

Asking Friendly Strangers: Non-Semantic Attribute Transfer

Nils Murrugarra-Llerena, Adriana Kovashka

▶ To cite this version:

Nils Murrugarra-Llerena, Adriana Kovashka. Asking Friendly Strangers: Non-Semantic Attribute Transfer. LatinX in AI research workshop. International Conference on Machine Learning (ICML)., Jun 2019, Long Beach, United States. hal-02266287

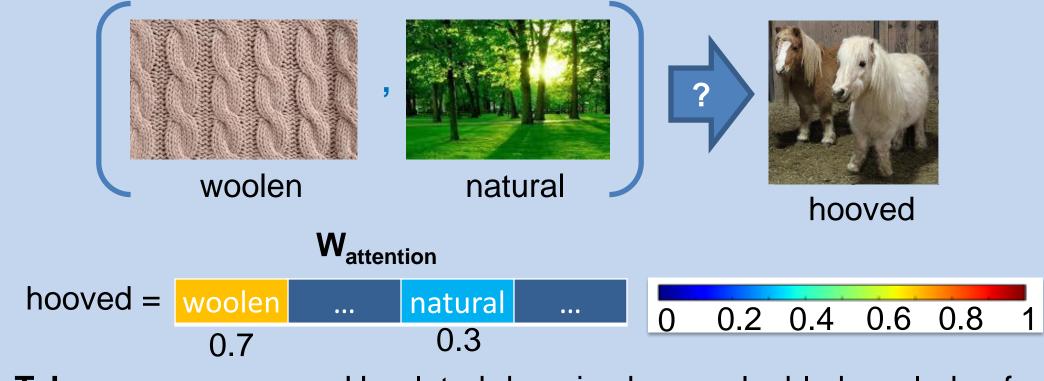
HAL Id: hal-02266287 https://hal.archives-ouvertes.fr/hal-02266287

Submitted on 13 Aug 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nils Murrugarra-Llerena and Adriana Kovashka Department of Computer Science, University of Pittsburgh

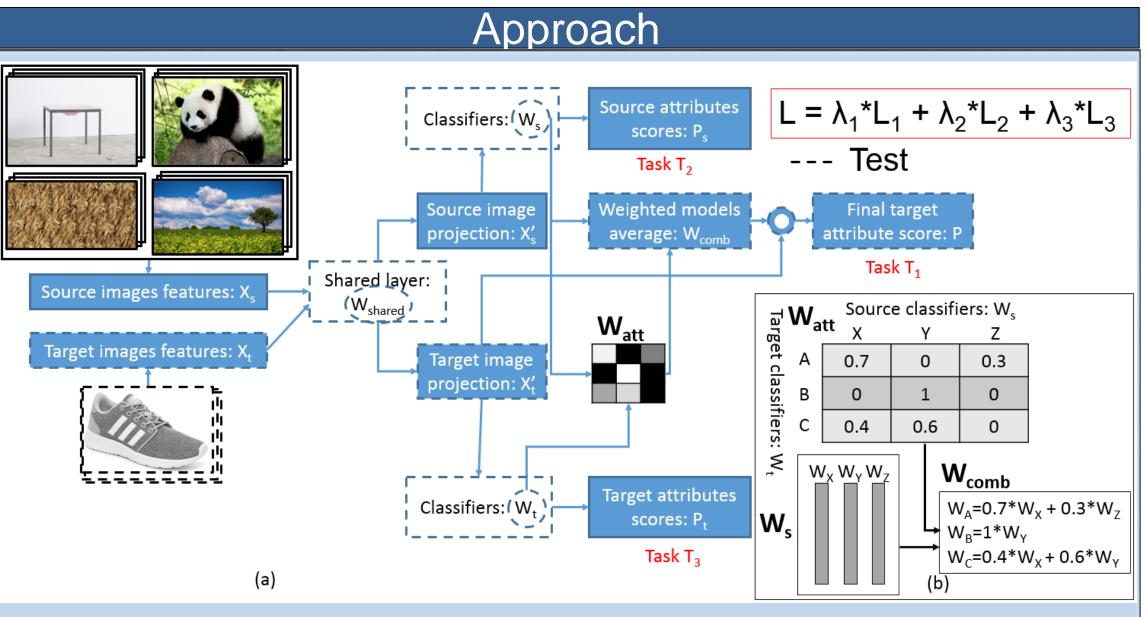
Introduction


- · We examine how to transfer knowledge from attribute classifiers on unrelated domains.
- We intelligently select how to weigh the contribution of the semantically unrelated source models using an attention-guided network.
- Employing this attention network, we outperform five different baselines.

Motivation

- Traditional attribute transfer learning aims to transfer knowledge between attributes from the same domain, e.g. using "has spots", "has stripes", "hooved" as sources for the "furry" target attribute, in the animals domain.
- However, what can we do given data scarcity, i.e. no semantically related categories?

Key idea


• Transfer knowledge from attribute classifiers on unrelated domains.

Take away message: Unrelated domains have valuable knowledge for learning attributes.

Related work

- We use multi-task neural networks for attribute transfer learning.
- Prior work only considers objects and attributes from the same domain (Chen and Grauman, CVPR 2014; Liu and Kovashka, WACV 2016). Our study differs in that we study if transferability of unrelated attributes (from different domains) is more beneficial.
- Attention networks are very common in question answering (Xu and Saenko, ECCV 2016; Shih et al., CVPR 2016). Instead of an image-text attention, we perform attention-guided transfer from source to target attribute classifiers.

- We use an attention network to select relevant source models for our target attributes.
- We find a common feature space for source and target images via W_{shared}
- In order to transfer knowledge between the source and target classifiers, we calculate normalized similarities W_{att} (attention weights).
 - Watt employs cosine similarity and a RELU function to avoid negative transfer.
- We employ a loss composed of three terms. Our main task T_1 predicts target attributes using our attention-guided transfer, and our side tasks T₂ and T₃ predict source and target attributes, respectively. All of them use a binary cross-entropy loss.

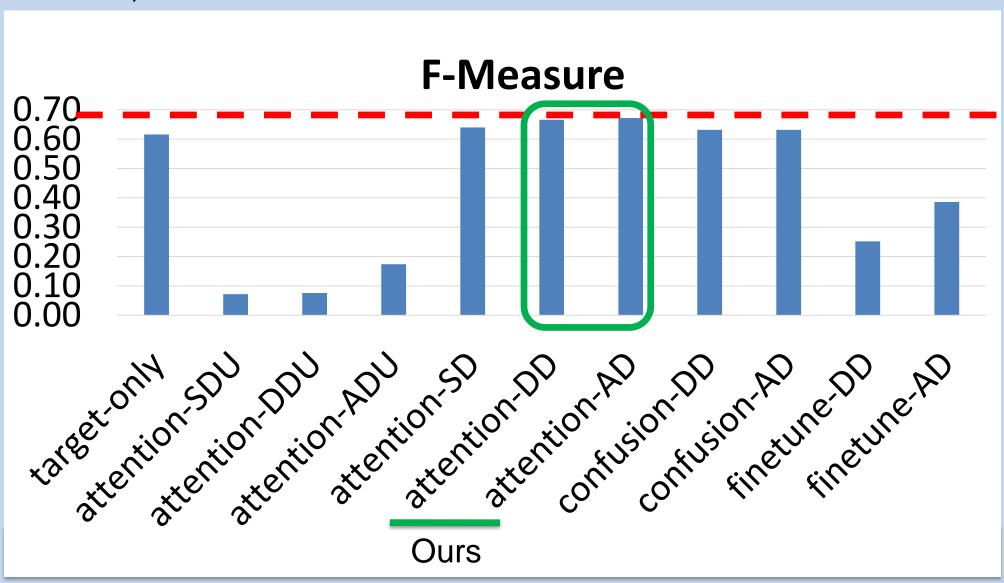
Experimental setup

We split our data in:

- 40% for training source models.
- 10% for training target models.

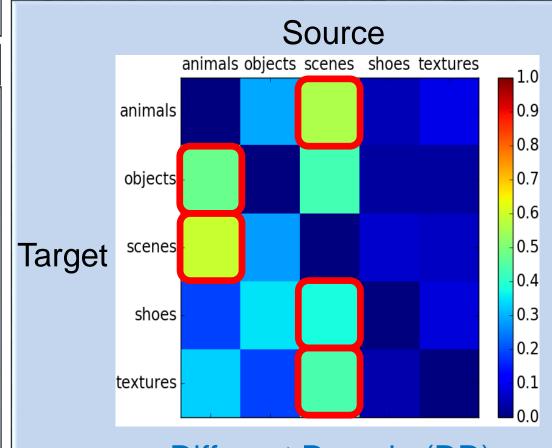
10% for selecting optimal pars. 40% for testing.

Evaluation

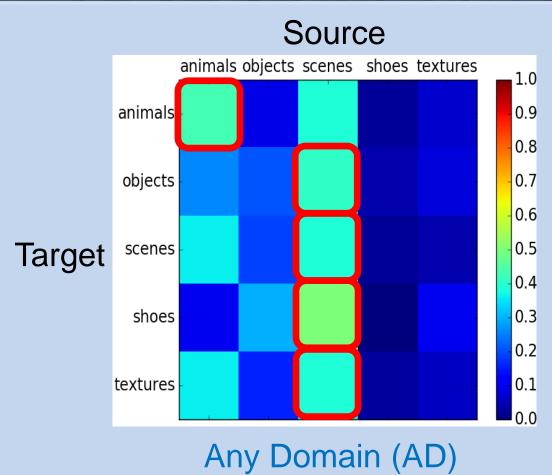

We compare our methods:

- Attention Different Domain (ours), which uses D_i as target domain and D/D_i as source domains.
- Attention Any Domain (ours), which uses D_i as target domain and D as source domains.

D_i: domain (instances + attributes)


with five different baselines using **F-measure**:

- Attention Same Domain, which uses D_i as target domain and D_i as source domain.
- Target-only, which performs no transfer.
- Attention-SDU, Attention-DDU, and Attention-ADU, which replace our attention weights (W_{att}) with uniform weights.
- Confusion Different Domain and Confusion Any Domain, which use a transfer learning approach with invariant feature representation (Tzeng et al., ICCV 2015).
- Finetune Different Domain and Finetune Any Domain, which finetune an AlexNet with source data, and then with target data (Oquab et al., CVPR 2014).


 We believe the success of our method is due to a common feature representation (shared layer: W_{shared}) and parameter transfer (attention weights: W_{att}).

Qualitative results

Different Domain (DD)

- The most relevant domain for animals, shoes, and textures is scenes, and scenes is not closely related to any of these domains.
- Similarly, the most meaningful domain for objects and scenes is animals, another semantically unrelated source domain.

- Shoes and textures attributes do not benefit almost at all from other attributes in the same domain.
- On the other hand, objects, scenes, animals do benefit from semantically related attributes, but the overall within-domain model similarity is lower than 50%, again reaffirming our choice to allow non-semantic transfer.
- We illustrate what visual information is being transferred across domains, for particular attribute examples. Some of them have an intuitive explanation.

	Domain	Target attribute	Relevant source attributes from [domain]
	textures	Aluminum	muscular [animal], made of glass [object]
	shoes	long-on-the-leg	has leg [object]
	object	has stem	dirty soil [scene], feed from fields [animal]
	animal	tough-skinned	stressful [scene]
	scene	shrubbery	tough-skinned [animal]

Contributions

- We find that attributes from a different domain than the target attributes are quite beneficial for transfer learning via our attention-guided transfer network.
- We develop a study of transferability of attributes across semantic boundaries.