self-similarity was reported around Lx = 312.5δ1. One of the mixing layer

self-similarity conditions is the linear growth of its thickness. This is observed in the

simulation at approximately x/δ1 = 180 as shown in Figure 6.2, where the dashed

lines correspond to the constant slopes ∂δML/∂x = 0.0262 and ∂θ/∂x = 0.0103. The

slopes were calculated using a least-squares line fitting procedure with thickness val-

ues at x/δ1 > 180, which yields a goodness-of-fit measure of R2 = 0.998 for both the

mixing layer and momentum thicknesses, where R2 is the coefficient of determination
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(a) (b)

Figure 6.2: The mixing layer growth characterized by a) mixing layer thick-
ness, b) momentum thickness. Notations: lines DNS data (Case IV), circles
experiment [10]. Line styles: solid - DNS data, dashed - constant slope line.

from the linear fit. Reported growth rate in [10] is ∂δML/∂x = 0.023, which is about

10% lower than result from numerical simulations. These results are consistent with

experimental observations [10], where untripped inflow conditions produced higher

growth rate than tripped conditions, suggesting that perturbing the flow results in

lower growth rate. When comparing numerical inflow conditions against wind tunnel

conditions (see Section 5.1), it is clear that experimental boundary layers are more

perturbed than numerical ones, which may explain why the simulated mixing layer

has a slightly higher growth rate than the experimental one. It should be mentioned

that there are uncertainties associated to the computation of δML and ∂δML/∂x in

both experimental and numerical results, and it is possible that the difference in

growth rate between wind-tunnel and simulation results may be due to these uncer-

tainties.

Another indication of self-similarity is turbulence statistics becoming independent

of the streamwise location when normalized with respect to the mixing layer thickness

and the velocity difference, ∆U . For the integral of the turbulent kinetic energy

across the mixing layer, K = 0.5(Kx + Ky + KZ), this requirement is equivalent to

the linear growth of K with the distance downstream the splitter plate [4]. Figure 6.3
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Figure 6.3: Streamwise evolution of the turbulent kinetic energy and the nor-
mal Reynolds stresses integrated across the mixing layer. Notations are the
same as in Figure 6.2.

Figure 6.4: Streamwise evolution of peak values of Reynolds stresses. Nota-
tions: solid line – DNS (Case IV), circles – experiment [10].

demonstrates that this is indeed the case at x/δ1 > 180, similar to what is observed

in Figure 6.2 for the mixing layer thickness, with growth rate ∂K/∂x = 0.0014 given

by the slope of the straight dashed line, with R2 = 0.997.

Peak values of Reynolds stresses in Figure 6.4 become almost constant towards

the domain outlet, achieving similar rate of decay as experimental data around

x/δ1 = 270. Profiles of the Reynolds stresses 〈u2〉 and 〈uv〉 are well converged

in the considered range between x = 300δ1 and 320δ1 (Figure 6.5). The 〈v2〉- and

〈w2〉 profiles overlap with some variability at x = 300δ1 and 310δ1, but peak values

change by less than 3.5% in the considered range for both statistics. Overall, the

analysis of the Reynolds stress profiles suggests that the location at x = 300δ1 is a

suitable candidate for the flow self-similarity. This value is in a close agreement with

the experimental observations (x = 312.5δ1).

A more rigorous criterion for self-similarity based on the total dissipation of the

turbulent kinetic energy,

E =

∫ Ly/2

−Ly/2

εdy =

∫ Ly/2

−Ly/2

〈
∂ui
∂xk

∂ui
∂xk

〉
dy, (6.3)
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Figure 6.5: Reynolds stress profiles in the self-similar region. Notations: lines
– DNS (Case IV), circles – experiment [10]. Line styles: dotted – x/δ1 = 300,
dashed – x/δ1 = 310, solid – x/δ1 = 320.

(a) (b)

Figure 6.6: Evolution of the turbulent kinetic energy dissipation rate integrated
across the mixing layer a) in the streamwise direction, b) as a function of the
local Reynolds number. Notations: solid lines - current DNS data, × – DNS
data from [4], ◦ - DNS data from [68].

was proposed in [68, 18] and requires E to be constant in a self-similar mixing layer. In

the current simulation, E initially grows rapidly peaking at x/δ1 ≈ 180 and reducing

slowly towards the domain exit (Figure 6.6a). This location is in agreement with

the beginning of the constant slope for the mixing layer thickness and the integrated

turbulent kinetic energy shown in Figures 6.2 and 6.3, respectively.

In Figure 6.6b, results of the current simulation are compared against data for

spatially- and temporally-developing turbulent mixing layers obtained in other DNS

[4, 68]. In the figure, the normalized E is plotted as a function of the Reynolds

number based on the vorticity thickness, δω = ∆U/ (∂U/∂y)max. The total dissi-

pation rate behaves similarly in the three simulations, slowly converging towards
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(a) (b)

Figure 6.7: Profiles of planar mean velocity component at x = 300δ1. a) nor-
malized 〈U〉, b) normalized 〈V 〉. Notations: solid lines - current DNS data, ◦ -
experiment at x = 324δ1 [10].

values of E ∼ 0.0045− 0.005. Close values of this parameter obtained in three DNS

are remarkable given the simulations differences. Notice that none of the simula-

tions achieved constant asymptotic value of E , even though asymptotic turbulence

statistics were reported in [4] and [68] as in the current study. This suggests that

turbulence statistics (mean velocity and Reynolds stresses) can have an asymptotic

behavior, before E becomes constant. The mixing layer self-similarity may also be a

local phenomenon, not sustainable on a long distance.

6.2 Mean velocity and velocity moments

In this section, self-similar profiles taken at x = 300δ1 of mean velocity components

and velocity moments up to fifth order are presented. Only statistics relevant to a

planar flow are presented. Higher-order moments have the form 〈unvmwk〉, where

n+m+k = 2, 3, 4, 5 for second-, third-, fourth- and fifth-order moments, respectively.

Only moments with k = 0, 2 are considered for planar flows. While moments with

k = 4 may be non-zero, e.g. 〈w4〉, these are not used in the closure of RANS equations

representing planar flows, and thus are not presented in this chapter.
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(a) (b)

(c) (d)

Figure 6.8: Reynolds stress profiles at x = 300δ1. a) 〈u2〉∗, b) 〈v2〉∗, c) 〈w2〉∗, d)
〈uv〉∗. Notations: solid lines - current DNS data, ◦ - experiment at x = 324δ1 [10].

Streamwise mean velocity in Figure 6.7a shows the typical shear layer profile,

which is in good agreement with experimental data. Transverse mean velocity (Fig-

ure 6.7b) is negative towards the flow centerline (−1 < η < 1), which indicates

that the shear layer moves towards the slow-speed stream (y < 0) as it convects

downstream, which is a well documented behavior of spatially developing mixing

layers [42, 16, 25]. To the best of the author’s knowledge, there is no experimental or

numerical data available for 〈V 〉 that could be compared directly with current results:

publications either completely omit this statistic [17, 81, 9, 4, 80, 68, 73] or used flow

conditions which significantly differ from those used in this study [42, 16, 23].

Profiles of velocity moments are shown in Figures 6.8-6.11. In the figures, 〈...〉∗

indicates that kth-orders statistics have been normalized by dividing by (∆U)k.
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Numerical results for Reynolds stresses are higher than wind-tunnel values Fig-

ure 6.8, specially for 〈v2〉. Considering the analysis in Chapter 5, differences in inflow

conditions (laminar boundary layers in simulation vs. “nominally laminar” bound-

ary layers in the experiment) cause turbulence statistics to differ. Restrictions in the

computational domain size, particularly in the transverse dimension (Ly), may also

promote higher peak values for Reynolds stresses, as evidenced by the behavior of

Case II in Section 5.4.

Figure 6.9 shows profiles of third-order moments that are anti-symmetric with

respect to the flow centerline (η = 0). Experimental data is only available for moment

〈uv2〉 (Figure 6.9a), which seems to match numerical results. Higher-order moments

are shown in Figures 6.10 and 6.11. These statistics may be used for validation of

Gram-Charlier series expansion. As an example, the Gram-Charlier approximations

of 〈u5〉 and 〈v5〉 are compared against computed statistics in Figure 6.12. The figure

shows the potential of fifth-order moments to be modeled by Gram-Charlier series

expansion and that statistics presented in this work can be used for validation of

Gram-Charlier approximation in free-shear flows.

6.3 Reynolds stress transport budgets

Budget terms from transport equations of Reynolds stresses, computed using equa-

tions in Appendix B, are shown in this section.

Convection, production, turbulent diffusion and velocity/pressure-gradient terms

normalized by δML/∆U
3 are shown in Figure 6.13. Molecular diffusion and viscous

dissipation terms are shown in Figure 6.14.

Dissipation terms show spikes at the location elemental interfaces. These appear

when gradients are calculated from velocity field, since continuity is not enforced

across element boundaries on derivatives of velocity (the solution is C0 continuous on

the domain). According to [69], the spikes are indicative of under-resolved flow and
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(a) (b)

(c)

Figure 6.9: Profiles of third-order moments at x = 300δ1. a) 〈uv2〉∗; b) solid line
– 〈u3〉∗, dashed line – 〈v3〉∗; c) solid line – 〈u2v〉∗, dashed line – 〈vw2〉∗, dotted
line – 〈uw2〉∗. Notations: lines - current DNS data, ◦ - experiment [10].

should vanish by solving the flow with spectral elements of higher polynomial order.

However, tests conducted for the mixing layer flow using polynomials of order N = 13

( compared to N = 11 used to produce results presented in this chapter) did not

show diminished spikes in viscous dissipation terms. Results suggest that the spikes

are an inherent problem of the spectral-element method, and the reason for such

spikes is yet to be identified. Molecular diffusion terms also present spikes related

with spatial derivatives at elemental interfaces, but these are of smaller magnitude

than in viscous dissipation term. Different approaches were used to try to mitigate

the effect of such spikes, but attempts were unfruitful.

The plots presented in this section imply that while spatial resolution satisfying
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(a) (b)

(c)

Figure 6.10: Profiles of fourth-order moments at x = 300δ1. a) solid line – 〈u4〉∗,
dashed line – 〈u3v〉∗, dotted line – 〈u2v2〉∗; b) solid line – 〈v4〉∗, dashed line –
〈uv3〉∗, dotted line – 〈u2w2〉∗; c) solid line – 〈v2w2〉∗, dashed line – 〈uvw2〉∗.

the criterion (δx · δy · δz)1/3 < 4.9ηK , proposed in Section 4.4 based on discussion in

[61, 78], may be sufficient for resolution of velocity field and computation of velocity

moments, it may be insufficient for computation of budget terms, specially viscous

dissipation. Increasing statistical sampling by increasing simulation time did not

improve current statistics for budgets. Improvement of the quality of statistics for

computation of budget terms will remain a subject for future research.
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(a) (b)

(c) (d)

Figure 6.11: Profiles of fifth-order moments at x = 300δ1. a) Solid line – 〈u5〉∗,
dashed line – 〈u4v〉∗, dotted line – 〈u3v2〉∗; b) solid line – 〈v5〉∗, dashed line –
〈uv4〉∗, dotted line – 〈u2v3〉∗; c) solid line – 〈u3w2〉∗, dashed line – 〈u2vw2〉∗; d)
solid line – 〈uv2w2〉∗, dashed line – 〈v3w2〉∗.
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(a) (b)

Figure 6.12: Profiles of fifth moments and truncated Gram-Charlier series
expansion computed at x = 300δ1. a) 〈u5〉∗; b) 〈v5〉∗. Notations: solid line -
computed moments, dashed line - truncated Gram-Charlier series expansion.

Figure 6.13: Normalized budget terms from transport equations of Reynolds
stresses. Notation: thick solid line – production, thin solid line – turbulent
diffusion, dotted line – convection, dashed line – velocity/pressure-gradient.
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Figure 6.14: Normalized molecular diffusion and viscous dissipation terms from
transport equations of Reynolds stresses. Notation: solid line – dissipation,
dashed line – molecular diffusion.
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Conclusions

We present results of DNS of a planar spatially-developing incompressible turbulent

mixing layer between two co-flowing laminar boundary layers. The purpose of the

study was to generate a more complete data set of statistical parameters character-

izing the flow to facilitate better understanding of the flow physics, which has been

achieved by generating statistics for velocity moments up to fifth order. In addition,

better understanding of the effects of simulation parameters on numerical results was

achieved by conducting a sensitivity analysis of the simulation results to variations

in dimensions of the computational domain with the focus on determining the do-

main dimensions sufficient for the mixing layer to achieve its self-similar state at an

acceptable simulation cost.

Seven computational domains of similar geometry, but different dimensions were

considered. Two structured grids were generated. Both grids comply with the state-

of-the-art requirements for a DNS grid, but one of the grids has finer resolution

in the splitter plate wake area. With respect to the domain transverse dimen-

sion, the current simulations demonstrated that the criterion for this dimension:

6.96 < Ly/δω,max < 8.3, used in the previous studies [4, 80] does not guarantee

independence of all considered statistics from this simulation parameter. A new con-

dition: Ly/ (δML)max ≥ 17.5, is proposed to ensure the results independence from
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this parameter. The insufficient domain dimension in the transverse direction leads

to increase in the maximum values of the Reynolds stress profiles, particularly those

including velocity fluctuations in the plane normal to the transverse direction. As a

result, one can expect the turbulence level to be increased when comparing with the

solution independent from this domain dimension.

The study confirmed the criterion A = Lz/θmax > 10 proposed in [48] to elimi-

nate effects of the domain spanwise dimension on the simulation results. With this

condition being satisfied, the maximum value of the Reynolds stress 〈w2〉 was found

to be sensitive to variation in Lz close to the domain exit. Minor changes in the

maximum value of the Reynolds stress 〈uv〉 were also observed in the vicinity of the

splitter plate. Other statistics were not affected. The observed effects appear to be

unrelated to the splitter plate thickness.

Variation in the domain streamwise dimension has the strongest effect on all

considered statistics and everywhere in the flow. In particular, increasing the domain

size in this direction delayed the flow mixing and its transition to turbulence. The

level of turbulent kinetic energy was overall higher in simulations with the shorter

domain, but near the shorter domain exit, the turbulent kinetic energy in streamwise

and transverse directions was found to be suppressed below that level in the longer

domain. Possible causes can be multiple including numerical, such as boundary

conditions, for example. However, experiments also discovered that the streamwise

dimension of the test section influences the measurements. If the effect is physical,

then, the solution independent of this simulation parameter may not exist.

The grid effects were also found to be strong. The turbulent mixing layer growth,

evolution of the normal Reynolds stresses integrated across the mixing layer (except

for Ky), the Reynolds stresses in the vicinity of the splitter plate and 〈w2〉 every-

where in the domain were the statistics most influenced by changes in the grid. In

particular, the impact of the grid stretching on the simulation results requires further

examination. Similar to the domain streamwise dimension effects, it is questionable

whether the grid-independent statistics can be generated from DNS in complex flow
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geometries. Some effects of the simulation initial conditions were observed on all

Reynolds stresses in the splitter plate vicinity. The Reynolds stress 〈u2〉 was influ-

enced everywhere in the flow.

Time step size had to be considered as another factor influencing numerical solu-

tion. While decreasing time step size produced a slight increase in turbulent kinetic

energy, particularly in integral quantities Ky and Kz, a larger time step size produced

results in closer agreement with experimental data. This numerical parameter has

the potential to dampen or trigger instabilities in the flow which affect turbulence

statistics, and therefore, should be chosen so that the simulated flow appropriately

represents the physical flow.

Inflow boundary layer parameters at the trailing edge of the splitter plate mostly

affected the mixing layer growth rate and turbulence statistics close to the trailing

edge, having less of an effect on turbulence statistics downstream.

The study also confirmed the conclusion from previous studies [39, 40, 14] about

the importance of incorporating the finite splitter plate thickness into computations

for matching the mixing layer growth observed in experiments. The mixing layer

thickness growth and the integral values of turbulent kinetic energy across the mixing

layer obtained using a thick plate are in close agreement with the experimental data

without any artificial velocity perturbations being seeded into the flow to facilitate

turbulence. That is not the case when using an infinitely thin plate. Dynamics of

the Reynolds stresses along the flow streamwise direction is also better reproduced

with a thick plate than with a thin plate.

The study determined dimensions of the computational domain suitable for the

mixing layer to reach self-similarity. This domain was used for collecting self-similar

high-order statistics and budget terms from Reynolds stress transport equations.

Such statistics were not previously available for a spatially developing mixing layer

in self-similar regime in published literature. Examples of fifth-order moments com-

puted using Gram-Charlier series expansion show the usefulness of current statistics

for the validation of this approximation. Profiles of budget terms, particularly vis-
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cous dissipation, showed undesired features which may be related to poor spatial

resolution. However, such features may also be associated with inherent problems

in the spectral-element method for computing such terms, since velocity gradients

are not continuous across the computational domain. More strict spatial resolution

may be required in future studies using spectral-element method to compute reliable

budget terms.
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Appendix A

Computation of Velocity Moments

High-order moments may be calculated from mean velocity components and raw

moments using the following equations:

〈uiuj〉 = 〈UiUj〉 − 〈Ui〉〈Uj〉 (A.1)

〈uiujul〉 = 〈UiUjUl〉 − 〈Ui〉〈UjUl〉 − 〈Uj〉〈UiUl〉 − 〈Ul〉〈UiUj〉

+ 2〈Ui〉〈Uj〉〈Ul〉, (A.2)

〈uiujulum〉 = 〈UiUjUlUm〉 − 〈Ui〉〈UjUlUm〉 − 〈Uj〉〈UiUlUm〉

− 〈Ul〉〈UiUjUm〉 − 〈Um〉〈UiUjUl〉+ 〈Ui〉〈Uj〉〈UlUm〉

+ 〈Ui〉〈Ul〉〈UjUm〉+ 〈Ui〉〈Um〉〈UjUl〉+ 〈Uj〉〈Ul〉〈UiUm〉

+ 〈Uj〉〈Um〉〈UiUl〉+ 〈Ul〉〈Um〉〈UiUj〉 − 3〈Ui〉〈Uj〉〈Ul〉〈Um〉 (A.3)
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Appendix A. Computation of Velocity Moments

〈uiujulumun〉 = 〈UiUjUlUmUn〉 − 〈Ui〉〈UjUlUmUn〉 − 〈Uj〉〈UiUlUmUn〉

− 〈Ul〉〈UiUjUmUn〉 − 〈Um〉〈UiUjUlUn〉 − 〈Un〉〈UiUjUlUm〉

+ 〈Ui〉〈Uj〉〈UlUmUn〉+ 〈Ui〉〈Ul〉〈UjUmUn〉+ 〈Ui〉〈Um〉〈UjUlUn〉

+ 〈Ui〉〈Un〉〈UjUlUm〉+ 〈Uj〉〈Ul〉〈UiUmUn〉+ 〈Uj〉〈Um〉〈UiUlUn〉

+ 〈Uj〉〈Un〉〈UiUlUm〉+ 〈Ul〉〈Um〉〈UiUjUn〉+ 〈Ul〉〈Un〉〈UiUjUm〉

+ 〈Um〉〈Un〉〈UiUjUl〉 − 〈UiUj〉〈Ul〉〈Um〉〈Un〉 − 〈UiUl〉〈Uj〉〈Um〉〈Un〉

− 〈UiUm〉〈Uj〉〈Ul〉〈Un〉 − 〈UiUn〉〈Uj〉〈Ul〉〈Um〉 − 〈UjUl〉〈Ui〉〈Um〉〈Un〉

− 〈UjUm〉〈Ui〉〈Ul〉〈Un〉 − 〈UjUn〉〈Ui〉〈Ul〉〈Um〉 − 〈UlUm〉〈Ui〉〈Uj〉〈Un〉

− 〈UlUn〉〈Ui〉〈Uj〉〈Um〉 − 〈UmUn〉〈Ui〉〈Uj〉〈Ul〉

+ 4〈Ui〉〈Uj〉〈Ul〉〈Um〉〈Un〉. (A.4)
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Appendix B

Transport Equations of Velocity

Moments

Transport equations for the Reynolds stresses are given by:

∂〈uiuj〉
∂t

+ Cij = Pij + Tij + Πij + εij +Dij (B.1)

where the budget terms

Cij = 〈Uk〉
∂〈uiuj〉
∂xk

,

Pij = −〈uiuk〉
∂〈Uj〉
∂xk

− 〈ujuk〉
∂〈Ui〉
∂xk

Tij = −∂〈uiujuk〉
∂xk

Πij = −1

ρ

(〈
ui
∂p

∂xj

〉
+

〈
uj
∂p

∂xi

〉)
εij = −2ν

〈
∂ui
∂xk

∂uj
∂xk

〉
Dij = ν

∂2〈uiuj〉
∂xk∂xk

are known as convection, production, turbulent diffusion, velocity/pressure-gradient,

viscous dissipation and viscous (molecular) diffusion terms. For a statistically sta-

tionary flow, the time-derivative term is equal to zero. In the direction of homoge-

neous flow, derivatives of mean values are zero, i.e. ∂〈.〉/∂z = 0.
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Appendix B. Transport Equations of Velocity Moments

Transport equations of third-order moments are given by:

∂〈uiujul〉
∂t

+ Cijl = P
(S)
ijl + P

(T )
ijl + Tijl + Πijl + εijl +Dijl (B.2)

where

Cijl = 〈Uk〉
∂〈uiujul〉
∂xk

,

P
(S)
ijl = −〈uiujuk〉

∂〈Ul〉
∂xk

− 〈uiuluk〉
∂〈Uj〉
∂xk

− 〈ujuluk〉
∂〈Ui〉
∂xk

P
(T )
ijl = 〈uiuj〉

∂〈uluk〉
∂xk

+ 〈uiul〉
∂〈ujuk〉
∂xk

+ 〈ujul〉
∂〈uiuk〉
∂xk

Tijl = −∂〈uiujuluk〉
∂xk

Πijl = −1

ρ

(〈
uiuj

∂p

∂xl

〉
+

〈
uiul

∂p

∂xj

〉
+

〈
ujul

∂p

∂xi

〉)
εijl = −2ν

(〈
ui
∂uj
∂xk

∂ul
∂xk

〉
+

〈
uj
∂ui
∂xk

∂ul
∂xk

〉
+

〈
ul
∂ui
∂xk

∂uj
∂xk

〉)
Dijl = ν

∂2〈uiujul〉
∂xk∂xk

.
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Appendix B. Transport Equations of Velocity Moments

Transport equations of fourth-order moments are given by:

∂〈uiujulum〉
∂t

+ Cijlm = P
(S)
ijlm + P

(T )
ijlm + Tijlm + Πijlm + εijlm +Dijlm (B.3)

where

Cijlm =〈Uk〉
∂〈uiujulum〉

∂xk
,

P
(S)
ijlm =− 〈uiujuluk〉

∂〈Um〉
∂xk

− 〈ujulumuk〉
∂〈Ui〉
∂xk

− 〈uiulumuk〉
∂〈Uj〉
∂xk

− 〈uiujumuk〉
∂〈Ul〉
∂xk

P
(T )
ijlm =〈uiujul〉

∂〈umuk〉
∂xk

+ 〈ujulum〉
∂〈uiuk〉
∂xk

+ 〈uiulum〉
∂〈ujuk〉
∂xk

+ 〈uiujum〉
∂〈uluk〉
∂xk

Tijlm =− ∂〈uiujulumuk〉
∂xk

Πijlm =− 1

ρ

(〈
uiujul

∂p

∂xm

〉
+

〈
ujulum

∂p

∂xi

〉
+

〈
uiulum

∂p

∂xj

〉
+

〈
uiujum

∂p

∂xl

〉)
εijlm =− 2ν

(〈
uiuj

∂ul
∂xk

∂um
∂xk

〉
+

〈
ujul

∂ui
∂xk

∂um
∂xk

〉
+

〈
ulum

∂ui
∂xk

∂uj
∂xk

〉
+

〈
uium

∂uj
∂xk

∂ul
∂xk

〉〈
uiul

∂uj
∂xk

∂um
∂xk

〉
+

〈
ujum

∂ui
∂xk

∂ul
∂xk

〉)
Dijlm =ν

∂2〈uiujulum〉
∂xk∂xk

.

As mentioned before, for a statistically stationary flow, the time-derivative term

is equal to zero. In the direction of homogeneous flow, derivatives of mean values

are zero, i.e. ∂〈.〉/∂z = 0

106



Appendix C

Approximation of Fifth-Order

Moments

In Gram-Charlier series expansions, a non-Gaussian probability density function is

given in the form of a series of Hermite polynomials for two variables with respect to

the Gaussian distribution. By truncating the series expansion to the fourth order,

the following expressions for fifth-order velocity moments are obtained:

〈u5
i 〉 = 10〈u2

i 〉〈u3
i 〉, (C.1)

〈u4
iuj〉 = 6〈u2

i 〉〈u2
iuj〉+ 4〈u3

i 〉〈uiuj〉, (C.2)

〈u2
iu

3
j〉 = 6〈uiuj〉〈uiu2

j〉+ 〈u2
i 〉〈u3

j〉+ 3〈u2
iuj〉〈u2

j〉. (C.3)

Currently, only models of fifth-order velocity moments with up to two variables

(Equations. (C.1)-(C.3)) have been developed. However, these should be enough for

modeling dissipation processes and velocity/pressure-gradient correlations in trans-

port equations for planar flows.
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