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Abstract 

Responsibility analysis allows the evaluation of crash risk factors from crash data only, but 
requires a reliable responsibility assessment. The aim of the present study is to predict expert 
responsibility attribution (considered as a gold-standard) from explanatory variables available in 
crash data routinely recorded by the police, according to a data-driven process with explicit rules. 
Driver responsibility was assessed by experts in the light of all information contained in police reports 
for a sample of about 5,000 injury crashes that occurred in France in 2011. Three statistical methods 
were implemented to predict expert responsibility attribution: logistic regression with L1 penalty, 
random forests, and boosting. Potential predictors of expert attribution referred to inappropriate 
driver actions and to external conditions at the time of the crash. Logistic regression was finally 
chosen to construct a score to assess responsibility for drivers and riders in crashes involving one or 
more motor vehicles, or involving a cyclist or pedestrian. Cross-validation showed that our tool can 
predict expert responsibility assessments on new data sets. In addition, responsibility analyses 
performed using either the expert responsibility or our predicted responsibility return similar odds 
ratios. Our scoring process can then be used to reliably assess responsibility based on national police 
report databases, provided that they include the information needed to construct the score. 
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1. Introduction 

Injury road  crashes are a rare event for drivers (Blaizot, Papon, Haddak, & Amoros, 2013; 
Bouaoun, Haddak, & Amoros, 2015). The study design preferred in epidemiology to assess risk 
factors is therefore case-control analysis, with casualties as cases and drivers with no crashes over a 
given period as controls. For temporary risk factors such as driving under the influence or using a 
phone at the wheel, the comparison is between casualties (cases) and other users on the road during 
the period in which the crash happened (controls) (Sagberg, 2001). For enduring risk factors such as 
age, gender or health status, comparison is between casualties (cases) and drivers (controls) with the 
same level of exposure (Brubacher, Chan, & Asbridge, 2012). However, it is difficult in these studies 
to use road checks to assess risk factors such as using a phone at the wheel or being distracted. 
Indeed, the cooperation of some drivers, when questioned in a check, for example, for driving under 
the influence of alcohol or drugs, will vary depending on whether they consider themselves at fault 
or not. It is actually very difficult to estimate crash risk exposure in a population of drivers.  

To overcome the problem of not having an appropriate control group, methods using the 
concept of crash responsibility (or at-fault) have been developed (Haight, 1973; Lyles, Stamatiadis, & 
Lighthizer, 1991; Stamatiadis & Deacon, 1997; Thorpe, 1964). The technique estimates the risk of 
being responsible for a crash for each road user involved, simply relying on road crash databases. The 
approach hypothesizes that the set of non-responsible drivers is a representative sample of drivers as 
a whole (af Wåhlberg & Dorn, 2007; Brubacher, Chan, & Asbridge, 2014). The hypothesis is based on 
the fact that those responsible for the crash do not deliberately choose which other drivers are going 
to be involved, and that consequently all non-responsible drivers have the same risk of being 
involved in a crash (Chandraratna & Stamatiadis, 2009). Following Davis and Gao (Davis & Gao, 
1995), non responsible victims are assumed to be selected by the responsible (at-fault) driver 
randomly from the pool of available drivers (Cooper, Meckle, & Andersen, 2010), with the probability 
that the non-responsible victim is the member of a given subgroup being directly proportional to that 
subgroup's exposure at the accident site. 

The validity of this method presupposes that it is possible to assess precisely the degree of 
responsibility of each of those involved in the crash. This means having an exact description of the 
circumstances. Responsibility here is not defined in any legal sense: a road user is deemed 
“responsible” if he contributes to or triggers the crash, typically by a faulty maneuver (driving the 
wrong way on a one-way road, running a red light, etc.) or failure (to brake in time, to switch on 
headlights at night or in a tunnel, etc.). It is therefore essential that the definition of responsibility 
should be based directly on such behavioral factors and not on their underlying causes such as 
inexperience, alcohol consumption, using the phone at the wheel, etc. Otherwise, the impact of 
these factors on the risk of being responsible for a road crash would be greatly overestimated.  

In France, the police draw up a free-text report for any injury road crash they have been called to. 
Some of this information is routinely computerized in a police record database (PRDB), recording a 
variety of details such as place of crash, vehicles involved, road users involved and infringements. In 
particular, the police, in drawing up the report, detail the responsibility of each party, as they see it. 
These police attributions of responsibility can be used for the purposes of responsibility analysis, but 
the criteria are not clearly laid down and the validity of the attribution is not guaranteed. The police 
are liable to have an unduly legalistic attitude, which may not fit with the definition of responsibility 
given above. 

Ideally, reliable attribution of responsibility requires analysis by a trained expert working from a 
finely detailed description of the crash. This was done in the VOIESUR project (Véhicule Occupant 
Infrastructure Etudes de la Sécurité des Usagers de la Route: Vehicle Occupant Infrastructure Studies 
of Road User Safety) in 2011, providing a reliable criterion of responsibility (meaning contributing to 
a crash) that was as objective as possible: i.e., fact-based. Responsibility as defined in the VOIESUR 
database is thus considered optimally reliable for the purposes of responsibility analysis.  
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The aim of the present study was to estimate responsibility according to a data-driven process 
with explicit rules. With this aim, several methods of statistical learning were compared, with cross-
validation to avoid overfitting, to predict experts’ responsibility attributions (considered as gold-
standard) from data routinely recorded by the police. 

2. Material and methods 

2.1. Data 

As part of the VOIESUR project, police reports drawn up in 2011 (by the two forces operating in 
France: Police and Gendarmerie) were digitized and centralized by the TransPV organization on 
behalf of insurance companies. The data source providers were contacted in case of important 
missing data such as crash scene diagrams, vehicle photographs and injury assessments. 

The database recorded all fatal crashes and one-twentieth of injury crashes that occurred in 
2011: 7,846 crashes in metropolitan France for which information was available about crash 
configuration and location, vehicle photographs, each road-user’s actions before the crash (including 
any infringements), collisions and identified relevant conflicts. Textual information, often written by 
police officers, was also used to shed light on circumstances. In all, more than 300 variables 
describing the crashes were available. 

A team of experts from the VOIESUR project had access to this information, in order to 
determine road-user responsibilities. The responsibility variable given by experts was graded as: 1, 
user completely responsible; 2, user fairly responsible, the contribution of the user to the crash 
possibly had some external factor out of its control; 3, shared responsibility; 4, user fairly non-
responsible, the user could maybe have avoided the crash; and 5, user totally non-responsible. 

2.2. Crash configurations  

To estimate the degree of driver responsibility, it is essential to take account of other relevant 
road users’ behavior (drivers, cyclists or pedestrians). This information varies according to the type of 
road user: speeding is not relevant for cyclists, and changing lanes means nothing in the case of 
pedestrians.  

For simplicity, we only considered the most frequent crash configurations; those involving 2 or 
more cyclists, or 1 cyclist and 1 pedestrian were not considered: 

- Configuration 1: crash involving only motor vehicles, 2 or more; 
- Configuration 2: crash involving a motor vehicle and a pedestrian or a cyclist; 
- Configuration 3: crash involving only 1 motor vehicle. 

2.3. Definition of outcome and coding of study variables  

The study objective was to predict whether a driver involved in a crash could be considered as 
being responsible for it. To this end, we first opted for binary coding of expert attributions. More 
precisely, drivers were deemed responsible if the expert grade was 1 or 2. This choice to include 
“fairly responsible” (grade 2) cases was based on the following: although crashes often occur due to 
a combination of factors, eliminating any one of them would usually lead to the crash not happening. 
In other words, it was considered that the crash would not have happened if the road user had not 
done whatever it was that led the expert to deem him or her “fairly responsible”. The non-
responsible group comprised drivers with responsibility graded 4 or 5.  

Grade 3 responsibility was assessed for 6% of drivers. These drivers were excluded from analysis, 
because we have considered more efficient to base the learning process on cases where 
responsibility was clearly attributed mostly to one driver. Binary expert attribution was noted as “Y”, 
such that Y=0 for non-responsible drivers and Y=1 for responsible drivers. 
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For explanatory variables, we focused on those found in the PRDB database referring to 
inappropriate actions that could have led to the crash. We did not take account of the possible 
causes of such inappropriate actions, which are the risk factors generally studied in responsibility 
analyses (alcohol, cannabis, telephone at the wheel, etc.), as the aim was to achieve a final prediction 
of expert attribution that would be independent of the factors underlying inappropriate actions, as 
explained above. As potential predictors of expert attribution we therefore considered PRDB 
variables referring to actions, such as driving the wrong way on a one-way road, speeding, failure to 
give way, making a half-turn or overtaking (on the right or on the left), etc. For a given road user i, 
such variables were formalized as (Zi1,…,Ziq).  

We also included as potential predictors some variables referring to external conditions at the 
time of the crash: weather, road surface, etc. The reason to include them was we believe some can 
alleviate responsibility of a driver, such as rain which reduces visibility, and then reduce the 
responsibility of all drivers involved in the corresponding crash. On the other hand, road type such as 
two-way road indicates that deviating on the left increases the chances of a head-on collision, giving 
better prediction on responsibility. These external conditions variables were formalized as 
(Wi1,…,Wip). Their values are obviously the same for all road users involved in a given crash. All these 
variables, (Zi1,…,Ziq) and (Wi1,…,Wip), are numerical, whether continuous or binary. The set of 
explanatory variables could vary according to the type of crash. In the end the variables chosen for 
crash configuration 1 and 3 are shown in Table 1. For configuration 2, variables “Pedestrian masked, 
playing or running” and “Pedestrian on pedestrian crossing” were also considered. 
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Table 1 : List of all explanatory variables included for configuration 1 and configuration 3 crashes 

Notation 
Type of 
variable 

Group of categorical 
variable Variable 

W External 
conditions 

Number of lanes 

One-way road 
2-lane 2-way road 
3-lane 2-way road 
4-lane 2-way road or dual carriageway 
Road with separated lanes 

Type of road 
Main road 
Urban road 
B road 

Particular layout on 
the road 

Road bridge, tunnel or subway 
Ramp 
Crossroads 

Special lane Presence of special lane (cyclist lane, road toll, etc.) 

Presence of 
intersection 

X intersection 
T or Y intersection 
Roundabout 
Other 

Light 
Night without road lighting 
Night with equipped crossroads 

Weather 
Heavy rain 
Fog, snow or storm 
Bad weather 

State of road 

Steep slope 
Curved road 
On central reservation 
Water, mud, ice or oil on the road 

Crash localization Crash not on road 
Special event Party the day of crash or the day before 
Spacing Width of the road (numeric) 

Z 

Vehicle 
impact 

Localization of the 
vehicle impact 

Rear 
Frontal 
Left side 
Right side (= passenger side)* 

Mobility of the hit 
obstacle 

Mobile obstacle  
Fixed obstacle  

Driver 
actions  

Mobility of the 
vehicle 

Stationary vehicle 
Speeding 

Maneuver of the 
vehicle 

Avoidance maneuver 
Left turn (= into traffic)* 
Overtaking on the left (= normal overtaking)* 
Vehicle deviating left (= into traffic)* 
Turning left or right 
Insertion of vehicle into traffic 
Overtaking a vehicle 
Between 2 lanes, half-turn or reversing 
Changing lanes 
Vehicle deviating 
Vehicle change of direction without indication 

Dangerous behavior 
Intended imprudence, dangerous overtake or no-way street 
Forbidden road 
Failure to give way 

Count of faults Number of faults (numeric) 
 *Driving is on the right in France. 
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The last variable pointing at faults are categorized as follows: 

 Vehicles: 
• Unannounced change of direction 
• Intended imprudence, dangerous overtake or no-way street 
• Forbidden road 
• Failure to give way 
• Between two lanes, U-turn or reverse maneuver 
• Speed higher than limit 
• Stopping or parking wrongly 
• Vehicle's lights not turned on in obscurity or night 
• Tailgating 
• Speed too slow for the road category 
 Pedestrians: 
• Pedestrian on pavement but not on crosswalk 
• Pedestrian running or hidden 

2.4. Construction of a predictive model 

To discriminate responsible from non-responsible drivers, we applied three different statistical 
methods for each crash configuration: logistic regression with L1 penalty, random forests, and 
boosting.  

Logistic regression and LASSO penalization 

For a road-user i in the VOIESUR database, let 𝑌𝑌𝑖𝑖 ∈ {0,1} be the binary variable of responsibility 
attributed on initial expert coding, and Xi ∈ 𝑅𝑅𝑚𝑚 , for 𝑚𝑚 ≥ 1, be the vector of the accepted predictors; 
this vector will be deduced from PRDB variables (Zi1,…,Ziq) and (Wi1,…,Wip) which are introduced 
according to the type of crash. See below for more detail. The logistic regression presupposes 
parameters 𝛼𝛼 ∈ 𝑅𝑅 and 𝛽𝛽 ∈ 𝑅𝑅𝑚𝑚 such that:  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙�𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖)� = 𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖)

1 − 𝑃𝑃(𝑌𝑌𝑖𝑖 = 1|𝑋𝑋𝑖𝑖)
� = 𝛼𝛼 + 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽 

which can be expressed as: 

𝑃𝑃(𝑌𝑌𝑖𝑖 = 1 |𝑋𝑋𝑖𝑖) =
exp�𝛼𝛼 + 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽�

1 + exp�𝛼𝛼 + 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽�
                                             (1) 

As the value of m is high (54 explanatory variables), the values of parameters α and β are 
estimated by maximizing L1-norm penalized likelihood, to select the most relevant predictors and 
improve predictive performance. With L(α,β) being the log-likelihood of the logistic regression 
model, the LASSO (least absolute shrinkage and selection operator) logistic regression estimates 
parameters by values maximizing the penalized criterion (L(α,β) − λ�|β|�1), by choosing the 
appropriate regularization parameter λ. In the present case, the number of predictors is high, but not 
compared to the number of observations. We therefore adopted a two-stage version, following the 
ideas of the LASSO-OLS Hybrid (Efron, Hastie, Johnstone, & Tibshirani, 2004). In the first stage, the 
LASSO logistic regression was used to select relevant predictors, the ones not removed by the 
penalized likelihood. In the second stage, logistic regression with maximum non-penalized likelihood 
was used to re-estimate the parameters of the model corresponding to the predictors kept in the 
first stage (this is the “standard” OLS-Hybrid strategy suggested by Efron et al. 2004). We therefore 
chose the λ value from the first stage that minimized the Akaike information criterion (AIC) 
calculated on the basis of the values obtained in stage 2, with the non-penalized likelihood. Every 
categorical variable with K classes was dichotomized into K-1 dummy variables, which were then 
independently selected when applying the LASSO penalty. 
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Having established this general principle, we can specify how the predictor vector Xi is 
constructed from the variables (Zi1,…,Ziq) and (Wi1,…,Wip). The construction depends on the type of 
crash. In type-3 crashes (involving a single vehicle), vector Xi is simply equal to (Zi1,…,Ziq,Wi1,…,Wip). 
Type-1 and -2 crashes involve more than 1 road user, and responsibility depends not only on each 
user’s own actions but also on those of the others. Take the example of a 2-vehicle collision involving 
drivers A1 and A2. The fact that A1 entered a crossroads against a red light increases his or her 
likelihood of being deemed responsible by the expert, and reduces the likelihood for A2. Preliminary 
results (data not shown) confirmed that the increased risk for A1 is of similar magnitude on a logit 
probability scale to the decrease for A2. In such cases, we therefore replaced each variable Z1j for A1 
by S1j = Z1j – Z2j and each variable Z2j for A2 by S2j = Z2j – Z1j. In crashes involving more than 2 road 
users, a similar principle was applied. Let denote by A1, …, AI the l road users involved in a given crash 
and Zij the jth covariable of inappropriate action by Ai. Then Zij is replaced by 𝑆𝑆𝑖𝑖𝑖𝑖 = 𝑍𝑍𝑖𝑖𝑖𝑖 −
max
𝑘𝑘≠𝑖𝑖

𝑍𝑍𝑘𝑘𝑖𝑖 , with the maximum calculated for the whole set of l-1 antagonists of Ai. Note that, in the 
case where l=2, this rule comes down to the same thing as that described above for crashes involving 
2 road users.  

Now, let 𝑋𝑋�𝑖𝑖 = �𝑆𝑆𝑖𝑖1, … , 𝑆𝑆𝑖𝑖𝑖𝑖 ,𝑊𝑊𝑖𝑖𝑖𝑖, … ,𝑊𝑊𝑖𝑖𝑖𝑖�. With the above calculation rule, the impact of certain 
predictors of expert attribution included in 𝑋𝑋�𝑖𝑖  may vary depending whether the crash involved 2 or 
≥3 road users. In type-1 crashes, let Ti be the binary variable indicating whether the crash involved 2 
(Ti=0) or ≥3 road users (Ti=1). All type-1 crashes will be considered using a model including possible 
interactions between the components of 𝑋𝑋�𝑖𝑖and Ti. More precisely, the model used is:  

logit[𝑃𝑃(𝑌𝑌𝑖𝑖 = 1 |𝑋𝑋�𝑖𝑖,𝑇𝑇𝑖𝑖)] = 𝛼𝛼 + 𝑋𝑋�𝑖𝑖𝑇𝑇𝛽𝛽� + 𝑇𝑇𝑖𝑖𝑋𝑋�𝑖𝑖𝑇𝑇𝛾𝛾�         (2) 

which can be reformulated as  
logit[𝑃𝑃(𝑌𝑌𝑖𝑖 = 1 |𝑋𝑋𝑖𝑖)] = 𝛼𝛼 + 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽                                (3) 

where XiT = (X�iT, 0m/2
T ) ∈ Rm if 2 vehicles are involved, and XiT = (X�iT, X�iT) ∈ Rm if ≥3 vehicles are 

involved, with m = 2(p + q), 0𝑟𝑟the null vector of 𝑅𝑅𝑟𝑟, and β = (β� , γ�). The LASSO L1 penalty favors null 
status for components of vector β (and thus of vectors β�  and γ�), and thus absence of interaction. 
Nevertheless, it allows the most relevant non-null components to be identified, especially in vector γ�, 
which contains the interaction terms. If we note R = α + XiTβ, then equation (1) implies that if R>0, 
P(Yi = 1 |Xi) > P(Yi = 0 |Xi) . The corresponding driver is more likely responsible than non-
responsible according to our prediction model, hence declared responsible. 

This is the optimal choice to minimize the number of misclassified, as the average percentage of 
responsible drivers is around 50% in type 1 and type 2 crashes. 

A similar principle was applied to drivers in type-2 crashes, where the influence of predictors in 
𝑋𝑋�𝑖𝑖  can vary according to the type of third party (pedestrian or cyclist): for any driver i involved in a 
type-2 crash, we constructed the predictor vector Xi as: 𝑋𝑋𝑖𝑖𝑇𝑇 = (𝑋𝑋�𝑖𝑖𝑇𝑇 , 0𝑚𝑚/2

𝑇𝑇 ) ∈ 𝑅𝑅𝑚𝑚 if a pedestrian is 
involved in the crash, and 𝑋𝑋𝑖𝑖𝑇𝑇 = (𝑋𝑋�𝑖𝑖𝑇𝑇 ,𝑋𝑋�𝑖𝑖𝑇𝑇) ∈ 𝑅𝑅𝑚𝑚 if a cyclist is involved, with, again, m = 2(p + q) and 0r 
the null vector of Rr. Note that observations for pedestrians and cyclists are used only to describe 
their actions with respect to drivers whose responsibility is being estimated.  

The score R is then calculated as: 
𝑅𝑅 = 𝛼𝛼 + 𝑋𝑋𝑖𝑖𝑇𝑇𝛽𝛽 

If R>0, the driver i is considered responsible, and otherwise non-responsible.  
 

Decision tree methods /Machine learning algorithms 

As mentioned above, as well as logistic regression with LASSO penalty, we also examined 
decision-tree classifications. These methods seem well suited to identifying responsible drivers for 
each type of crash, since expert attribution is based on an implicit decision tree: if the driver commits 
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a “serious” fault such as running a red light, this is usually enough for the expert to attribute 
responsibility. If no serious faults were committed, the driver’s other actions need to be examined in 
detail to determine responsibility, going further down the decision-tree. We tested two classical 
decision-tree approaches: boosting and random forests (Hastie, Tibshirani, & Friedman, 2011). 

The random forests is a variant of the bagging method. Consider our training data Z =
{(X1, Y1), … , (Xn, Yn)}, suppose we fit a model from this data, obtaining the prediction f̂(X) at input 
X. We construct a bootstrap sample Z∗b, b = 1, 2, … , B, we fit the decision tree model for every 
bootstrap sample, giving prediction f ∗b(X). Over the B samples, the bagging estimate is the class with 
the highest proportion of trees predicting it. Random forests are decision trees applied on bagging 
model, but for each node of a tree, Random forests randomly selects a fixed number of explanatory 
variables to use in order to split the node. This choice of random variables for each bootstrap sample 
allows reducing the variance of the bagging estimate. 

Boosting method consists in creating weak classification trees to repeatedly modified version of 
the data. The data changes at each boosting step consist of putting weights (ω1, … ,ωn) to each of 
the training observations (X1, Y1), … , (Xn, Yn), starting from equal weights for the first classifier. For 
a chosen M number of weak classification trees, each iteration increases the weights of misclassified 
observations from the last classifier. For an input X, The final classifier G(X) will be the weighted sum 
of all G1(X), … , GM(X) classifiers, with (α1, … ,αM) weights calculated as αm = log � 1

errm
− 1� , errm 

being the error rate of classifier Gm on the training data. By scaling these weights to make their sum 
equal to 1, if G(X) > 0.5 then the driver will be predicted responsible, else it will be predicted as 
non-responsible.  

Validation and comparison of methods 

The accuracy of the models’ predictions applied to new data sets was assessed by implementing 
a K-fold cross-validation method for the logistic regression and for the boosting. The random forest 
method does not require cross-validation, as it makes an out-of-bag estimate of prediction error.  

Results on the three models were compared in two ways: 
- First, on the following five criteria, with prediction noted as 𝑌𝑌�: 

accuracy, defined as the percentage of observations in which expert attribution matched 
prediction (𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑃𝑃(𝑌𝑌� = 𝑌𝑌)); sensitivity, defined by 𝑆𝑆𝑛𝑛 = 𝑃𝑃�𝑌𝑌� = 1�𝑌𝑌 = 1�; specificity, 
defined by 𝑆𝑆𝑖𝑖 = 𝑃𝑃�𝑌𝑌� = 0�𝑌𝑌 = 0� ; area under the ROC curve (AUC), defined by the area of 
the curve plotting the sensitivity against 1 – specificity for varying risk-thresholds; and Cohen 
kappa, an inter-rater agreement measure for contingency tables, with 0 corresponding to 
independence of judgments and 1 corresponding to perfect agreement; 

- Second, by comparing ORs for several risk factors, derived from a responsibility analysis using 
either expert attribution or predicted responsibility. 

All statistical methods were implemented using R statistical software. Logistic regression with 
LASSO selection was implemented using the glmnet R package. Random forest and boosting 
algorithms were implemented using the randomForest and gbm R packages, respectively. 

3. Results 

3.1. Sample size 

Table 2 presents number of crashes, number of drivers (or riders) and percentage of responsible 
drivers (i.e., Y=1) per crash configuration. As expected, percentage responsible drivers varied 
according to crash configuration, at around 50% for types 1 and 2 (involving ≥2 road users) and 
almost 100% for type 3 (involving a single motor vehicle).  
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Table 2: Descriptive statistics of the three crash configurations. 
 Configuration 

 
Type 1: at least two 
motor vehicles 

Type 2: motor vehicle and a 
pedestrian or cyclist 

Type 3: single 
vehicle  

Number of crashes 3,583 1,262 1,961 
Number of drivers involved 7,597 1,262 1,961 
% responsible drivers or riders 47.1% 51.4% 98.1% 
 

In the following subsections, we successively present classification algorithm results for each of 
the 3 types of crash. 

3.2. Crash involving at least two motor vehicles (configuration 1) 

We first assessed the predictive capacities of the algorithms: i.e., their ability to correctly predict 
the expert attributions. Table 3 presents results in terms of accuracy, sensitivity, specificity, AUC and 
Cohen kappa for the LASSO logistic regression, random forests and boosting. The LASSO logistic 
regression showed similar values for sensitivity and specificity; sensitivity was higher but specificity 
lower than for decision-tree-based approaches. Even so, performance was largely similar for all three 
methods on the global criteria of accuracy, AUC and kappa, indicating very good performance for all 
three, so that all three could be used for precise prediction of expert attributions of responsibility. 
Overall, we favor logistic regression because the derived score has an explicit form, unlike the other 
two. 
Table 3: Results on various criteria, using cross-validation for logistic regression and boosting, and out-of-box estimate 
for random forests 
 LASSO logistic regression  Random forests Boosting 
Accuracy 0.869 [0.862 ; 0.877] 0.864 [0.856 ; 0.871] 0.869 [0.862 ; 0.876] 
Sensitivity 0.887 [0.877 ; 0.898] 0.812 [0.799 ; 0.825] 0.837 [0.825 ; 0.849] 
Specificity 0.853 [0.843 ; 0.864] 0.909 [0.900 ; 0.918] 0.898 [0.889 ; 0.906] 
AUC 0.936 [0.931 ; 0.942] 0.932 [0.927 ; 0.938] 0.936 [0.931 ; 0.940] 
Cohen kappa 0.739 [0.724 ; 0.754] 0.725 [0.710 ; 0.741] 0.737 [0.722 ; 0.751] 

Validation through responsibility analysis 

An additional way to assess the validity of our predicted responsibility is to assess whether 
responsibility analysis conducted with either the expert responsibility or our predicted responsibility 
returns similar odds ratios for some risk factors of interest (typically not included among the 
predictors in our models). Table 4 shows ORs estimated for six selected risk factors using, in turn, 
expert attributions of responsibility and responsibility estimated by the LASSO strategy. We chose to 
perform this analysis with the six following risk factors: driving under the influence of alcohol 
(reference: <0.5g/l), age (by age group; reference: <20 years), gender (reference: male), socio-
occupational class (reference: executive of manual worker), driver’s license (reference: valid license) 
and type of road user (reference: driver). 
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Table 4: Odds ratio of expert attribution of responsibility and LASSO predicted responsibility with 95% confidence 
intervals, for 6 risk factors 
Variable Category Expert LASSO 
Blood alcohol 
concentration (g/L) 

[0 ; 0.5[ Reference Reference 
[0.5 ; 0.8[ 3.19 [1.70 ; 6.00] 2.36 [1.29 ; 4.33] 
[0.8 ; 1.2[ 6.92 [3.81 ; 12.59] 6.85 [3.70 ; 12.70] 
[1.2 ; 2.0[ 14.60 [7.60 ; 28.03] 6.32 [3.86 ; 10.38] 
2.0 or more 13.45 [7.40 ; 24.48] 10.19 [5.83 ; 17.82] 
≥0.5 but unknown precise value 7.83 [3.03 ; 20.23] 2.91 [1.40 ; 6.05] 
Unknown value 1.40 [1.21 ; 1.62] 1.31 [1.13 ; 1.51] 

Age Less than 20 years Reference Reference 
[20 ; 40[ 0.65 [0.53 ; 0.82] 0.64 [0.51 ; 0.80] 
[40 ; 60[ 0.48 [0.38 ; 0.61] 0.49 [0.38 ; 0.61] 
60 years or more 0.73 [0.53 ; 1.00] 0.73 [0.53 ; 1.00] 

Sex Man Reference Reference 
Woman 0.88 [0.78 ; 0.98] 0.91 [0.81 ; 1.02] 

Socio-professional 
class 

Executive of manual worker Reference Reference 
Farmer, artisan or storekeeper 0.82 [0.65 ; 1.02] 0.85 [0.68 ; 1.06] 
Professional driver 1.34 [1.04 ;1.72] 1.15 [0.90 ; 1.48] 
Retired 1.39 [1.07 ; 1.81] 1.23 [0.95 ; 1.60] 
Unemployed or student 1.61 [1.33 ; 1.95] 1.55 [1.28 ; 1.88] 
Other 1.03 [0.92 ; 1.16] 1.10 [0.98 ; 1.24] 

Driving License Valid license Reference Reference 
Invalid or lack of driving license 2.85 [1.78 ; 4.55] 2.46 [1.57 ; 3.87] 

Driver type Car Reference Reference 
Motorcycle 0.90 [0.80 ; 1.02] 0.91 [0.80 ; 1.03] 
Truck, bus or other 0.45 [0.36 ; 0.57] 0.53 [0.43 ; 0.66] 

 
Overall, Table 4 shows that using responsibility predicted by the LASSO logistic regression or 

expert attributions lead to similar estimated ORs, even if different conclusions regarding statistical 
significance may arise for ORs close to 1. ORs for blood alcohol level were similar for levels <1.2g/l, 
but for levels above 1.2g/l, the use of predicted responsibility led to lower ORs.  
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Responsibility prediction score 

Finally, we used the logistic regression model to build our responsibility score.  
 

Table 5: Coefficient values to construct the responsibility score for crashes involving just 2 motor vehicles (column 3) or 
more than 2 (column 4) 

Type of 
variable Variable Value of coefficient β for 

crash involving 2 vehicles 

Value of coefficient β for 
crash involving ≥3 
vehicles 

Intercept Intercept 𝛼𝛼 = 0.023 𝛼𝛼 = 0.185 

External 
conditions 

One-way road 0 −0.688 
4-lane 2-way road or dual 
carriageway 0 −0.553 

Main road 0 −0.361 
Urban road 0 −0.466 
Bridge, tunnel or subway 0 −0.466 
Heavy rain 0 0.629 
Fog, snow or storm 0 0.979 

Vehicle 
impact 

Rear −1.353 −0.730 
Frontal 0 1.194 
Right side (= passenger side)* 0.062 
With mobile obstacle  0.198 0.430 
With fixed obstacle  0.524 

Driver actions  Stationary vehicle  −0.511 
Speeding 0 0.245 
Avoidance maneuver 0 0.576 
Left turn (= into traffic)* 0.143 
Overtaking on the left (= normal 
overtaking)* 0.215 

Vehicle deviating left (= into traffic)* 1.098 
Turning left or right 1.133 
Insertion of vehicle into traffic 1.469 
Overtaking a vehicle 1.533 
Between 2 lanes, half-turn or 
reversing 1.636 

Changing lanes 2.032 
Vehicle deviating 2.064 
Number of faults 1.897 2.217 

*Driving is on the right in France. 
 
The variable "Number of faults" is quantitative; all the others are qualitative, with values of −1, 0, 

or 1. Indeed as defined in paragraph 2.3, in the case of two drivers 𝐴𝐴1 and 𝐴𝐴2, the value of S for  𝐴𝐴1 is 
𝑆𝑆𝐴𝐴1 = 𝑍𝑍𝐴𝐴1 − 𝑍𝑍𝐴𝐴2 . 

For some variables, such as "Stationary vehicle", coefficients were equal whatever the number of 
motor vehicles involved. Others had a coefficient that depends on the number of vehicles: in 
particular, speeding significantly increased the risk of being responsible only for crashes involving at 
least three vehicles (Table 5). External conditions (weather and road conditions) were associated 
with the risk of being responsible for crashes involving at least three vehicles but not for crashes 
involving only two vehicles. It is also noteworthy that frontal impact has no influence for two-vehicle 
crashes, but has a strong influence in case of three vehicles or more, which may be explained by 
crashes occurring in traffic jams. As expected, we observe that committing a fault, making a 
direction-changing maneuver, hitting an opponent car on its rear (S=-1 for the corresponding driver) 
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are the factors that increase the most the responsibility score, while they greatly reduce the 
responsibility score for a driver if the opponent car driver makes these errors. 

Some variables are linked by construction: thus, the score for a driver “turning left or right” 
increases by 1.13, and again by 0.143 if it is actually turning left (i.e., into the traffic). In particular, 
deviating on left gives the highest contribution to responsibility score, as it often results in head on 
collision.  

3.3. Crashes between a motor vehicle and a pedestrian or cyclist (configuration 2) 

The predictive models used in the present work are above all based on variables indicating the 
driver behavior. They are not well-adapted for predicting responsibility in cyclists, and even less 
pedestrians. For example, some important information was missing for pedestrians and cyclists, such 
as crossing a red light or failure to give way to a tram. We therefore restricted our prediction 
objective to motor vehicle drivers (or riders). 

1,262 crashes were recorded in that configuration, 946 of which involved a driver and a 
pedestrian and 316 a driver and a cyclist.   

The performance of the three methods is presented in Table 6. All three methods had poorer 
performance in configuration 2 than 1. Accuracy for logistic regression was about 0.77 in 
configuration 2 and 0.87 in configuration 1. Cohen kappa showed moderate agreement between 
prediction and expert attribution. In configuration 2, the three methods again performed similarly, 
and we therefore decided to keep the LASSO logistic regression model for estimating the prediction 
score, due to its simpler form. 

 
Table 6: Results on various criteria by cross-validation or out-of-box estimate for crashes involving a motor vehicle and 
pedestrian or cyclist 
 LASSO logistic regression Random forests Boosting 
Accuracy 0.769 [0.746 ; 0.791] 0.763 [0.739 ; 0.786] 0.753 [0.732 ; 0.774] 
Sensitivity 0.785 [0.755 ; 0.815] 0.803 [0.771 ; 0.831] 0.758 [0.729 ; 0.786] 
Specificity 0.749 [0.715 ; 0.783] 0.716 [0.678 ; 0.751] 0.745 [0.714 ; 0.777] 
AUC 0.821 [0.801 ; 0.841] 0.812 [0.788 ; 0.836] 0.817 [0.801 ; 0.833] 
Cohen kappa 0.533 [0.488 ; 0.578] 0.521 [0.474 ; 0.568] 0.502 [0.460 ; 0.544] 
 

Responsibility prediction score 

Table 7 shows the parameters of the scoring tool for crashes involving only one motor vehicle 
and one pedestrian or one cyclist.  
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Table 7: Coefficient values to construct the driver responsibility score for crashes involving 1 motor vehicle and 1 
pedestrian (column 3) or 1 cyclist (column 4) 

Type of variable Variable Value of β for crash 
involving 1 pedestrian 

Value of β for crash 
involving 1 cyclist 

Intercept Intercept 𝛼𝛼 = 0.511 
External conditions  One-way road 0.373 

3-lane 2-way road −1.359 1.305 
4-lane 2-way road or dual 
carriageway −0.555 −1.473 

Road with separated lanes −0.562 
Night without road lighting −1.011 0 
Equipped crossroads −0.581 0 
X junction −0.569 
T or Y junction 0 −0.392 
Roundabout 0 2.665 
On central reservation 0 −0.894 
Off road 1.60 
Subway, tunnel or road bridge 0 −0.749 
Steep slope 0 −0.487 
Urban road 0 −0.483 
Bad weather 0 1.254 

Vehicle impact Rear 0 −1.136 
With mobile obstacle  0 0.532 

 Pedestrian masked, playing or 
running 

0.877 ∗ 

Road-user actions Pedestrian on pedestrian crossing −1.071 ∗ 
Speeding −0.597 
Vehicle turning left or right 0 0.289 
Insertion of vehicle in traffic 0 0.834 
Vehicle change of direction 
without indication 0 0.838 

Vehicle deviating left (= into traffic) 0 0.901 
Overtaking a vehicle 0 1.000 
Vehicle deviating left or right 0 1.042 
Vehicle turning left (= into 
traffic)** 0 1.181 

Failure to give way 0 1.462 
Changing lanes 0 2.113 
Number of faults 1.253 1.407 

* not applicable for cyclists 
 

The score here is based on more variables than for motor vehicle crashes. Notably, more external 
conditions are relevant: type and form of road, and weather conditions. We can observe that for 
crashing involving a pedestrian, the crash happening at night decreases the responsibility score for 
the driver. A potential explanation is that a driver can fail to see a pedestrian because of darkness. 
Note that speeding is included in the number of faults, adding 1.253 −  0.597 = 0.656 to the score 
for crashes involving 1 pedestrian (and 1.407 −  0.597 = 0.81 for crashes involving 1 cyclist). While 
many road-user actions have no significant effect in the score assessment, the action of the 
pedestrian has a significant influence on the responsibility score. For the driver, variables about the 
pedestrian actions can be equal to 0 or -1: indeed if a pedestrian 𝐴𝐴1 is on a pedestrian crossing, his Z 
variable value is 𝑍𝑍1 = 1, while the Z variable is 𝑍𝑍2 = 0 for the corresponding driver 𝐴𝐴2. With our 
definition of S, the value of S for the driver becomes 𝑆𝑆2 = 𝑍𝑍2 − 𝑍𝑍1 = −1. Therefore, if the pedestrian 
is on the pedestrian crossing, the value of -1.071 in the table becomes 𝑆𝑆 = 1.071 for the driver. This 
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raises the responsibility score and the driver is considered responsible unless there is a combination 
of at least two of the significant external factors that decrease the score. However, if the pedestrian 
is masked, playing or running on the road and the driver does not commit any fault, the responsibility 
score becomes negative and the driver will be estimated not responsible. When the crash involves a 
cyclist, most of the road actions of the driver significant for the responsibility score assessment are 
similar to the factors observed for crash configuration 1. 

3.4. Single vehicle crashes (configuration 3) 

There were 1,961 crashes (equal here to the number of road users) involving a single driver or 
riders; 1,923 drivers or riders (98.1 %) were considered responsible by the experts. We tried all three 
methods to predict responsibility in this configuration, but not surprisingly, the modeling proved to 
be very poor at predicting those not responsible. In line with the quasi-induced exposure method, 
our recommendation is therefore to consider all drivers involved in "single-vehicle" crashes as 
responsible. 

4. Discussion 

Estimation of responsibility in the present study comprised 3 stages. 
- Driver responsibility was attributed by experts in the light of all information contained in the 

police reports, including crash diagrams and photographs, for a sample of about 5,000 injury crashes. 
Inter-observer agreement was good, suggesting that experts used similar assessment rules (Ollier & 
Viallon, 2014). 

- Three supervised learning techniques were implemented to predict expert attribution. After 
cross-validation for logistic regression and boosting and out-of-bag estimation for random forests, 
the three methods showed similar performance in terms of accuracy, sensitivity, specificity and 
reliability for crash configurations 1 and 2. We therefore chose logistic regression, which provided 
easy prediction based on a risk/prediction score. Random forests gave better results for single-
vehicle crashes, but performance was considered insufficient for application in this case (in which 
drivers are considered systematically responsible). 

- The predictors used were binary yes/no encodings of information in the routine police report 
data in France. Most of this information is also found in police crash reports in other countries 
(OECD/ITF, 2016), but our objectives were obviously best met by the present data-set. However, we 
avoided over-fitting by using the techniques described in the Methods section above.  

The prediction score was also validated (for the purposes of responsibility analysis) by estimating 
and comparing ORs obtained for certain risk factors, using the predictions and expert attributions, 
respectively. The ORs for predictions and expert attributions were very close, except in case of high 
blood alcohol content, where they were lower using predictions. As drivers with high alcohol levels 
tend to multiply errors (Blomberg, Peck, Moskowitz, Burns, & Fiorentino, 2009), it may be that in 
such cases not all factors indicating extreme behaviors are fully entered in the police record 
database. Any such underestimation, however, would not be very important for the odds ratios, 
which were in any case very high, but should be taken into account in estimating the corresponding 
attributable risks. Brubacher et al. (2012) also found a great difference, for high blood alcohol 
concentrations, between their own ORs and those from large case-control studies.  

The earliest driver responsibility study was conducted in Toronto by Smith (Smith & Popham, 
1951), where the authors developed their own responsibility scoring tool. Their main objective was 
to investigate the effect of alcohol in car crashes. They used a 10-point scale to determine road-user 
responsibility, based on reviewing police records and distinguishing factors dependent on driver 
actions and those beyond their control (environmental hazards, mechanical vehicle failures). Other 
investigators later used responsibility analysis to study crash risks in relation to alcohol or drug use. 
Tehrune reviewed the limitations of using a dichotomous responsibility variable for 2-driver crashes 
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(Tehrune, 1983), and proposed a 5-point scale. Two inexperienced coders used his scale to determine 
responsibility in crash data; results suggested that there was no reason to think there would be only 
one responsible driver in crashes involving two or more vehicles, and that driver responsibility 
showed high inter-coder reliability when the responsibility was assessed on rating scales. 

Later, two important studies on the same subject were published, by Robertson and Drummer 
(Robertson & Drummer, 1994) and, more recently, by Brubacher (Brubacher et al., 2012). A global 
responsibility score was constructed by attributing a-priori scores (from 1 to 5) to a series of factors 
presumed to increase responsibility (e.g., driver not obeying road laws, score=1) or attenuate it (e.g., 
vehicle hit, score=5). A global score above 15 indicates non-responsibility, 13 or less indicates 
responsibility, and 14 or 15 indicates undetermined responsibility.  

Brubacher et al. (2012) developed an alternative prediction score based on their own expertise, 
implemented on a small training crash dataset containing about 100 crashes. Two experts were 
further asked to rate driver responsibility in the dataset: the experts’ ratings and the results of the 
calculation were compared, and the comparison was used to improve the scoring tool.  

In these two studies, to the best of our knowledge, the authors had no reference value for 
responsibility: validation was a-posteriori, comparing predicted scores to expert scores in a small 
sample.  

We applied Robertson and Drummer’s recommendations to our data. Comparison was, however, 
difficult, as we had to adapt the data to the published guidelines, with an inevitable loss of 
performance due to the differences between the information contained in our data set and their 
data, used to construct their responsibility score. 

It was, however, interesting to find that applying these recommendations leads to correct 
predictions for crashes involving 2 or more vehicles but poorer for crashes involving cyclists or 
pedestrians. For crashes involving 2 or more vehicles, Cohen’s kappa was 0.726 [0.708 ; 0.744], close 
to the value using the logistic regression model (Table 3), whereas it was only 0.159 [0.131 ; 0.187] 
for crashes involving a cyclist or pedestrian, as compared to 0.533 using our predictive model (Table 
6). 

In particular, the guidelines proposed by Robertson and Drummer and the process proposed by 
Brubacher take account of road surface and weather conditions for any type of crash, and conditions 
worse than normal reduce the risk of the driver being responsible (Brubacher et al., 2012; Robertson 
& Drummer, 1994). However, having a crash under bad external conditions could also be considered 
as a failure of the driver to adapt to the conditions: considering bad external conditions as a 
mitigating factor is therefore questionable (Salmi, Orriols, & Lagarde, 2014). Likewise, our score 
suggests that bad weather conditions increased the risk of being considered responsible only when 3 
or more motor vehicles were involved.  

For single vehicle crashes, we did not manage to get good performance. The very low number of 
non-responsible road users as assessed by the experts suggested that it is reasonable to assume that 
drivers were always responsible in that configuration, with some very specific exceptions where it 
was quite impossible for the driver to anticipate a crash situation, such as oil on the road or a truck 
dropping its load (Wu, Hours, & Martin, 2018). 
 

All previous studies propose a scoring tool without explanation about the way it was assessed, in 
particular the values associated to each item considered. On the contrary, our present study is 
focused on the estimation of the driver responsibility according to a data-driven process. The 
parameters to be applied to each item were assessed by a machine learning algorithm, which 
validates the weights attributed to each predictor. Cross validation showed that our scoring tool 
could be applied on new crash datasets. 

4.1. Limitations 

The proposed score has some limitations. We decided to use a binary outcome: responsible or 
not responsible. There may be some crashes in which the road user’s responsibility is not clearly 
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determined. Indeed, we excluded cases in which the expert declared driver responsibility to be 
shared, and our score may not be efficient in such scenarios. We also did not manage to accurately 
identify non-responsible drivers in configuration 3 (single-vehicle crashes). 

The score could directly be applicable to most of French police data, considering that drivers are 
almost always responsible in single vehicle crashes and that proportion of crashes with shared 
responsibility is very low. However it requires that all necessary variables for computing the score 
should be available. If the database does not have such information, the score may not give a reliable 
determination of responsibility. However, the methodology could also be adapted for other national 
police data, and R scripts are available from the authors upon request.  

Further work is needed to validate this responsibility assessment, notably using similar police 
data such as those in the European CARE database, which is the Community database on road 
crashes resulting in death or injury, comprising detailed data on individual crashes as collected by the 
Member States. 

5. Conclusion 

Responsibility analysis enables crash risk factors to be quantified, given certain hypotheses 
(Brubacher et al., 2014), without resort to exposure data, which is why it is widely used (Salmi et al., 
2014). Results greatly depend on the quality of how responsibility is determined, and it is equally 
important that the elements used for determination should be explicit, allowing interpretation of 
identified risk factors. 

Based on expert decisions for a fairly large number of police crash reports, we constructed a 
score to assess responsibility for drivers and riders in crashes involving one or more motor vehicles, 
or involving a cyclist or pedestrian. Odds ratios estimated from the score were similar to those 
estimated from expert assessment, and cross-validation showed that it can also predict expert 
responsibility assessments on new data sets.  

We believe that this score can be used to reliably assess responsibility based on national police 
report databases, provided that they include the information needed to construct the score. It can 
then be used to perform responsibility analysis to identify and study transient and stable risk factors 
for road crashes. 
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Appendix A. Scoring tool examples 

The first example illustrates how to use the score for a crash between two motor vehicles, as 
derived from configuration 1. Here we calculate the score of driver A. In this example, driver B was 
above the speed limit, and failed to give way to driver A on the right at an intersection. Driver B’s 
vehicle received impact on the right, and driver A’s vehicle received frontal impact. 
 
 Variable W(A) W(B)  
External 
conditions  

One-way road 0 0  
4-lane 2-way road or dual carriageway 0 0  
Main road 0 0  
Urban road 0 0  
Bridge, tunnel or subway 0 0  
Heavy rain 0 0  
Fog, snow or storm 0 0  

 Variable Z(A) Z(B) S(A) 
Vehicle 
impact 

Rear 0 0 0 
Frontal 1 0 1 
Right 0 1 -1 
With mobile obstacle  1 1 0 
With fixed obstacle  0 0 0 

Driver 
actions  

Stationary vehicle 0 0 0 
Speeding 0 1 -1 
Avoidance maneuver 0 0 0 
Turning left*  0 0 0 
Overtaking on left* 0 0 0 
Vehicle deviating left* 0 0 0 
Vehicle turning left or right 0 0 0 
Insertion of vehicle in traffic 0 0 0 
Overtaking 0 0 0 
Between lanes, half-turn or reversing 0 0 0 
Changing lanes 0 0 0 
Vehicle deviating 0 0 0 
Number of faults 0 2 -2 

*assuming a country in which driving is on the right and a lefthand-drive vehicle. 
 
The score for driver A is: 

𝑅𝑅(𝐴𝐴) = 0.023 + 1 × 0 + (−1) × 0.062 + (−1) × 0 + (−2) × 1.897 = −3.83 
Since 𝑅𝑅(𝐴𝐴) < 0, driver A is predicted as non-responsible for the crash. 
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A second example is given to illustrate how to use the score for a crash between a car A and a 
pedestrian B. Urban area, at an X junction, car turning left, hits a pedestrian on a pedestrian crossing. 
 
 Variable W(A) W(B)  
External 
conditions  

One-way road 0 0  
3-lane 2-way road 0 0  
4-lane 2-way road or dual carriageway 0 0  
Separated lanes 0 0  
Night without lighting 0 0  
Equipped crossroads 0 0  
X junction 1 1  
T or Y junction 0 0  
Roundabout 0 0  
On central reservation 0 0  
Off road 0 0  
Bridge, tunnel or subway 0 0  
Steep slope 0 0  
Urban road 1 1  
Bad weather 0 0  

 Variable Z(A) Z(B) S(A) 
Vehicle 
impact 

Rear 0 0 0 
With mobile obstacle  0 0 0 

Road-user 
actions  

Pedestrian masked, playing or running 0 0 0 
Pedestrian on pedestrian crossing 0 1 -1 
Speeding 0 0 0 
Vehicle turning left or right 1 0 1 
Insertion of vehicle in traffic 0 0 0 
Change of direction without indicating 0 0 0 
Vehicle deviating left* 0 0 0 
Overtaking 0 0 0 
Vehicle deviating left or right* 0 0 0 
Vehicle turning left* 1 0 1 
Failure to give way 0 0 0 
Changing lanes 0 0 0 
Number of faults 0 0 0 

*assuming a country in which driving is on the right and a lefthand-drive vehicle. 
 
The score for driver A is: 
𝑅𝑅(𝐴𝐴) = 0,511 + 1 × (−0,569) + 1 × 0 + (−1) × (−1,071) + 1 × 0 + 1 × 0 = 1,01 > 0 

Driver A is therefore predicted to be responsible. 
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