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Abstract

Many studies propose strong user authentication
based on biometric modalities. However, they often
either, assume a trusted component, are modality-
dependant, use only one biometric modality, are re-
versible, or does not enable the service to adapt
the security on-the-fly. A recent work [1] intro-
duced the concept of Personal Identity Code Respect-
ing Privacy (PICRP), a non-cryptographic and non-
reversible signature computed from any arbitrary in-
formation. In this paper, we extend this concept with
the use of Keystroke Dynamics, IP and GPS geo-
location by optimizing the pre-processing and merg-
ing of collected information. We demonstrate the
performance of the proposed approach through ex-
perimental results and we present an example of its
usage.
Keywords: Personal information; Behavioural bio-
metrics; Privacy protection; BioHashing; Keystroke
Dynamics; Authentication; Location.

1 Introduction

When browsing the Internet, users disclose informa-
tion that enable their authentication, they can be be-
havioral (e.g. Mouse or Keystroke Dynamics), what
the user is (e.g. his/her face through the webcam),
what the user knows (e.g. a password), what the
user has (e.g. the browser, OS). The new European
General Data Protection Regulation (GDPR) estab-
lishes rules in order to protect user privacy and en-

sure his/her consent. These modalities have thus to
be used by the service to authenticate users, but, as
possible, without knowing or enabling an attacker to
know, these modalities.

1.1 State of the art

Biometric authentication is a well-studied subject
in the literature, however, proposed solutions often
either, assume a trusted component, are modality-
dependant, use only one biometric modality, are
reversible, or does not enable the service to adapt the
security on-the-fly. Trusted computing using secure
element or sensors often gives the best security, but
requires the possession of a specific hardware that
a user might not possess. Such solutions thus only
protect owner of such specifics hardware, that might
be lacking in desktop or laptop computers. It also
assumes that such devices are trusted and cannot be
attacked.

Homomorphic or Functional encryption [2] enables
to compare biometric modalities in the encrypted do-
main, i.e. without having the knowledge of the con-
tent. However, the encrypted data often require a lot
of memory space, that can be repellent for a web ser-
vice. Other solutions can be mono-modal or built for
a specific modality. Some of which, like Zero Knowl-
edge Protocol [3], does not enable the change of the
security level on the fly.
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1.2 PICRP

A recent work [1] introduced the concept of Personal
Identity Code Respecting Privacy (PICRP), a non-
cryptographic and non-reversible signature computed
from arbitrary personal data. PICRP is described as
a cancelable non-reversible code enabling the simi-
larity comparison of private data through the Ham-
ming distance of two PICRP. PICRP is also assumed
difficult to forge by attackers, and protecting users
privacy by not disclosing users private and biomet-
ric information [1]. PICRP is computed, from the
private data, as a BioCode, with the BioHashing al-
gorithm [4]. The BioHashing algorithm transforms a
real vector T into a binary model called BioCode B,
by multiplying T with a Gram Schmidt matrix ran-
domly generated from a secret used as a seed. The
result is then quantified.

PICRP still needs to be integrated into a secure
protocol as it is vulnerable to replay attacks. [1]
proposed to protect the user-service communication
channel in order to protect the PICRP. In our study,
we propose a more advanced authentication scheme.
Any type of personal information can be added
to the PICRP as long as it can be represented as
a fixed-length real vector (e.g. browser history,
free-text, mouse, ...). Soft-biometrics information
(s.a. age, gender) could also be computed from
existing modalities and integrated to the PICRP, in
order to improve performances.

However, this study, described as preliminary,
aimed at demonstrating the feasibility of PICRP
and did not evaluated its performance. Personal
information have been simply concatenated without
any appropriate pre-processing. We show the ad-
vantages of the PICRP concept, and we propose a
new PICRP based on Keystroke Dynamics, IP and
GPS geo-location. We optimize the pre-processing
and merging of the modality, then demonstrate the
performances of the proposed PICRP, then present
an example of its usage.

We evaluate the performances in terms of Equal
Error Rate (EER) which is the error rate when the
rate of accepted imposter (False Acceptance Rate)

equals the rate of rejected legitimate users (False Re-
jection Rate). To evaluate the performance of the
proposed PICRP, the BioHashing secret is assumed
to be known by the attacker (worst case). All PICRP
were thus be computed using the same BioHashing
secret: 0x1534FA2C4D37. In this study, only one tem-
plate is used as reference. We latter propose a PICRP
usage in which the localkey (authenticating the user
browser) is used to compute the BioHashing secret,
instead of being part of the BioCode. In the next
section, we present the PICRP pipeline we used in
this study.

2 PICRP pipeline
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Figure 1: PICRP computation.

Computation of PICRP is shown by Figure 1. In
red, the BioHashing steps that are presented below.
In green the data used to compute the PICRP, and
in blue, the steps added to the BioHashing. Data
and additional steps are presented in the following
sections.

Biohashing was used in [1] to protect personal in-
formation, it is a well-known algorithm in biometrics.
It enables a biometric data T transformation by gen-
erating a binary model B called BioCode, having a
size inferior or equal to the original size. This trans-
formation is non-reversible and allows to keep input
data similarity. This algorithm originally has been
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proposed for face and fingerprints by Teoh et al. in
[4]. Biohashing algorithm can be used on every bio-
metric modality, or personal information, that can be
represented by a fixed-size real vector. This transfor-
mation requires a secret linked to the user.

First, a Gram Schmidt matrix is generated from a
random matrix, using the secret as a seed. T is then
multiplied with the Gram Schmidt matrix and the
result X is then quantified using the following for-
mula: Bi = (sign(Xi) + 1)/2. BioCode comparisons
is realized by the computation of their Hamming dis-
tance. The quantization process guarantees the data
non-reversibility (even if len(T ) = len(B)), as each
input coordinate T is a real value, when the BioCode
B is binary.

3 Datasets

3.1 Keystroke Dynamics Datasets

Fixed-text Keystroke Dynamics datasets used in this
study are described in Table 1. As described in [5, 6],
these datasets have been cleaned and only the first
45 entries of each user are kept. Metrics given in
this paper are computed as the average value of the
metric across the 4 datasets.

Name Text # of users (45) Source
GREYC K greyc laboratory 104 [7]

GREYC W1 laboratoire greyc 62 [8]
GREYC W2 sésame 46 [8]

CMU .tie5Roanl 51 [9]

Table 1: Description of used Keystroke Dynamics
datasets.

3.2 Location datasets

Location datasets are generated from the DB-IP
dataset [10] where each entries describe an IP
network and a GPS location. Only IPv4 entries are
considered. Each user are associated to an origin
place, randomly chosen among the DB-IP entries,
each entry having a probability to be chosen given
by the number of IP addresses the network enables.
Each user entry is then generated by randomly

choosing another entry from DB-IP which distance
with the origin place is below an arbitrary value we
name user mobility. The generated datasets have
100 users with 45 entries each. IP addresses are
randomly chosen among the one belonging to the IP
network. Two datasets are generated, IP addresses
generated from place where each entry IP addresses
are generated from its network, and IP addresses
from network, where the IP address is generated
from the origin place network.

GPS coordinates are converted in XYZ location,
a coordinate in the Euclidean space represented by
3 reals (x, y, z). XYZ location enables non-biased
distances, as longitudes +180 and -180 are the same
longitude, and as differences in longitudes does not
represents the same distances in function of the lat-
itude. In XYZ location, generated from places, XYZ
location are computed from the entry GPS coordi-
nates. In XYZ location, generated from positions,
XYZ locations are randomly picked in all possible co-
ordinates at a distance from the origin place inferior
to the user mobility.

3.3 GPS formula

This section presents formula applied to GPS/XYZ
locations used in the scope of this study.

3.3.1 XYZ locations

XYZ locations (x,y,z) are computed from latitude
(lat) and longitude (long) GPS coordinates with the
following algorithm:

gpsToXYZ([lat, long]) : [x,y,z]
lat *= π / 180,
y = 0.5 + sin(lat) * 0.5,
x = 0.5 + sin(long) * r,

long *= π / 180;
r = cos(lat) * 0.5;
z = 0.5 + cos(long) * r;

3.3.2 Distances

Distances between two places are computed as an an-
gle a using the cosinus law. The distance between two
XYZ locations A,B is computed as follow:

angle(A,B): a
cos−1(1− 2 ∗ (Σi∈{x,y,z}(A[i]−B[i])2))
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Distances in meters m are converted into angle a dis-
tance with the following formula (assuming the cir-
cumference of the earth c to be 40,075,000 meters):

a = m/c ∗ 2 ∗ π

3.3.3 Random locations

Random locations are generated from an origin loca-
tion O and a user mobility r, i.e. the distance be-
tween the random locations and O is at most r.

Random locations are generated by randomly pick-
ing a polar coordinate [a, d] in a circle of radius r
using pickInCircle(). The polar coordinate are then
converted to a GPS location GPS = [long, lat] using
pointInCircleToGPS(). Random locations are gen-
erated, first assuming the origin location to be the
North Pole (lat. 90, long. 0), then by rotating the
space in order to move the North Pole to the origin
location using moveNorthPoleToOrigin().

pickInCircle(r): [a,d]
a = rand() ∗ 2 ∗ π, d = r ∗

√
rand();

pointInCircleToGPS([a,d]): [long,lat]
lat = 90− 180 ∗ d/π, long = −180∗a/π+180;

moveNorthPoleToOrigin(GPS, O = [olong,
olat]): GPS

GPS = latRotation(GPS, (olat-90) / 180 * π);
GPS = longRotation(GPS, olong / 180 * π);

latRotation(GPS, dx): GPS
[x, y, z] = gpsToXYZ(GPS);
a = angle([0.5,y,z], [0.5, 0.5, 1]) + dx;
r = dist3D([x,y,z], [x,0.5,0.5]);
y = 0.5 + r * sin(a), z = 0.5 + r * cos(a);

longRotation(lat, long], dy): GPS
long += dy / π * 180;
long = (long + 360 ) % 360 - 360;

dist3D(A,B): d
d =

√
Σi∈{x,y,z}(A[i]−B[i])2;

4 Pre-processing

We intend to protect collected data with a biometric
template protection scheme called BioHashing. Col-
lected information thus have to be pre-processed in
order to be represented as a vector of real values:

• Fixed-text Keystroke Dynamics data are pre-
processed in Section 4.1. In this section, we show
that the values distributions in the real vector
influence BioHashing performances.

• Locations (GPS and IPv4 addresses) are pre-
processed in Section 4.2. In this section, we re-
duce collisions in the final BioCode by extending
small vectors of reals.

4.1 Fixed-text Keystroke Dynamics

Keystroke dynamics can be trivially represented as a
concatenation of dwell (d0/d5) and flight times (d3).
However, such representation (raw) gives disappoint-
ing performances (EER=40%). As stated in [5], 6
duration times can be extracted from each digraph,
with the last duration of a given digraph (d5) also
being the first duration (d0) of the next digraph.
However, as these duration times can be rewritten
as additions of dwell and flight times, they are, by
construction, not bringing any additional security
or performance to the BioHashing algorithm. We
thus present, in the following, several pre-processing
techniques to the raw representation of Keystroke
Dynamics that improve performances.

4.1.1 Standardization

A common practice in Data Sciences is to normalize
variables, i.e. to center and reduce them. Assum-
ing Xi the variable associated to the ith real of the
vector, with Mi and Si its mean and standard devi-
ation, those processes are described by the following
formulas:

• center: X ′i = Xi −Mi ;

• reduce: X ′i = Xi/Si ;

• standardize: X ′i = (Xi −Mi)/Si ;

However, in this study, we used the median value
instead of the mean one. Indeed, the median is more
resilient to aberrant values (e.g. hesitation times),
and ensures equal numbers of positives and negatives
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values after centering.

Results: We found that Standardization signifi-
cantly improve the EER value (28.8%) compared to
the raw (40%), reduced (38%), and centered (34.5%)
cases.

4.1.2 Uniform distribution modelling

Another practice is to change the variable distribu-
tion. As the previous section shown that centered
variables seem to significantly improve the EER
value, we choose a target distribution that is cen-
tered. We also seek to draw closer extrema values,
and to distance closed values. For these reasons, we
choose the target distribution to be, in this study, a
uniform distribution with support [−1; 1]. Change
the distribution of a variable can be easily performed
with the following formula: X ′i = cdf ′−1i (cdfi(Xi)),
with cdfi(Xi) the Cumulative Density Function
describing the distribution of the variable Xi, and
cdf ′i(X

′i), the target distribution. However, while
the target distribution is known (cdf ′−1i (x) = 2x−1),
the variable distribution cdfi(Xi) has to be estimated.

A naive estimation of Xi distribution is given
by cdfi(x) = pos(x,Ai)/len(Ai), with x a value of
Xi, Ai a sorted array of all known values of Xi,
len(Ai) its length, and pos(x,Ai) the position of x
in Ai. A more practical estimation of cdfi(Xi) is to
compute the parameters of the law Xi is assumed
to follow. In this study, we used the same laws
(gumbel, normal, logistic, and laplace) and fitness
functions (raw, R mle, R mge, and R qme) used in
[5]. All dwell times were assumed to follow the same
law, but with different parameters, as well for the
flight times. Dwell and flight times could however
follow different laws. Configurations are labeled as
follow: fitness function.dwell law .flight law.

Results: Over the 64 tested configurations,
the optimal EER value (24.2%) was found with
R mle.normal.gumbel (fitting). The best raw esti-
mation configuration, raw.gumbel.gumbel (estim),
was found slightly better (24.8%) than the naive
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Figure 2: Keystroke Dynamics pre-processing perfor-
mances (EER)

estimation (25.4%).

4.1.3 Discretization

Previous studies have shown the influence of dis-
cretization on performance of Keystroke Dynamics
Systems based on an Hocquet distance (up to
' −0.5 points) [6], and on SVM (up to −1.04
points) [11]. To the knowledge of the authors, none
has yet study the impact of Keystroke Dynamics
discretization on BioHashing-based KDS. Keystroke
Dynamics data were discretized and uniformized
into identical probabilities values using the follow-
ing formula: X ′i = cdf ′−1i (discn(cdfi(Xi))), with
discn(x) = bx∗nc / (N-1), and n the desired number
of discrete values. bnc is assumed equal to n− 1.

Results: Uniform Keystroke Dynamics data
have been discretized using 999 different values of
n ∈ J2, 1000K. The EER value is computed as the
lowest EER obtained from the 999 discretization
configurations. As shown in Figure 2, discretization
produces negligible EER gains (-0.1 to -0.4 points).
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4.1.4 Discussion

As shown in Figure 2, uniformization of Keystroke
Dynamics greatly improves EER (24.2% to 25.4%)
compared to raw (40%) and normalized (28.8%)
values. Discretization however produces negligible
EER gains (-0.1 to -0.4 points). In addition to
being less efficient (+1.2 points), naive estimation of
cdfi(Xi) requires headcounts of each possible values
for each variable. As the BioCode is computed
on the client side, this means a large sending and
storing large amount of data. Assuming a fixed-text
of 16 characters with 1000 possible values for each
variable, this represents an increase of at least 248ko
in the webpage that can be troublesome for small
Internet connections. In the contrary, non-naive
estimations of cdfi(Xi) only requires mean/median
and standard deviations that represent less than
0.5ko, assuming a fixed-text of 16 characters. While
raw estimation of cdfi(Xi) is less efficient than fitting
estimation (+0.6 points), it may be more practical
as mean/standard deviations can easily be computed
and updated, storing, for each variable, only the
number, sum, and squared sum of its known values.

4.1.5 Limits

In the previous sections, we assumed that all users are
asked to type the same fixed text in order to authenti-
cate themselves. However, in real life, they would be
more likely to be asked to type an identifier, s.a. their
login or e-mail address, which is a personal fixed-text
known by others. However, as the pre-processing pa-
rameters depends on the content being typed, this
would require the service to make hundred of users
type each possible/used fixed-text in order to com-
pute them.

Pre-processing parameters can be estimated by as-
suming that same parameters apply to all dwell (or
flight) times, enabling to compute them from known
dwell (or flight) times. Figure 3 shows that this as-
sumption induces a significant loss of EER value (+1
to +2.5 points). The best estimation and fitting con-
figurations under this assumption were found to be
raw.normal.laplace and R mle.normal.laplace. It is
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Figure 3: Keystroke Dynamics pre-processing perfor-
mances (EER)

worth noticing that the naive estimation of cdfi(Xi)
outperforms estim and fitting under this assump-
tion. Pre-processing parameters might be estimated
with better accuracy using additional knowledge on
Keystroke Dynamics. E.g. computing parameters in
function of the typed character, digraph, or tri-graph
either by knowing their statistics, their position on
the keyboard, or/and their frequency in the user lan-
guage.

4.2 Location

IP address are represented as a set of bits some of
them being more significant than others, while XYZ
locations are represented as a set of 3 real values.
Bitfields B on length n can easily be converted
into reals r (and vice versa) thanks to the following
formula: r = Σn−1

i=0 Bi ∗ 2−i−1.

Using the real representation, IP address and XYZ
locations are represented by 1 and 3 real values,
thus producing BioCode of 1 and 3 bits. 4 bits,
i.e. 16 possible BioCodes, is obviously not enough
for both performances and security reasons. We
thus present, in the following, several pre-processing
techniques extending small vectors of reals in order
to improve BioHashing performances. Reals will be
assumed to equate to a bitfield of 32 bits, and will

6



be transformed as vectors of 32 real values R, while
ensuring that the most significant bits have the most
weight.

4.2.1 LogDist

LogDist does not ensure the bits significance. It
associates each real value Ri to a bit Bi that
determines its sign. In order to ensure that, e.g.
bitfields 0111 (=0.4375) and 1000 (=0.5) have similar
representations, the amplitude is computed from the
following bits (viewed as a real). The amplitude is
computed so that, the more such real is close to 0 or
1, the more the amplitude is close to 0, and the more
it is close to 0.5, the more the amplitude is close to 1:
Ri = (−1)Bi∗(3Bi+1−1+(−1)Bi+1Σn−i−2

j=1 Bj+i∗2−j ).

4.2.2 PrefixDist

PrefixDist associates to each real Ri a bit Bi whose
sign is determined by Bi as well as the previous
computed real: Ri = (−1)Bi ∗Ri−1. In this way, two
bitfields sharing their n most significant bits produce
vectors sharing at least n real values.

4.2.3 PrefixHash

PrefixHash is a variant of PrefixDist. It associates
each real Ri to an hash computed from all bits
B{j≤i}: Ri = Hi ∗ 2−31 − 1, with Hi a 32-bit hash.
The hash is computed as Hi = H(Hi−1, bi), with H
the hashing function. As the hashing function is not
used for its security properties, but to diversify the
output, Java hashCode() algorithm is used in this
study: H(IV, c) = IV << 5 − IV + c. The first IV
(i.e. H−1) is computed from the BioHashing secret.

4.2.4 PartitionDist

PartitionDist generates 32 reals Ri by combining
n bits from 32 bits Bi while preserving their sig-
nificance: Ri = (−1)fi(B,0) ∗ Σn−1

j=1 fi(B, j) ∗ 2−j .
fi(B, j) equals to Br with r chosen between j ∗ 32/n

and (j + 1) ∗ 32/n − 1. All combinations of the
n′ = dlog(32)/log(32/n)e first bits are listed. 32 of
them are randomly selected, each determining the
fi(B, j) bits for j < n′. The other fi(B, j) bits are
randomly selected. Random engines are initialized
from the BioHashing secret.

4.2.5 Results

Figure 4 shows the performance of the previously
described location pre-processing methods. In all
4 tested datasets, PartitionDist, n=16, and Parti-
tionDist, n=8 outperform other pre-processing meth-
ods. IP addresses generated from places provides an
unacceptable EER value (≥ 40% for a user mobility≥
5 km) whereas IP addresses generated from networks
provides a great EER value ( 0.17% < EER < 1.6%
). PartitionDist, n=8 is the best setting for IP ad-
dresses pre-processing methods. In real-life, users do
not use all networks from a place, like in IP addresses
generated from places, but might still use several net-
works. This suggests the need of several templates,
e.g. one template per network the user connects
to. Further studies should be conducted with real-
life data. XYZ locations provide great EER values
both generated from places (1.08% < EER < 4.53%)
and from positions (1.49% < EER < 6.71%). Par-
titionDist, n=16 is the best of XYZ locations pre-
processing methods. Contrary to IP addresses, XYZ
locations does not need several templates.

5 Merging of pre-processed
data

A naive way to merge personal data is to compute a
BioCode for each and concatenating them. However,
by doing so, some BioCode might be too small to be
protected against brute force attacks. For example,
an IP address has less than 232 possibilities and its
resulting BioCode cannot have more than 32 bits,
i.e. 232 possibilities. We present in this section new
merging methods, applied on the 3 previously pre-
processed modalities:
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(a) XYZ locations, generated from places.
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(b) XYZ locations, generated from position.
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(c) IP addresses, generated from places.
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(d) IP addresses, generated from networks.

Figure 4: Location pre-processing performances (EER) in function on users mobility.

• XYZ locations, generated from places: Parti-
tionDist, n=16;

• IP addresses, generated from networks: Parti-
tionDist, n=8;

• Keystroke: R mle.normal.gumbel.

In both merging methods, each modality vector
Mi is associated to, and multiplied by, a positive
weight Wi. In the first method, vectors are weighted
and concatenated before applying the BioHashing

algorithm. In the second method (post), a BioCode
is computed on each modality. Before the BioHash-
ing quantification step, a new vector V is computed
as a weighted mean of the 3 non-quantification
BioCode M{0,1,2} with the following formula:
Vi = 1/(Σ2

j=0Wj)Σ
2
j=0WjMj [i%len(Mj)]. V length

is computed as the length of the longer BioCode.
BioHashing quantification step is then applied on
the resulting vector V .
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Pre EER (%) Post EER (%)
min(0) pre.len.1.98 0.069 post.raw.14.85 0.077
min(K) pre.len.19.80 0.102 post.raw.15.84 0.203

min(X.IP) pre.raw.10.6 20.00 post.raw.3.36 21.78
min(K,X.IP) pre.raw.13.25 20.39 post.raw.3.38 21.92

min(IP.K,X.K,X.IP) pre.len.47.25 21.42 post.raw.34.26 24.14

Table 2: Best merging configuration performances.

Merging methods are evaluated through 7 sce-
narios, labelled as the concatenation of modalities
known/stolen by the attacker among the Keystroke
(K), XYZ location (X), and IP addresses (IP). The
scenario in which the attacker has no knowledge is
0. All possible combinations of weights have been
tested. Weights were chosen from 1% to 98% per step
of 1 point so that their sum is 100%, then multiplied
by the number of modalities (here 3). As modalities
vectors have different lengths and amplitudes, weight
were multiplied to 3 modifiers: raw (no modification),
len (correct the influence of modalities length), alen
(correct the influence of both modalities length and
mean amplitude). Modifier are computed as follows:

• raw: RAWi = 1;

• len: Li = 1/(len(M) ∗ len(Mi)) ∗
Σ

len(M)−1
j=0 len(Mj).

• alen: LAi = Li/ampl(Mi),
with ampl(Mi) = 1/len(Mi) ∗
Σ

len(Mi)−1
j=0 |Mi(j)|.

Merging configuration are labeled as:
{pre|post}.{raw|len|alen}.W0.W1.

Results: Table 2 shows the best pre and post
merging methods configurations that minimize the
EER value in the scenario indicated in the first col-
umn, if several scenarios are indicated, the config-
uration minimizes the maximal EER value of each
scenario. Figures 5 and 6 show the performances of
each configuration under each scenario. As shown in
Figures 5 and 6, configurations that minimize EER
under (0) scenario produce really great EER (< 1%),
however such scenarios poorly perform (EER > 40%)
if IP addresses and XYZ location are known by at-
tackers. Other configurations ensure an EER value
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0 K X X.K IP IP.K X.IP
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min(IP.K,X.K,X.IP)

Figure 5: Best pre merging configuration perfor-
mances under 7 scenarios.
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Figure 6: Best post merging configuration perfor-
mances under 7 scenarios.

. 20% under all scenarios at the cost of a worst EER
under (0) scenario. A solution would be to use sev-
eral configuration to benefit from the best EER under
(0) scenario while minimizing EER under (X.IP) sce-
nario. It is worth noting that if attackers has knowl-
edge of the BioCode (and the BioHashing secret), and
some modalities, attackers could use such knowledge
to invert the BioCode, mainly for pre merging con-
figurations. A possible countermeasure would to to
reduce the BioCode size.
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6 PICRP usage case

User Client Service

A'=A�PICRP

LKey

A=Rand()

H(A)

PICRP

computation
Veri�cation

A �A'�PICRP' 

Password (P)

Biometrics
A'�PICRP'

H(D||LKey||P)

H(D||LKey)

Figure 7: Proposed PICRP Authentication Scheme.

In this section, we propose a PICRP authenti-
cation scheme illustrated by Figure 7. We assume
that the client and the service communicate using
a secure channel, s.a. TLS, with authentication of
the service, e.g. using TLS certificates. To enrol,
a localkey (LKey) and a random binary vector of
length equals to the PICRP (A) is generated by the
client. The hash (H, e.g. using SHA2/SHA3) of
the service domain name (D), LKey, and the user
password (P) is used to compute the PICRP with
the user biometrics. A’ is computed from the PICRP
and A as A′ = PICRP ⊕A. A’ and LKey are stored
in the client, encrypted (e.g. with AES256) by the
password. A is transmitted to the service, and is
encrypted, with its hash (H(A)) using the hash of
the Domain and LKey.

To authenticate, the client retrieves LKey and
A’ with the user password, thus enabling the client
to compute PICRP’ and thus A ⊕ PICRP ′. By
sending H(D||LKey) and A⊕PICRP ′ to the server,
the server is able to retrieve A, verify its integrity,
and compare it to A′ ⊕ PICRP ′. If the Hamming
distance between A and A′ ⊕ PICRP ′ is below a
given threshold the user is authenticated.

In this system, an attacker getting into the client
cannot gain knowledge as the only stored information
are encrypted using a password, without integrity
checks. If the attacker knows the password, he/she
would only be able to know LKey and A’ that are
useless without the knowledge of the Biometrics,

or A. The system is obviously vulnerable if the
attacker gets into the client system while the user
discloses his/her biometrics on the client. In the
same way, attacker cannot gain knowledge by getting
into the service as information are encrypted using
a long random key. If the attacker gets into the
service as the user authenticate, he would be able to
obtain A that transport no information as randomly
generated. He would however be able to authenticate
(that we can mitigate by adding a 0-Knowledge
proof of LKey to the authentication process).

Thus, to retrieve the biometric data, the attacker
has to get into the service, the client, and guess the
user password, or to collect directly the biometric
data on the client during its usage by the user. As
LKey is client-dependent, if the user has many de-
vices, he/she will either need to get a reference per
device, or to compute a new A’ for each devices from
A and the device-dependant PICRP. The latter so-
lution has the advantage to not disclose the devices
used by the user to the server. As the password is
only used to encrypt the data on the client-side, it
can also be easily changed without impacting the ex-
isting references.

Figure 8: PICRP demonstration interface.
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(a) Same user, same location. (b) Different users, different lo-
cation.

Figure 9: Examples of differences (in black) between
two PICRP (using the same secret) computed with
pre.len.47.25 under scenario (0).

7 Discussion and Conclusion

In this paper, we extended the concept of PICRP [1]
with the use of Keystroke Dynamics, IP, and GPS
geo-location. The pre-processing of Keystroke Dy-
namics permits to significantly increase performances
(EER from 40% before pre-processing to 24.2% af-
ter). geo-location has been found to produce great
performances (EER . 5%). Performances obtained
after merging of theses modalities produce satisfac-
tory performances (EER < 1%). A PICPR authenti-
cation scheme has been introduced as a possible use
case. Other usage could be found s.a. generation of
keys from PICRP in order to sign, encrypt, or hash.

The interface of a PICRP demonstration is shown
in Figure 8. Figure 9 shows differences in PICRP
from the same user and from different users.

Future works could focus on improving pre-
processings and merging methods. Other modalities
could also be integrated to the PICRP, s.a.
Keystroke Dynamics on Free-text, mouse, or even
soft-biometrics computed from modalities. In this
study, users geo-location have been synthetically
generated. Further study should be conduct with
real-life data. Only one template has been used as
reference in this study, template-update techniques
with user-dependant threshold could also be explored
s.a. in [12].
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