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Abstract: Energy consumption is the result of interactions between hardware, software,
users, and the application environment. Optimization of energy consumption has become
crucial, and energy is considered a critical resource, so it is important to know and
understand both how energy is measured and consumed on mobile devices. An accurate
knowledge will allow us to develop efficient solutions to reduce energy consumption
in order to improve the user experience. In this paper we propose an experimental
methodology to build a model of the energy consumption of mobile applications. Based
on precise measurements, we elaborate predictive models of energy consumption for both
unconnected and connected applications.
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1 Introduction

The energy consumption of a smartphone is the amount
of energy used to operate its services [8, 15] by the
software running on the hardware. Thus, the hardware
components used by the applications determine the
resulting energy consumption. To know how to measure
and to understand how the energy is consumed on these
mobile devices remains an important objective of every
developer [6].

The main research presented in this paper consists
of developing and practicing a new experimental
methodology for modeling the energy consumption
in mobile environments and more specifically on the
Android platform. The objective of this work is to model
the energy consumption of a particular application
running on a mobile device.

In this paper, we propose a model and we describe
a methodology to identify the parameters of this
model (processor frequency, dissipated power and initial
battery level). To this end, we analyzed a collection of
experimental data collected during a 33 day long “Tour
de France” in a wheelchair [7]. The objectives of our work
is to propose a methodology that a developer can use to
understand the energy consumption behavior of a device
in a specific applicative context. This methodology is
based on measurements done on the device under study
and leads to the proposal of a mathematical model with
identified parameters of the energy consumption of the
device. The resulting model can then be used to make
decisions to balance energy efficiency and quality of
service.

We present the methodology in Section 2, and we
validate this methodology on experimental data in
Section 3. Then we present related works in Section 4.
We conclude our paper in Section 5.

2 Methodology

The research presented here proposes a methodology
to model and evaluate the energy costs in mobile
environments. The proposed methodology is developed
in four stages:

• Data collection;

• Data preparation;

• Modeling for fixed frequencies;

• Modeling for variable frequency.

The aim of this work is to monitor energy
consumption by acting on the following parameters:

• Frequency of processors;

• Initial level of the battery;

• Energy dissipated by clock cycle.

The model can be used to define an optimal frequency
in terms of energy consumption for specific situations
without degrading too much the quality of service
desired by the user.

2.1 Data collection

Scientific data was collected on the basis of several
scenarios in different places. These measures were
operated out in a real environment and confronted with
the consumption measures carried out beforehand in a
controlled environment.

The tools used to develop our study are:

Trepn Profiler is a diagnostic tool for profiling
performance and power consumption of Android
applications. All tests of this experimentation were
processed by version V6.2s. Trepn profiler provides
information on system status, network status,
graph performance, speed, processor frequency etc.

Cronoid is an automation tool that allows performing
tasks on a regular basis (like cron). It also enables
automatic task running when the status of the
terminal changes. The version used for this work is
Cronoid-3.5.1.

CPU Frequency is a tool that allows the user to
change the CPU frequency setting to save energy
or to achieve better performance.

The data collection stage of our methodology is based
on the following steps:

• Preparation of the test platform (CPU frequency
management based on the governor) in order to
have the rights to fix the frequencies of the CPU
with the CPU Frequency tool.

• The role of the Cronoid tool is to automate tasks
in order to minimize interaction with the user.

2.2 Data preparation

After each experiment, the data obtained is stored
in a file. Given the large number of parameters and
data retrieved, the measurements are organized into two
tables. Two examples of such tables are shown in Table 1
and Table 2.

For the implementation of our methodology, we
selected the following parameters, obtained by Trepn
Profiler:

• Total load per CPU;

• Memory usage;

• CPU frequency;

• Battery level;

• Battery power.

Copyright © 201X Inderscience Enterprises Ltd.
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All these measures are regularly recorded in a table at a
fixed measuring interval.

The methodology used to identify the parameters of
the model is based on the determination of the type
of correlation between the number of total operations
Op and the dissipated elementary energy E under a
previously set frequency F which will be expressed as
E(F,Op).

The total number of operations, Op, is calculated by
summing the active clock cycles of each processor per
measurement interval. This active clock cycle number
is the load of the CPU multiplied by the measurement
interval duration and by the CPU frequency. The
dissipated energy during a measurement interval is the
product of the battery power and the measurement
interval duration.

2.3 Modeling

The third step of the methodology is to compute a
regression of the energy per measurement interval as
a function of Op separately for some fixed (using the
CPU Frequency tool) frequencies. More details on the
modeling stages will be given in Section 3 on several
case studies. In the first case study, a linear regression
is enough to have a good model. Then we compute a
regression of the coefficient of the fixed frequency models
to obtain a model E(F,Op) of the energy consumption
per measurement interval as a function of the frequency
F and of Op, the number of operations during this
measurement interval. In the case of offline mode study,
a linear regression is enough to build a good model. The
connected mode case is better managed by a polynomial
regression.

In the case of variable frequencies, the same
methodology can be applied on a variable frequency
experiment by filtering the rows of the recorded
measurement table by frequency and dealing separately
with each frequency. The measuring intervals when the
frequency changes can simply be discarded.

3 Experiments

3.1 Experimental context

Each service activated in a smartphone induces an
energy consumption relative to an amount of dissipated
energy. The purpose of this study is to provide a detailed
monitoring of the main sources of energy consumption.
In the first case study, we will use the GSM network,
which will be the only one to be in active state
(Only the GSM network will be active but unused by
the application under test). The other communication
networks (3G, 4G, Wi-Fi and the GPS) remain inactive
throughout the various experiments. The second case
study aims at evaluating and measuring the energy
consumed in connected use cases, sources related to the
data communications are activated completely (3G / 4G

or Wi-Fi) or partially (GPS) depending on the scenarios
of the experiment.

Each experiment was carried out over a period of 45
minutes with a rate of ten measurements per second,
leading to around 27000 measurements per test case. For
the Local Video with Fixed Frequency (LVFF) scenario,
twenty experiments were carried out with different
frequencies, initial battery levels and locations totaling
540000 measurements. We believe that 10 measures per
second is a good compromise between the ability to
capture DVFS induced frequency changes to get precise
measures and the overhead induced by the measuring
process. Indeed there are on the order of 100,000
processor cycles per measuring interval (at 1 GHz).

To collect the data, a tour of France was carried out
using an electrical wheelchair to perform measurements
in a diversified environment based on several scenarios.
Figure 1 details the route of the measurement sites (33
days and 3006 km).

All measurements were performed on an HP Pro Slate
8 tablet that has the characteristics listed in Table 3.

3.2 Modeling of energy consumption

In this section, we present two cases. The first case
corresponds to the disconnected mode, where we study
local video playing with a fixed frequency while driving
to test the impact of the variation of the GSM network
on the energy consumption in disconnected mode.

3.2.1 Modeling in offline mode

The disconnected mode disables all data connection
components such as Wi-Fi, Bluetooth and GPS. In this
mode, we used local data for energy modeling.

First scenario, Local Video with Fixed Frequency
(LVFF): in this scenario the CPU is used to monitor
the system state by initiating and measuring the overall
system power consumption for a local video with a fixed
in advance frequency.

Second scenario, Local Video with Variable
Frequency (LVVF): in this scenario the CPU is used to
monitor the system state by initiating and measuring
the overall system power consumption for a local video
with variable frequency. This scenario is used for the
validation of the proposed methodology trained with
the scenario with fixed frequencies.

3.2.2 Modeling in connected mode

The second case corresponds to the connected mode. On
the one hand, we study the case of a remote video with
the fixed and variable frequency in motion to test the
impact of the variation of the GSM network 3G / 4G
or Wi-Fi on the energy consumption in connected mode.
On the other hand we study the case of navigation where,
in addition to activating the GSM network 3G / 4G or
Wi-Fi and Bluetooth, we added the GPS for testing the
impact of navigation on the energy consumption.
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The active applications during the measurements
are: Facebook, GsmaService, Google App, Clock, Avast
Mobile Security, Cronoid, CPU Frequency, Google Play
Store, Launcher3, Power Battery, Google services, Play,
Hangouts, Multimedia storage, Google Play Music, Play-
Fi, Keyboard, Google, MusicFX, SmartcardService,
System interface, Messenger , VLC, Cron Tasker Free,
and Google Partner Configuration.

In all the experiments of the video scenario, we
worked on a video of 720 × 302 resolution with 25000
frames using the MPEG-4 video codec over a period of
45 min, the same experiment has been repeated with
different processor frequencies (previously set) and with
different initial battery levels.

The aim of this part is to evaluate the dissipated
energy per clock cycle which will be called “dissipated
elementary energy”.

To qualify the quality of the model, we systematically
show the value of the coefficient of determination which
represents the square of the linear correlation coefficient
R which is calculated as follows:

R2 =

∑n
i=1(ŷi − ȳ)2∑n
i=1(yi − ȳ)2

= 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
∈ [0, 1]

yi are the values of the measurements, ŷi the predicted
values and ȳ the mean of the measurements.

The average consumption per clock cycle can be
expressed as follows:

Eclock cycle = Regression(

4∑
i=1

Loadi, Edissipated)

Eclock cycle shows the total energy per clock cycle, Loadi

the load of CPU i and Edissipated corresponds to the
dissipated energy measured experimentally.

3.3 Results of measurements

3.3.1 Disconnected mode case

The various measures relating to the energy dissipated
were carried out in relation to the number of total
operations at a fixed frequency. Figure 2 shows an
example of experimental data obtained by fixing the
frequency of the processor at 1.5 GHz.

The graphs corresponding to the other frequencies
(1 GHz, 1.7 GHz and 2.2 GHz) are presented in the same
way in Figure 3.

The respective equations of the regressions obtained
are:

E(1.0, Op) = 0.0512 + 5.995.e−11Op,R2 = 0.830

E(1.5, Op) = 0.0321 + 4.226.e−11Op,R2 = 1.000

E(1.7, Op) = 0.0337 + 5.073.e−11Op,R2 = 1.000

E(2.2, Op) = 0.0309 + 7.210.e−11Op,R2 = 1.000

The value of the determination coefficient is equal to 1
in the case of measurement with the frequencies 1.5 GHz,
1.7 GHz and 2.2 GHz, which proves the efficiency of
the proposed methodology for the local video. In the
case of a frequency fixed at 1 GHz, the coefficient of
determination is equal to 0.830. The relevance of the
linearity hypothesis was affected by the beginning of
the degradation of the quality of the video (following
the frequency imposed in the experimentation) which
explains the obtained result. The low R2 is due to the
fact that the required computing power to decode the
video is too high for a 1 GHz frequency, thus the QoS is
degraded and it shows on the R2 coefficient.

On the basis of the experimental results obtained, we
can deduce the energy discharge per clock cycle while
playing a local video with a fixed frequency. The dynamic
consumption corresponds to the energy consumption of
the processor due to the fact that the transistors change
state. The dynamic energy consumption per cycle for the
measured frequencies is presented in Figure 4.

The static consumption corresponds to the energy
dissipated when the transistors remain in the same
state. The static energy consumption for the measured
frequencies is presented in Figure 5.

The respective equations of dynamic energy and
static energy dissipated for our model obtained by linear
regression are:

Edynamic(F ) = 4.008.e−11 × F − 2.101.e−11, R2 = 1.000

Estatic(F ) = 0.03× F − 0, 009, R2 = 1.000

From these measurements we propose the following
model

E(F,Op) = Edynamic(F )×Op + Estatic(F )

Where E is the total energy, F the selected frequency,
Op is the number of operations per measurement interval
(in our case 100 ms).

In this study, the coefficients related to the LVFF
scenario are thus defined by the following equation:

E(F,Op) = (4.008.e−11 × F − 2.101.e−11)×Op

+ (0.03× F − 0, 009)

3.4 Validation of the mathematical model

In order to validate our model, we use an experiment
that has not been used for the development of the model,
we select the results relative to the dissipated energy
(measured experimentally) and we compare them with
the energy consumption predicted by the proposed LVFF
model.

The experiment that is used for the test consists of
45,945 measurements with a variable frequency. Thus
for each measurement interval, we use the recorded
frequency as input to the model. The comparison of the
predicted quantities by the above mathematical model
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and the measurements obtained experimentally make it
possible to define the precision of the predicted model.
After comparison, there is a strong coherency with a
relatively low error rate.

The average relative error between our model and the
experimental measurements is 1.767 % with a standard
deviation of 3.652 %. Further more, 93.9 % of the
measurements obtained have an error rate of less than
8 % and 64.73 % of the measurements obtained have an
error rate of less than 5 %.

To illustrate this coherency, we have plotted the
distribution of the cumulative sum of the difference
between the measurements obtained experimentally and
the values predicted by our model in order to evaluate
the cumulative error rate in all the experimentation.
The error rates are grouped by error classes (we have
chosen 1000 classes) in Figure 6. The vertical axis was
standardized according to the number of existing classes,
1 corresponds to the largest error class (the one with the
highest number of members).

The results obtained correspond to a Gaussian
distribution, the class which contains the greatest
number of errors corresponds at the error interval 0.1 %,
a value which consolidates the choice of parameters of
model LVFF.

3.5 Connected mode case

The purpose of this Section is to study energy
consumption while activating Wi-Fi. To stay in the same
context, the remote video was identical to the one used in
disconnected mode. We determine the type of correlation
between the energy consumption and total operations,
and we crosscheck with the measurements obtained in
the offline mode.

Figure 7 shows an example of experimentation by
fixing the frequency of the processor at 1.5 GHz for a
remote video with fixed frequency (RVFF).

Figures 8 and 9 show respectively that the static
energy and dynamic energy of the RVFF model vary
linearly with respect to the frequency.

The respective equations of dynamic energy and
static energy dissipated for our model obtained by linear
regression are:

EDynamic(F ) = 5.002.e−11 × F − 2.104.e−11, R2 = 0.958

EStatic(F ) = 0.03× F + 0, 03, R2 = 0.780

For the case of our study, the coefficients related to
the RVFF scenario are thus defined by the following
equation:

E(F,Op) = (5.002.e−11 × F − 2.104.e−11)×Op

+ (0.03× F + 0, 03)

3.6 Comparative study between LVFF and RVFF
scenarios

In this part we discuss the energy gap existing
between the LVFF scenario and the RVFF scenario

under similar conditions (with the same frequency). To
compare the energy variation between the two scenarios,
we compute the difference between the measurements
obtained experimentally with the RVFF scenario and
consumptions predicted by the LVFF model. This
difference corresponds the communication cost and is
shown in Figure 10.

The energy consumption related to the
communication is well modeled according to a quadratic
regression which gives a better result, more relevance
and more simplicity than a linear regression.

3.6.1 Navigation case

In the navigation case we activate both data connection
and the GPS to monitor the energy consumption
behavior.

Table 5 shows that the navigation uses a lot of CPU
resources (19.14 %) and thus dominates the total energy
consumption of the system.

The first case is to set the frequency and to track
the total dissipated energy of the active applications
separately at first, then the overall consumption of
the Navigation with Fixed Frequency (NFF) scenario.
Figure 11 shows an example of experimentation relating
to the NFF scenario along with the regression. Figures 12
and 13 show the linear regressions leading to the variable
frequency NFF model.

3.6.2 Navigation with variable frequency

This part deals with the case of navigation with variable
frequency (NVF), the frequency being assigned by the
operating system. Figure 14 presents the results of NVF
experiments. We note the existence of a data flow that
strongly depends on the frequency at each measurement.
The large number of operations and the rate of charge
explain the shape of the obtained graph.

The respective equations of dynamic energy and
static energy dissipated for our model obtained by linear
regression are:

EDynamic(F ) = 4.002.e−11 × F − 2.103.e−11, R2 = 0.999

EStatic(F ) = 0.098× F − 0, 0391, R2 = 0.940

For our study, the coefficients related to the NFF
scenario are thus defined by the following equation:

E(F,Op) = (4.002.e−11 × F − 2.103.e−11)×Op

+ (0.098× F + 0, 0391)

3.6.3 Comparative study between NFF and NVF
scenarios

Here we discuss the energy gap between the NFF and
NVF scenarios. To compare the energy variation between
the two scenarios, we compute the difference between the
measurements obtained experimentally with the NVF
scenario and the values predicted by the NFF model to
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determine the cost due to the variable frequency. This
difference is shown in Figure 15.

The result obtained mathematically based on the
difference on the respective equations of the NVF
and NFF scenarios is very close to that obtained
experimentally, the results obtained are as follows:

NFF : 0.05 + 5.e−11x (1)

NFV : 0.07 + 2.e−11x + 5.e−21x2 (2)

NFV −NFF : 0.02− 3.e−11x + 5.e−21x2 (3)

The static energy remains constant in the different
experiments, the dynamic energy difference measured
experimentally for the NFF and NFV scenarios was
compared with the energy obtained by the proposed
model.

The equation obtained by the model is expressed as:

0.03 + 2.e−11x + 2.e−21x2 (4)

The value of the dynamic energy obtained by the model
(Equation 4) is close to that obtained experimentally
(Equation 3).

The difference obtained is due to the variability of
the frequency (dynamic energy) and presence of tail
energy which is relative to the devices (Wi-Fi, GPS . . . )
which are not necessarily permanently active during the
experiments.

In this study, we treated the different types of
dependencies between energy dissipation and frequency
of multiple scenarios in offline mode (LVFF) and the
connected mode (RVFF, NFF, NVF). The difference
between the scenarios can be explained on the one
hand by the variability of the received signal strength
for GPS and Wi-Fi (for connected mode) which forces
the activation / deactivation of the services that will
generate an additional consumption due to the tail
energy. On the other hand the scenarios based on the
connected mode require the activation of additional
devices such as the GPS, which increases the rate of
the inputs / outputs which are partially responsible for
additional energy cost.

4 Comparison with the state of the art

Several research studies have also proposed CPU
frequency-scaling techniques by taking into account the
quality of user experience [10, 8].

4.1 Related Modeling Works

4.1.1 TailEnder

Balasubramanian, Balasubramanian and Venkataramani
designed TailEnder [1] for measuring the characteristics
of the energy consumption of various smartphones.
TailEnder aims to minimize energy consumption
for applications that can tolerate delay such as

e-mails. In particular, the study of 3G’s energy
consumption characteristics has important and non-
intuitive implications for the design of efficient energy
application. Previous studies such as [9, 16, 2] have
studied the impact of different energy-saving techniques
in 3G networks using analytical models [8].

4.1.2 Cinder

Roy, Rumble, Stutsman, Levis, Mazieres and Zeldovich
show in [14] that the Cinder method, that is designed for
phones and mobile devices, allows users and applications
to control and manage the limited resources of the device
such as energy.

Cinder’s mechanism [14] consists of detecting the
main energy-consuming tasks and then assigning this
information to the guiding applications in order to
allocate the energy resources to the highest priority
tasks [18, 19, 4, 3].

4.1.3 BLAST

Mercati, Hanumaiah and Bloch have shown in BLAST
(Battery Lifetime-constrained Adaptation with Selected
Target) [11] that performance can be maximized if the
user can select a target battery lifetime.

This framework is an application-aware power
management framework for mobile devices which
controls operating conditions in order to meet a
predefined battery lifetime.

4.1.4 Eprof

Pathak, Hu and Zhang have shown in Eprof [12] that
some of the components such as Wi-Fi, 3G GPS have a
tail behavior [13] in which a component can enter a state
of high power and remain in that state of energy beyond
the end of the routine.

This approach evaluates the energy consumed by the
I/O and the energy of the tail [13, 1] as well as the energy
consumed because of wake-up caused by the wake locks.

4.1.5 RAPL

Hahnel, Dobel, Volp and Hartig, developed the RAPL
(Running Average Power Limit) approach that allows to
compare applications of two sectors and to show that
they have different energy consumption while offering
similar services [5].

RAPL is based on energy sensors available for
measuring the energy consumption, and takes into
account the energy consumption in the software
components.

The aim of the RAPL methodology is to measure the
energy consumed by the device and that consumed by
its pilot.

4.1.6 AppScope

AppScope is a system that automatically evaluates
the energy consumption of applications running on
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Android smartphones [17]. Its design is based on
monitoring the Android kernel at a microscopic level.
The objective of the AppScope model is to measure
the energy consumption of applications using power
equipment models and usage statistics for each hardware
component.

4.2 Synthesis

We have previously published a more detailed study on
the state of art in [8].

Table 5 compare these energy consumption
methodologies and the one we propose in this article on
different criteria. Here are the meanings of the columns
of the Table:

Model quality quality of the energy model, this
criterion shows the size of the work devoted to
providing an energy model.

Hard Optim. taking into account hardware
optimizations, this criterion shows the quality
of the energy model and the hardware energy
consumption.

Soft Optim. taking into account software
optimizations, shows the quality of the energy
model according to the implementation of software.

QoS impact on the quality of service (QoS), a
management concept that consists of giving
priorities to a few applications to keep a desired
level of performance. This criterion details the
effect on QoS during the reduction of energy
consumption.

Security taking security into account. The security
criterion role is to prevent malwares to reduce
battery life.

Dev developer help, this criterion is used to reduce the
energy consumption of a software during its design.

Eprof and our model HBALB (HBALB corresponds to
the initial letters of the names of the authors of this
work) achieve better results for quality of the energy
model and performance optimization. Eprof makes it
possible to analyze the state of the energy demands and
to estimate the rate of tail energy of some components.
HBALB allows to model the energy consumption so that
it is optimized for better performances.

TailEnder, Cinder, RAPL satisfy the “Hard opti.”
criterion. TailEnder performs a minimization of the
energy consumption for the application which tolerate
a small delay by quantifying the use of the energy,
and Cinder by allocating resources to the guiding
applications by visualizing the rate of limited resources.
RAPL makes an energetic comparison of a similar service
and shows that the consumption is not identical.

Appscope, BLAST and HBALB enable optimization
of existing applications. Appscope evaluates

automatically the power consumption of applications at
a microscopic level. It allows to detect events relevant to
the operation of a component for better optimization.
BLAST maximize performance while letting the device
battery to last at least for a certain required lifetime. Our
model HBALB allows to define the optimal parameters
for a better performance which justifies their relevance
in the “Soft optim.” criterion.

The quality of service is well managed by Cinder
because it automatically manages the allocation of
energy resources, the HBALB model does not have much
impact on quality of service because user interaction is
minimal due to automation of scenario tasks with the
Cronoid tool.

Cinder prioritizes the security system that manages
the emergency call in case of scarcity of energy resources.

Eprof satisfies the “Dev” criterion because it can help
the developers by analyzing the different energy states
of the device (characteristics, tail energy etc).

Our proposal provides precise models with respect to
the active applications, which is not treated by the other
case studies.

4.3 Advantages of the proposed methodology

• Our methodology is based on the most elementary
entity which allows a high degree of precision for
the evaluation of the results.

• The identification of the model parameters is
relevant because it is based on measurements
carried out in a real and diversified environment.

• The proposed methodology allows for optimization
by tracking sources of energy consumption.

• The proposed methodology can be used for
decision support for a desired performance.

4.4 Limits of the proposed methodology

• The precision of the models depends on the
electrical characteristics of the device.

• The proposed methodology is not automated, it
requires manual installation of the tools used to
developing the model.

• The regression type is not automatically detected.

• The methodology currently lacks GPU and modem
energy consumption modeling. It relates the global
energy consumption of the whole device to only the
activity of the CPU, and so lacks precision when
the energy consumption is heavily influenced by
other components.

5 Conclusion

We have presented in this paper a methodology to build
a model of the energy consumption of applications on
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mobile devices. This methodology starts by recording
accurate measures of the energy consumption during
the use of selected applications. Using these measures,
we build a model of the energy consumption as a
function of the activity of the processing cores for
fixed frequencies by (linear) regression. The last step
in our methodology consists in elaborating a model of
the energy consumption as a function of the operating
frequency and the activity of the processor by a
regression on the parameters of the fixed frequency
models.

Experiments related to this methodology have been
carried out on different scenarios:

• Local video case;

• Remote video;

• Navigation.

We have demonstrated this methodology on an
experimental test case over local video playing. As this
test case does not involve communication, the prediction
capabilities of the model are quite good.

For connected use cases, we notice that the prediction
is less precise given the number of parameters involved
and the diversity of situations encountered. It seems
necessary in these cases to take into account more
precisely the communication costs. The question on how
to do that is left for future work.

The main quality of our methodology comparing with
related works is the relevance of the recorded data that
leads to an accurate model. The proposed solution can
be used to define an optimal frequency for one or more
applications in order to offer a better user experience
with a reduced energy consumption.

As future work, it would be useful to extend this
methodology to deal with other use cases that exercise
other components of the complex mobile hardware
platform. Checking the contribution of the GPU to
the overall energy consumption for gaming use cases
would be an interesting study. Such a methodology can
help developers to understand the energy consumption
behavior of their applications while optimizing the
quality of service.
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Table 1 Sample of measured data (part 1)

Time Cpu1 Cpu1 Cpu2 Cpu2 Cpu3 Cpu3 Cpu4 Cpu4
(ms) Freq Load Freq Load Freq Load Freq Load

(kHz) % (kHz) % (kHz) % (kHz) %

0 652800 85 729600 80 729600 60 729600 71
100 652800 88 729600 82 729600 66 729600 80
200 652800 73 729600 81 729600 83 729600 60
300 652800 100 729600 82 729600 75 729600 75
400 652800 80 729600 83 729600 75 729600 83
500 652800 83 729600 88 729600 83 729600 80
600 652800 92 729600 86 729600 100 729600 80
700 729600 87 729600 85 729600 100 729600 87
800 729600 66 729600 90 729600 87 729600 75
900 729600 80 729600 91 729600 71 729600 83
1000 729600 80 729600 82 729600 83 729600 75
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .

27000 300000 90 883200 90 729600 80 729600 80

Table 2 Sample of measured data (part 2)

Time Memory Screen Battery Battery GPU CPU
(ms) Usage Brightness Power Remaining Load Load

(Kb) (uW) (%) (%) (%)

0 1800004 255 875708 3665025 45 89
100 1800376 255 866186 3665076 45 86
200 1800516 255 831271 3665121 45 83
300 1800648 255 880999 3665165 45 76
400 1800896 255 868302 3665230 45 76
500 1801152 255 890521 3665275 45 77
600 1801504 255 948712 3665334 45 82
700 1801636 255 920146 3665387 45 65
800 1802140 255 891579 3665439 50 82
900 1802404 255 882057 3665495 50 68
1000 1802660 255 893862 3665440 50 75
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .

27000 1802410 255 883200 3665404 47 82
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Table 3 Characteristics of the experimental equipment

Type of Product Tablet

Operating system Android 4.4.4 (KitKat)
Processor QUALCOMM Snapdragon 800
Max. CPU frequency 2.3 GHz
Number of cores 4
Sensors Accelerometer, ambient light,

proximity, compass, barometer,
gyroscope, Hall effect

Number of batteries 1
Technology Lithium polymer
Autonomy Up to 13.75 h
Operating temp mini 0°C
Operating temp maxi 40°C
Storage temp mini -20°C
Storage temp maxi 60°C

Table 4 Distribution of system resources for the NFF
scenario

Applications CPU %

Maps 19.14
Parameters 3.93
Messenger 0.75
Interface 0.45
Power Battery 0.4
Cronoid 0.38
Configuration of 0.24
Google Play Music 0.23
Facebook 0.09
Gmail 0.072
Cron Tasker Free 0.03
Hangouts 0.022
Drive 0.005
Application Launcher 1.48E-4
CPU Frequency 5.51E-5
Firefox 5.38E-5
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Table 5 Comparison of energy consumption methodologies

Model Hard Soft QoS Security Dev.
quality optim. optim.

TailEnder + ++ NA + NA NA
Cinder + ++ NA ++ +++ NA
Eprof ++ + + + NA ++
RAPL + ++ NA + + +
AppScope + NA +++ + NA +
BLAST + NA ++ + NA NA
HBALB ++ + ++ + NA +
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Figure 1 Route of the scientific tour of France
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Figure 2 Energy dissipation for LVFF model, Frequency=1.5GHz
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F = 1 Ghz F = 1.7 Ghz F = 2.2 Ghz

Figure 3 LVFF frequencies = 1 GHz, 1.7 GHz, 2.2 GHz
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Figure 4 Dynamic energy dissipated by clock cycle in function of the frequency for the LVFF scenario
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Figure 5 Static energy in function of the frequency for the LVFF scenario
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Figure 6 Normalized error distribution using 1000 error class



Measurement-based Methodology for Modeling the Energy Consumption of Mobile Devices 19

0.04 + 5e−11 x R2 = 0.87

0.15

0.20

0.25

0e+00 1e+09 2e+09 3e+09 4e+09 5e+09
Total operations

En
er

gy
 d

is
si

pa
te

d 
(J

)

Energy dissipation RVFF F =1.5 GHz

Figure 7 Energy dissipation for RVFF scenario, Frequency=1.5GHz
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Figure 8 Static energy in function of the frequency for the RVFF scenario
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Figure 9 Dynamic energy dissipated by clock cycle in function of the frequency for the RVFF scenario
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Figure 10 Difference of energy consumption between the measures of the RVFF scenario and the predicted values of the
LVFF model.
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Figure 11 Energy consumption by total operations for the NFF scenario with a fixed 1.7 GHz frequency
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Figure 12 Static energy in function of the frequency for the NFF scenario
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Figure 13 Dynamic energy in function of the frequency for the NFF scenario
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Figure 14 Energy consumption by total operations for the NVF scenario
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Figure 15 Difference of energy consumption between the measures of the NVF scenario and the predicted values of the
NFF model.


