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Abstract 35 

Foraging is a goal-directed behaviour that balances the need to explore the environment 36 

for resources with the need to exploit those resources. In Drosophila melanogaster distinct 37 

phenotypes have been observed in relation to the foraging gene (for), labelled the rover and 38 

sitter. Adult rovers explore their environs more extensively than do adult sitters. We explored 39 

whether this distinction would be conserved in humans. We made use of a distinction from 40 

Regulatory Mode Theory between those who ‘get on with it’–so-called Locomotors, and those 41 

who prefer to ensure they ‘do the right thing’, so-called Assessors. In this logic, rovers and 42 

Locomotors share similarities in goal pursuit, as do sitters and Assessors. In two samples, we 43 

show that genetic variation in PRKG1, the human orthologue of for, is associated with 44 

preferential adoption of a specific regulatory mode. Next, participants performed a foraging 45 

task to see whether genetic differences associated with distinct regulatory modes would be 46 

associated with distinct goal pursuit patterns. Assessors tended to hug the boundary of the 47 

foraging environment, much like behaviours seen in Drosophila adult sitters. In a patchy 48 

foraging environment, Assessors adopted more cautious search strategies maximising 49 

exploitation. These results show that distinct patterns of goal pursuit are associated with 50 

particular genotypes of PRKG1, the human orthologue of for.  51 

 52 

Significance Statement 53 

In two samples we show that different genotypes of the human orthologue of the 54 
foraging gene, PRKG1, were associated with unique patterns of self-regulation. On a virtual 55 
foraging task, we show that these self-regulatory profiles also engaged distinct search 56 
strategies. One of the genotypes looks remarkably similar in terms of foraging behaviour to a 57 
phenotype described in adult Drosophila melanogaster - the fruit fly. This phenotype - known as 58 
the sitter, tends to restrict exploration of the environment to local resources, a pattern we 59 
replicated in humans. 60 

 61 

Key words: foraging gene, self-regulation, locomotion, assessment, PRKG1 62 

/body 63 
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Searching for and securing food – foraging – is a fundamental and ubiquitous goal in the 64 

animal kingdom, observed across many species (1-3). Indeed, the foraging gene (for) affects 65 

behavior in species as diverse as the fruit fly (Drosophila melanogaster), honey bees, and 66 

nematodes (3). Manipulations of for gene levels are sufficient to modify the foraging behavior 67 

of multiple species despite the many genes involved in generating the behavior (3-5). The for 68 

gene accomplishes its major effects on behavior by regulating downstream genes (6). 69 

Drosophila melanogaster, the best studied of these species, exhibits phenotypes labeled rovers 70 

and sitters that differ in foraging behavior (3, 7-10). Adult rovers explore their environment 71 

widely with longer search paths than do adult sitters. In contrast, adult sitters ‘hug’ the 72 

boundary of a foraging environment, even after 24-hours of food deprivation that would 73 

normally prompt wider exploration (3, 11). These patterns of behavior reflect differences in the 74 

extent to which animals favour exploring vs. exploiting their environs (12). In other words, 75 

foraging balances the need for exploration (to avoid opportunity costs; 12) and exploitation of 76 

resources. Despite its ubiquity across species, how animals strike this balance between 77 

maximizing resource acquisition, while minimizing costs, is not well understood (13). 78 

The search behaviours of adult rovers and sitters may be related, in part, to differing 79 

levels of risk aversion (3, 11, 14). That is, exploration carries with it some level of risk (15). In an 80 

empty arena, akin to rodent open field tests (16), sitter flies move along the periphery hugging 81 

the edges, whereas rovers explore the center of the arena using what is known as darting 82 

exploration (14). These environs present the animal with a choice between sheltered and 83 

exposed regions (17). Thus, rovers could be said to show higher risk tolerance given their 84 

propensity to more fully explore their environs than sitters (3, 11, 14; see also 18 for a similar 85 

characterisation in rodents). In contrast, sitters manage risk by preferentially exploiting 86 

proximal resources (11).  87 

Although research shows that the for gene’s contributions to foraging varies within and 88 

between species (4, 5, 19-21), this balance between exploration and exploitation has not been 89 

investigated in humans. With respect to goal-pursuit, humans display individual differences 90 

somewhat akin to rovers and sitters. Regulatory Mode Theory delineates self-regulatory modes 91 

of Locomotion–which emphasises execution of actions, a ‘just do it’ approach, and Assessment 92 
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which emphasises evaluation of alternatives–a ‘do the right thing’ approach (22). Individuals 93 

vary in the degree to which each mode is dominant in a given circumstance. What we suggest 94 

here is that those for whom Locomotion is the dominant regulatory mode may behave in a 95 

conceptually similar manner to rovers. That is, they will explore their environment more 96 

extensively in the service of minimising opportunity costs (23). In contrast, those with a 97 

dominant Assessment regulatory mode may behave more like sitters, preferring to assess 98 

known quantities to choose the optimal way to exploit resources.  99 

Foraging strategies observed in Drosophila melanogaster can be attributed primarily to 100 

variation in a single gene–the so-called for gene (8-10). The human orthologue of for, known as 101 

PRKG1, also encodes a cGMP-dependent protein kinase (24). PRKG1 proteins are found across 102 

the nervous system and are thought to underpin neuroplasticity and learning (25), and likely 103 

influence behavior in myriad ways. Variation in PRKG1 was recently associated with interactions 104 

between maternal sensitivity and early life adversity (26), and alcoholism and trauma (27). 105 

However, its association with foraging and goal-pursuit generally, has yet to be examined. In 106 

two independent samples, we explored whether differences in the adoption of the distinct 107 

regulatory modes of Locomotion and Assessment would be associated with genotypes of 108 

rs13499, a single nucleotide polymorphism (SNP) in the 3’ untranslated region (3’UTR) of 109 

PRKG1. In the first sample, we associated variations in rs13499 with self-reported preference 110 

for Locomotion or Assessment to determine whether the rover and sitter phenotypes are 111 

conserved in humans. Our second sample functioned as a replication with the addition of 112 

metrics obtained from two virtual foraging tasks to explore whether the different genotypes 113 

would be associated with characteristic goal pursuit patterns.  114 

 115 

Results 116 

To investigate gene expression differences in rs13499 SNP variants we accessed 117 

information from the Common Mind Consortium (CMC; 118 

https://www.synapse.org//#!Synapse:syn2759792/wiki/69613; 600 humans fully genotyped 119 

including rs13499 SNP variants). In this sample, RNA expression levels from the dorsolateral 120 

prefrontal cortex (DLPFC) are measured for individual rs13499 variants. The DLPFC is critical for 121 
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goal-directed behaviour, executive control, and self-regulation (28, 29). The correlation 122 

computed between genotypes at rs13499 and DLPFC gene expression was p=0.00232 (30). The 123 

data showed higher expression in the C compared to the A allele which aligns with the 124 

Drosophila for gene data where the sitters who are like Assessors had overall lower gene 125 

expression (9, 31).  126 

 127 

Sample 1. 128 

To assess the extent to which people adopt either a Locomotion or Assessment 129 

regulatory mode, we used an established self-report questionnaire (22). Predominance of 130 

regulatory mode was calculated as a difference score by subtracting Assessment from 131 

Locomotion scores; positive scores indicate a predominant Locomotion regulatory mode and 132 

negative scores a predominant Assessment regulatory mode (RMP; Methods). We used 133 

regression models to determine the influence of different genotypes on regulatory mode 134 

preferences by coding the genotypes (AA=0, CA=1, CC=2) and exploring the influence on RMP 135 

scores. Assessment predominance (Figure 1) was highest for the homozygous AA genotype, a 136 

difference that approached significance (F=3.411, p=0.067 additive regression model; Figure 1).  137 

With respect to self-reported ethnicity, we examined differences in Caucasian (the 138 

largest ethnic group) and Non-Caucasians (a combination of ethnicities–Methods). The 139 

distribution of genotypes did not differ by ethnicity (χ2(2)=0.84, p=0.66) and no significant 140 

interactions were found between ethnicity and genotypes on all variables (all p-values>0.121, t-141 

test). For sex we found no differences across males and females on all measures (all p-142 

values>0.483) and no interaction between genotype and sex.  143 

Data from the Sample 1 suggested that genetic variants in PRKG1 (rs13499) differ in 144 

terms of preferred regulatory mode. Those with the AA genotype showed higher predominance 145 

for Assessment, a more sitter-like phenotype, than those with the CA and CC genotypes. Our 146 

selection criteria for this sample (see Methods) led to a relatively small sample size for the CC 147 

genotype (n=19). For Sample 2 we tested a larger sample with balanced representation of 148 

sexes. In addition, participants performed two virtual foraging tasks (Methods) to explore 149 
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differences in foraging search strategies that might correspond to phenotypes observed in 150 

Sample 1.  151 

 152 

Sample 2. 153 

Sample 1 results suggested an association between RMP and genetic variants in PRKG1 154 

(7, 11, 19, 26). Next, we aimed to replicate our findings in a larger sample while measuring 155 

search behaviours on an experimental analogue of foraging. Participants performed two virtual 156 

foraging tasks in which they searched for ‘berries’ on a touch screen in a limited time frame 157 

(Methods). Differences in goal pursuit, where they exist, should be evident in either individual 158 

metrics (e.g., path length, # of berries picked, etc.) or classification procedures demarcating 159 

search strategies (Methods). As with Sample 1, we first explored the association between 160 

genetic variation and RMP. In Sample 2, the rs13499 genotypes, AA, 45%, CA had 44% and CC 161 

had 11%, were in Hardy Weinberg Equilibrium (χ2(1)=0.01, p=0.99). The distribution of 162 

genotypes did not differ across sex (χ2(2)=1.46, p=0.48). As in Sample 1, individuals with the 163 

homozygous AA genotype were associated with significantly higher Assessment predominance 164 

(RMP) than those with the CA or CC genotypes (p=0.007, additive model). This time the 165 

difference was highly significant with Assessment predominance highest in the AA genotype 166 

(mean=-0.14, SD=1.0), lowest in the CC genotype (mean=0.2, SD=0.86) and intermediate in the 167 

CA genotype (mean=0.1, SD=1.02; note that smaller, negative numbers indicate an Assessment 168 

preference; Figure 1).  169 

           170 

--- insert Figure 1 here --- 171 

 172 

For Sample 2 there were trends towards differences across males and females, although 173 

none reached significance. Nevertheless, males of the AA genotype had marginally greater 174 

Assessment predominance (RMP; p=0.054), reduced Locomotion score (p=0.061) when 175 

compared to the CC genotype, with those of the CA genotype having intermediate scores. 176 

There was no significant association for Assessment (p=0.704). For females, those with the AA 177 

genotype had marginally greater Assessment predominance when compared to the CC 178 
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genotype, with the CA genotype showing intermediate scores (RMD; p=0.069). There was no 179 

significant association for Locomotion (p=0.245) or Assessment scores (p=0.282, all statistics 180 

represent an additive regression model).  181 

Next we examined foraging performance as a function of genotype (Table 1, Figure 2). 182 

While there were trends evident across genotypes when examining individual metrics (Table 1), 183 

we ultimately chose to make use of classification analyses to comprehensively characterise 184 

search behavior. To do this, we first determined the distribution of recurrent spatial-temporal 185 

movement patterns used by each participant (32; Methods). Individual search paths 186 

(Supplementary Figures 1 and 2) were clustered into three categories based on movement 187 

profiles. Concordance between three clustering algorithms (Methods) was used to determine 188 

strategy cluster membership. 76.2% of participants were characterized as either Boundary 189 

Biased (59.4%), or Systematic (16.7%) by all 3 clustering methods (Figure 2B). The third group 190 

was classified as “Mixed” (23.9%; Figure 2B). Search paths within this group tended to meander 191 

or showed a combination of Boundary Bias and Systematic strategies (SI Appendix, Fig. S1).  192 

The three foraging strategies differed significantly in terms of path length (p < 0.0001, 193 

ANOVA). In contrast to the Boundary Biased group, the Systematic and Mixed strategy groups 194 

had longer path lengths (p adjusted<0.00001, Tukey’s HSD). The Systematic and Mixed groups 195 

did not differ on path length (p adjusted=0.95, Tukey’s HSD). The three groups differed in terms 196 

of average turning angle (p<0.00001, ANOVA), with the Systematic group having smaller 197 

average turning angles than either the Boundary Biased or Mixed groups (p adjusted < 0.0001 198 

and 0.0027 respectively, Tukey’s HSD). The Mixed strategy group had a smaller average turning 199 

angle than did the Boundary group (p adjusted=0.023, Tukey’s HSD). There were no differences 200 

across groups in the number of berries picked (p=0.203, ANOVA; Table 1).  201 

 202 

--- insert Figure 2 here --- 203 

 204 

Our novel assay of human foraging behaviour suggests that humans cluster into three distinct 205 

search strategies, one of which–the Boundary Biased group–resembles behaviour observed in 206 
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adult sitter Drosophila melanogaster. The other two groups, although distinct from one 207 

another, tended to cover more of the search environment, much like the rover fly.  208 

 209 

--- insert Table 1 here --- 210 

 211 

Those with the AA genotype were more likely to adopt a Boundary Biased search 212 

strategy (compared to either Systematic or Mixed groups) than the CC genotype, with the CA 213 

genotype showing an intermediate preference for this strategy (p=0.02, additive model). Thus, 214 

variation in rs13499 is associated with foraging strategy choice in a manner consistent with the 215 

adult sitter phenotype in the fly. That is, those with the AA genotype of rs13499 demonstrate a 216 

stronger Assessment orientation and tend to hug the boundary of the search environment in 217 

much the same manner observed in the Drosophila ‘sitter’ phenotype.  218 

The foraging task first used here had berries spread uniformly throughout. This does not 219 

represent typical environments faced by animals or humans in which resources are sparsely 220 

distributed, forcing exploration decisions. Therefore, we had the same participants forage in an 221 

environment in which berries were sparsely distributed (labelled ‘patchy’; Methods). In this 222 

instance, task metrics did differentiate between genotypes (Table 1 and Figure 3). With respect 223 

to berry size, individuals with the AA genotype picked smaller berries than those with the CA 224 

genotype, which in turn picked smaller berries than those with the CC genotype (p=0.002). 225 

Similarly, those with the AA genotype stopped to pick berries in patches with fewer berries 226 

visible. For this metric, those with the CC genotype had the highest scores, with the CA 227 

genotype intermediate (Table 1; p=0.003; Figure 3). This latter effect was marginally significant 228 

in the uniform environment (Table 1). There was no influence on the total number of berries 229 

picked (p=0.959) or path length (p=0.707, all statistics represent an additive regression model; 230 

Table 1). 231 

 232 

--- insert Figure 3 here --- 233 

  234 

These results show that the AA genotype is associated with exploiting the local 235 

environment more extensively, picking berries as they encounter them (as opposed to stopping 236 



9 
 

to pick berries only when many are visible) and picking all available berries (even smaller, more 237 

difficult to ‘pick’ berries). There was no relationship with the number of berries picked 238 

(p=0.105) indicating that the AA genotype is associated with adopting of a more risk averse 239 

strategy akin to ‘sitters’.  240 

As for Sample 1, we examined the influence of ethnicity by contrasting Caucasians (the 241 

largest ethnic group) and Non-Caucasians (a combination of a range of ethnicities). The 242 

distribution of genotypes did not differ by ethnicity (χ2(2)=0.54, p=0.76) and no significant 243 

interactions were found between ethnic group and rs13499 genotypes on all study variables. 244 

There were some minor differences evident for individual metrics based on ethnicity. In 245 

contrast to Non-Caucasians, Caucasians had higher Locomotion scores (p=0.0215, t-test). 246 

Within the uniform environment, Caucasians more often adopted a systematic strategy 247 

(p=0.043, t-test), were less likely to adopt a boundary bias (p=0.056, t-test), made fewer 248 

movements (p=0.03, t-test), and picked more berries (p=0.04, t-test). Within the patchy 249 

environment, Caucasians exhibited smaller turning angles (p=0.008, t-test). There were no 250 

significant interactions between sex and rs13499 genotype on all foraging metrics. 251 

 252 

Discussion 253 

Our results show that genetic variation in PRKG1 associates with distinct regulatory 254 

mode preferences and characteristic search patterns on our foraging task. That is, in our novel 255 

assay of human foraging we observed three distinct search strategies–Boundary Biased, 256 

Systematic and Mixed. The first of these–Boundary Biased–was prominently associated with 257 

the AA genotype at the rs13499 SNP, a genotype that also tended to adopt an Assessment 258 

regulatory mode. The latter association was evident in both samples, more robustly in Sample 2 259 

(Figure 1). The opposite claim–that those with the C allele resemble rovers–is more difficult to 260 

substantiate but warrants further research. Certainly, those with a C allele were less likely to 261 

hug the boundary of the environment than were the AA genotypes. At the very least, the 262 

similarities observed here in two samples between sitters and assessors and their association 263 

with PRKG1/for across such phylogenetically distant species as humans and fruit flies, implies 264 

an adaptive component to this profile. 265 
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We have cast the distinct profiles of the rover/sitter and Locomotor/Assessor in terms 266 

of risk tolerance. The more extensive foraging paths seen in rovers reflect a higher level of risk 267 

tolerance. Although not as relevant for humans, any exploratory behaviour in animals carries 268 

some level of risk, including greater exposure to predators. The more extensive search paths of 269 

the rover indicate the animal is willing to accept those risks in the pursuit of resources. 270 

Similarly, the human Locomotor can be thought of as showing higher risk tolerance, preferring 271 

to ‘get on’ with things. The contrasting claims can be made for sitters/Assessors. In the fruit fly, 272 

the sitter tends to explore their environs more cautiously, hugging the boundary of the 273 

environment, rather than risking forays further afield to more exposed regions (11, 19). Our 274 

strongest association here is with human Assessors who show behaviours that bear a 275 

remarkable resemblance to this phenotype in the fruit fly. They are more likely to adopt a 276 

boundary bias, to begin picking berries even when the visible cache of berries is small (or 277 

smaller relative to the stopping rule chosen by those with the C allele; Table 1; Figure 3), and 278 

pick even the hard to get, smaller berries – perhaps not wanting to waste any available 279 

resources. Although we are casting these differences in terms of risk tolerance, it is worth 280 

noting that we have not directly tested risk tolerance or aversion here. Future work could 281 

explicitly manipulate levels of risk (e.g., using tasks such as the Iowa Gambling Task, 33), to 282 

more directly examine the relation between risk aversion and self-regulatory profiles. Any 283 

variation in adopted regulatory mode in humans likely depends on many genes and their 284 

interactions, with one’s preference for Assessment or Locomotion not solely driven by variation 285 

in PRKG1. Genes known to regulate Dopamine, a neurotransmitter involved in calculating value 286 

and reward signals in the brain, represent another likely target, among many, for exploring the 287 

genetic contributions to self-regulation (34).  288 

We used a composite measure of regulatory mode preference, one commonly used in 289 

the literature (35), to explore differences in behaviour and genotype. It remains the case that 290 

one can adopt either regulatory mode as circumstances dictate (22). So how robust are such 291 

preferences across time? The original work on Assessment and Locomotion (22) showed cross-292 

temporal stability responses were quite high (Locomotion r=0.77; Assessment r=0.74). In 293 

addition, across multiple large samples we have shown robust associations between regulatory 294 
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mode and other individual difference metrics (notably, boredom proneness which is robustly 295 

negatively correlated with Locomotion and positively correlated with Assessment; 36). With 296 

respect to foraging performance, more direct data is required. Comparing performance across 297 

the two environs, although problematic given each environment is explicitly expected to 298 

engender different behaviours, showed that 75.3% of participants who adopted a Boundary 299 

Bias in the uniform environment also did so in the patchy environment. Clearly, more research 300 

is needed to explore the consistency of behaviours across time in the same environments and 301 

across different tasks that rely on efficient self-regulatory control. 302 

We showed an association between human regulatory mode preferences and foraging 303 

behaviour akin to that observed in the adult fruit fly ‘sitter’. Using a novel assay of human 304 

foraging we showed–perhaps unsurprisingly, that human foraging is more complex than the 305 

rover and sitter phenotypes well characterised in Drosophila melanogaster (7, 9, 10). Humans 306 

show at least three distinct foraging strategies. How these strategies, along with variation in 307 

PRKG1, relate to other aspects of goal pursuit requires further work. In humans, genetic 308 

variation in PRKG1 is related to maternal sensitivity to adverse events early in life (26), and is 309 

implicated in the relation between alcoholism and trauma (27). In addition, there are a 310 

multitude of associations between the for gene and behaviour in the fruit fly that warrant 311 

investigation in the human, from stress responses to learning and memory (19). The suggestion 312 

here is that the human orthologue of the for gene plays a key role in the regulation of 313 

behaviour across many domains.  314 

 315 

Methods  316 

Sample 1 information 317 

 Participants for Sample 1 were recruited from a larger sample of 870 college students 318 

who completed a range of questionnaires including the regulatory mode scales used here (for a 319 

full description of the larger sample see 37). The sample used here (Sample 1) represents a 320 

subsample of this group chosen to represent the extremes of regulatory mode dimensions. To 321 

do this, we chose participants whose Locomotion or Assessment scores fell in the upper or 322 

lower tertile of the larger sample to ensure that scores on these domains were high or low on 323 
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at least one dimension. This gave us a sample of 575 participants from which we randomly 324 

drew 153 participants (117 females; mean age=18.99 years; SD=1.52) to collect genetic 325 

information. In terms of ethnicity, 55.6% identified as White/Caucasian, 26.5% as Asian, 8.6% as 326 

Black, 2.6% as Biracial, with 6.6% responding ‘other’ or declining to answer.  It is worth noting 327 

that our sampling methods meant that the distribution of genotypes in Sample 1 was unlikely 328 

to be representative of the larger sample from which they were drawn, or indeed, the general 329 

population, problems we rectified in Sample 2. Written informed consent was obtained from 330 

each participant prior to commencing the study which was approved by the Columbia 331 

University Institutional Review Board in 2011, and was conducted between September 2011 332 

and March 2012.  333 

 334 

Sample 2 information  335 

For Sample 2, a total of 450 undergraduates from the University of Waterloo 336 

participated. Data was collected during Fall 2015, Winter 2016 and Winter 2017 academic 337 

terms. All participants completed the regulatory mode questionnaires, two variants of the 338 

foraging task, as well as providing a saliva sample. Of the 450 participants, data for 13 was 339 

incomplete and excluded from further analysis (final sample=437; 215 females; mean 340 

age=19.99 years, SD=2.62; one participant did not disclose their sex). 43% identified as 341 

White/Caucasian, 25% as East Asian, 14% as South Asian, 3.9% as Southeast Asian, 3.7% as 342 

Middle Eastern, 3.4% as Black/African, and 9.5% identified with other ethnic groups. 2% 343 

declined to indicate their ethnicity. Written informed consent was obtained from each 344 

participant prior to commencing the study which was approved by the Office of Research Ethics 345 

at the University of Waterloo in February 2015. 346 

 347 

Genotype, ethnicity and sex  348 

We contrasted the two samples in terms of ethnicity with the samples split by Caucasian 349 

and Non-Caucasian. The two samples differed in terms of ethnicity (Sample 1 Caucasian=84, 350 

Non-Caucasian=67; Sample 2 Caucasian=187, non-Caucasian=250; Chi-square(1)=6.936, 351 

p<0.008). This likely reflects a number of things including the distinct communities from which 352 
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the samples were drawn and the selection criteria applied to Sample 1. The distribution of 353 

genotypes was independent of ethnicity (Chi-sq(2)=0.478, p=0.79; Sample 1: Genotype 354 

proportions for Caucasian AA=0.5; CA=0.36; CC=0.14: for Non-Caucasian AA=0.57; CA=0.33; 355 

CC=0.10: For Sample 2: Genotype proportions for Caucasian AA=0.44; CA=0.44; CC=0.12: for 356 

Non-Caucasian AA=0.46; CA=0.45; CC=0.09). 357 

Sample 1 did not have equivalent representation of males and females. Therefore, we 358 

did not examine differences in genotype distribution based on sex for this Sample. For Sample 359 

2, genotype distribution was independent of sex (Chi-sq(2)=1.47, p=0.481; for males AA=0.45; 360 

CA=0.42; CC=0.13: for females AA=0.46; CA=0.45; CC=0.09). The distribution of genotypes was 361 

in HW equilibrium for both sexes (males Chi-square=0.456, p=0.499; females Chi-square=0.607, 362 

p=0.436).  363 

 364 

DNA collection, extraction, polymorphism determination, and gene expression 365 

DNA collection, extraction and polymorphism determination procedures were identical 366 

for both samples. The Oragene OG-500 DNA kit (DNA Genotek, Ottawa, ON) was used for DNA 367 

collection from saliva samples (~2 mL). DNA extraction was done according to manufacturer’s 368 

instructions. The Clinical Genomics Centre (CGC) in Toronto performed the DNA isolation, 369 

quantitation, normalization and SNP genotyping on the saliva samples.  370 

The PRKG1 gene is located on Chromosome 10, cytological location 10q11.23-21.1 with 371 

a molecular location between 50,991358–52,298,350 base pairs. Selected SNPs within the 372 

PRKG1 gene occurred in protein coding regions (exons) or the 3’ untranslated region (UTR) and 373 

were predicted to either affect protein function or influence the regulation of PRKG1 mRNA 374 

transcripts. The SNPs in the exonic regions of PRKG1 were monomorphic in our sample and are 375 

not discussed further. The rs13499 SNP lies in the 3’ untranslated region (3’ UTR) of PRKG1 that 376 

is adjacent to the kinase domain, common to all transcripts. The variant rs13499 is located at 377 

chr10:52297965 (GRCh38.p7), mapping to the 3’UTR of PRKG1 and the intronic region of 378 

PRKG1-AS1, a long non-coding RNA that is likely coexpressed with PRKG1. The genomic location 379 

of rs13499 resides in 4 different PRKG1 mRNA transcripts suggesting a gene regulatory role for 380 

this SNP. This SNP (rs13499) showed significant variation across individuals. This SNP had a 381 
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minor allele frequency (MAF) in our Sample 1 of C=0.301 and in Sample 2 of C=0.335 which is 382 

similar to the global MAF of C=0.3111/1558 (1000 genomes). The rs13499 polymorphism 383 

generates three genotypes AA, CA and CC. In Sample 1 the genotype frequencies were 53% 384 

(n=81), 34.4% (n=53), and 12.6% (n=19), while in Sample 2 the frequencies were 45% (n=198), 385 

44% (n=192), and 11% (n=47) for the AA, CA, and CC genotypes respectively.  386 

SNP genotyping for each sample was done as part of larger studies. Details of identical 387 

methods used can be found in Sokolowski et al. (26). Briefly, samples were genotyped using 388 

Maldi-Tof Mass Spectrometry via The MassARRAY® System by Agena Bioscience. This approach 389 

uses multiplexing to assay multiple SNPs for each sample simultaneously and entails the single 390 

base extension (SBE) of an oligo probe designed to anneal directly adjacent to a SNP of interest. 391 

Data was analyzed using MassArray Typer software (v 3.4). Each multiplex reaction was 392 

assessed using standard quality control parameters and poorly performing SNPs and/or 393 

samples were disqualified.  394 

 395 

Regulatory Mode Questionnaire 396 

The Regulatory Mode Questionnaire (RMQ) measures individual differences in 397 

Locomotion and Assessment regulatory modes (22). Each regulatory mode orientation is 398 

assessed by a 12 item subscale (e.g., “By the time I accomplish a task, I already have the next 399 

one in mind”–endorsing this item indicates a Locomotion preference) rated on a 6-point Likert 400 

scale ranging from “Strongly Disagree” to “Strongly Agree.” High scores reflect greater 401 

emphasis of either the Locomotion or Assessment modes. Kruglanski et al. (22) reported an 402 

internal consistency of 0.82 for the Locomotion and 0.78 for the Assessment scales, and test-403 

retest reliability of 0.77 for the Locomotion and 0.73 for the Assessment scales. 404 

The regulatory mode predominance (RMP) score was calculated by subtracting 405 

Assessment from Locomotion scores, and scaling the difference score such that positive scores 406 

indicate a Locomotion predominance and negative scores indicate an Assessment 407 

predominance–a common approach to capturing the regulatory mode predominance within 408 

individuals (35).  409 

 410 
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Foraging Task 411 

 We developed a novel assay of human foraging programmed using python 2.7 with the 412 

aid of pygame (38). The task was shown on a touch screen placed flat on the table and inclined 413 

by ~25 degrees for ease of use (i.e., a vertical monitor would place undue strain on the 414 

shoulder). The foraging task consisted of a virtual 2D environment populated by red ‘berries’. 415 

The background was a grass-like texture (512 x 512 pixels) tessellated within a 20,000 x 20,000 416 

pixel environment. The screen displayed only a portion of the environment at a time, 417 

encompassing 1,264 x 1,080 pixels. Participants navigated using their index finger to swipe the 418 

screen.  ‘Berries’ were red circles varying in size from a radius of 4 to 16 pixels. 384 berries were 419 

present in the environment.  420 

Two distributions of berries were used, labelled uniform and patchy. The uniform 421 

environment was segmented into 16 equal zones (5,000 x 5,000 pixels each), with each zone 422 

containing 24 berries (2 of each size) pseudorandomly distributed such that no two berries 423 

could be 100 pixels from the center of another berry. The patchy environment consisted of 4 424 

distinct zones (high, medium, and low density zones, and an empty zone). There were 4 zones 425 

of each type. High density zones had 48 berries (4 of each size), medium density zones had 24 426 

berries (2 of each size), and low density zones had 12 berries (1 of each size). Zones were 427 

distributed such that no two zones of the same type were adjacent to each other (Figure 3 gives 428 

a density plot of berry distribution).  429 

In both environs participants had to collect as many berries as possible within 5 430 

minutes. The two environs were presented in counterbalanced order. A counter showing how 431 

many berries had been collected and a clock counting down the remaining time were displayed 432 

in the upper right corner. The task has a game-like feel to it and, as such, prior gaming 433 

experience may have influence strategy choice. Exploring the influence of gaming experience 434 

and distinct priors on foraging represents a fruitful avenue for further research. 435 

 436 

Foraging Classification Method 437 

To identify search strategies used, we first determined recurrent movement patterns 438 

using recurrence-quantification analysis (RQA; 32). Search paths were first clustered using three 439 
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separate algorithms (see Supplementary Material) followed by human observer classification 440 

(Supplementary Material). Concordance across all methods was 76.5% for the algorithms and 441 

75% for three human observers (see SI Appendix, Fig. S1 for example paths). 442 

Importantly, RQA analysis, the initial technique used to determine recurrent movement 443 

patterns (32), clearly showed differences in movement patterns which corresponded to the the 444 

three groups derived algorithmically (SI Appendix, Fig. S2). 445 

            446 
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Figure Legends 587 

Figure 1. Regulatory mode preference (RMP) by genotype. rs13499 polymorphism generates 588 

three genotypes (AA, CA, CC). In Sample 1 the genotype frequencies were 53% (n=81), 34.4% 589 

(n=53), and 12.6% (n=19). In Sample 2 the frequencies were 45% (n=198), 44% (n=192), and 590 

11% (n=47) for AA, CA, and CC genotypes respectively. 591 

 592 

Figure 2. Panel A. Schematic of the task environment. Panel B. Example search paths classified 593 

as Boundary Biased, Systematic, or Mixed (Methods). Panel C. Density plots for all participants 594 

in each search strategy group.  595 

 596 

Figure 3. Density plot of berries in the patchy environment (above). Differences in mean (±SE) 597 

size of berry picked (left) and number of berries visible when stopping to pick (right) by 598 

genotype (below; AA=blue, CA=orange, CC=grey). 599 

 600 



 

Table 1. Metrics from the foraging task (Sample 2) for uniform and patchy berry distributions. 

 AA CA CC   

 n=198 (51% male) n=192 (52% male) n=47 (43% male)   

Variable Mean SD Mean SD Mean SD F p 

 Uniform Foraging Environment 

path length (pixels) 139267 24836 139547 22178 139213 

 

24207 

 

0.00 0.963 

# of moves 249 49 249 55 248 

 

47 

 

0.03 0.885 

# of berries picked 152 20 154 21 150 

 

23 

 

0.00 0.959 

turning angle 33.56 10.53 35.31 11.1 32.99 

 

10.45 

 

0.29 0.591 

berry size (pixels) 6.62 0.22 6.62 0.21 6.61 

 

0.28 

 

0.02 0.881 

berries visible 1.84 0.18 1.86 0.19 1.89 

 

0.18 

 

3.65 0.057 

 Patchy Foraging Environment 

path length (pixels) 143769 25967 147084 25593 142259 27362 0.14 0.707 

 # of moves 263 55 257 56 254 57 1.65 0.199 

 # of berries picked 147 25 153 22 149 27 2.65 0.105 

 turning angle 34.19 10.24 34.44 10.31 33.37 9.75 0.42 0.838 

 berry size (pixels) 6.64 0.19 6.68 0.19 6.73 0.17 10.10 0.002 

 berries visible 2.06 0.25 2.12 0.26 2.16 0.23 8.63 0.003 
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Classification of Foraging Search Strategies 

Individual search paths we first subjected to an analysis of recurrent movement patterns 
using recurrence-quantification analysis (RQA; S1). From the RQA analysis we further classified 
individual search paths into distinct categories using three separate classification methods: 
Expectation-Maximization (EM), K-means, and hierarchical clustering (using the centroid 
agglomeration method). Each of these methods made use of the proportion of recurrent 
movement patterns (as determined by RQA) as the basis for clustering. We chose three distinct 
methods in order to determine which would best classify the majority of our participants. It 
turned out that no single method outperformed another. In addition, concordance between the 
three methods was high (76.5%). For the 76.5% of participants consistently classified by all 
three methods, we labelled them based on visual inspection of the individual search paths. This 
led to two groups labelled Boundary Biased (participants spent the majority of their search path 
hugging the boundary of the virtual environment) or Systematic (participants systematically 
went left-to-right or up-to-down across the environment; Fig. S1). The remaining 23.5% of the 
individual search paths could not be confidently categorized as either Boundary Biased or 
Systematic. We labelled this group ‘Mixed’ (Fig. S1). 



 
 

Fig. S1. Example foraging paths in the uniform environment. Purple=Boundary Biased; Green=Systematic; 
Orange=Mixed. 
 

 
Next, in an attempt to get a higher level of consistent classification, we had human 

observers classify individual search paths (authors JD, AStruk and JM did the classifications). 
Each was given an exemplar of Boundary Biased or Systematic (Mixed was not considered a 
category for this approach) and asked to classify the whole sample. Human observer 
classification led to a similar level of concordance achieved by the three algorithmic approaches 
(75% concordance). Thus, while some search paths in the ‘Mixed’ group appear similar to the 
Systematic group we chose to retain three distinct groups. Furthermore, the initial technique 
used to determine recurrent movement patterns (i.e., RQA; 1), clearly demonstrated 
differences in movement patterns among the three groups (Fig. S2). 



   

 
 
Fig. S2. Recurrent movement patterns for the uniform and patchy environments. Boundary Biased (upper), Systematic 
(middle) and Mixed (lower panels) groups are shown for the uniform (left) and patchy (right) environments. The 8 
movement characteristics based on direction and speed of movement are labelled along the x-axis.  
 



 
Fig. S2 shows distinct patterns of recurrent movements for each group. While the clearest 
difference is between the Boundary Biased and Systematic groups, the Mixed group 
nevertheless shows a distinct pattern of recurrent moves. Note that calculation of movement 
types within this algorithm is based on angle of deviation relative to the prior movement and 
time (S1).  
 
S1. Solman GJ, Kingstone A. (2015). Endogenous strategy in exploration. J Exp Psychol Hum 
Percept Perform, 41, 1634–49. 

 
 


