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Abstract

We use aggregate banking data to uncover a new fact: U.S. banks counter-
cyclically vary the proportion of defaulted loans that they charge-off. The variance
of this “charge-offs to defaults” ratio is roughly 15 times larger than that of GDP.
Canonical financial accelerator models cannot explain this variance. We show that
introducing stochastic default costs into the model helps to resolve the discrepancy
with the data. Estimating the augmented model on typical macroeconomic data
using Bayesian techniques reveals that the estimated default cost shocks not only
help account for the variance of the banking data but also help account for a
significant fraction of the U.S. business cycle between 1984 and 2015.

Keywords: Charge-offs and defaults, default cost shocks, financial accelerator
models, business cycles.
JEL Classification: E3, E44

∗The authors thank conference and seminar participants at the 2018 CEA meetings, the 2017 SAET
meetings and the 2016 CEF meetings.
†This research was supported by a research grant from the Social Sciences and Humanities Research

Council (SSHRC) of Canada.
‡Department of Economics, 1125 Colonel By Dr., Ottawa, ON, Canada K1S 5B6;

chris.gunn@carleton.ca
§Department of Economics, 1280 Main Street West, Hamilton, ON, Canada L8S 4M4; Tel.: +1

905-525-9140 ext.23830; fax: +1 905-521-8232; johria@mcmaster.ca
¶Department of Economics, 1280 Main Street West, Hamilton, ON, Canada L8S 4M4; Tel.: +1

905-525-9140 ext.23810; fax: +1 905-521-8232; letend@mcmaster.ca

1

http://www1.carleton.ca/economics/people/gunn-christopher-m
https://www.economics.mcmaster.ca/people/johria
https://www.economics.mcmaster.ca/people/letend


1 Introduction

Banks realize that an unpleasant but expected outcome of making loans to a large number

of borrowers is that a fraction of these borrowers will default on their loans. Since

banks largely make loans with borrowed funds, regulations require them to charge-off the

expected value of funds that are lost due to defaults.1 These losses stem from at least

two sources. First, the value of the repossessed collateral and any seized returns may not

cover the principal and interest due to the bank. Second, there may be costs related to

the default (and associated bankruptcy proceedings) which need to be accounted for.

It is well known that default rates tend to increase during recessions and fall during

booms. Figure 1 displays this counter-cyclical pattern with defaults shown as diamonds

and real GDP as a solid line. Figure 1 also plots the behavior of charge-offs (stars) for the

U.S. banking system and not surprisingly, charge-offs appear to be positively correlated

with defaults and negatively correlated with GDP.2 What is surprising is that charge-

offs do not simply follow the path of defaults. While defaults are about 15 times more

volatile than output, charge-offs vary much more – about 22 times more volatile than

output. Moreover, a second glance at Figure 1 makes apparent that the co-movement of

charge-offs and defaults is highly imperfect (correlation coefficient of 0.7).

To further investigate the joint behavior of defaults and charge-offs, we express them

as a ratio and find that the ratio of charge-offs to defaults (COD henceforth) is indeed

highly variable, as suggested by Figure 1, and negatively correlated with GDP. In U.S.

data, the standard deviation of COD relative to the standard deviation of GDP is 15.6

and the correlation between these two variables is -0.2. More empirical moments about

COD are presented in section 2.

1Regulators expect banks to set aside resources called loan-loss provisions when making loans. As
loan losses are actually realized, the bank takes charge-offs, equaling the value of loans removed from
banks books. These are then deducted from the provisions that had been made for loan losses.

2Using quarterly FDIC data on insured commercial banks and savings institutions covering 1984Q1
to 2016Q1, we measure charge-offs as total charge-offs while defaults are measured as loans and leases
90 days or more past due. Both series are deflated using the GDP deflator and population. All series
are detrended using the HP filter with smoothing parameter λ = 1600.

2



Figure 1: U.S. GDP (line); Defaults (diamonds); Charge-offs (stars)

These new stylized facts raise a number of questions that we wish to explore in this

paper. First, why should we expect banks to vary the ratio of charge-offs to defaults over

time? Second, why is this ratio counter-cyclical? Third, is the joint behavior of charge-

offs and defaults consistent with the predictions of business cycle models? Intuitively,

and somewhat mechanically, the answer to the first question is obvious. If banks expect

to pay higher default costs than normal or if the return on the repossesed assets is

smaller than normal then banks need to charge-off more than “usual” and this results

in a rise in the ratio of charge-offs to defaults. In order to shed light on the question of

why the COD ratio varies negatively with the business cycle, we turn to the canonical

business cycle framework that links the banking sector with real economic activity. This

framework, which encompasses the financial accelerator models of Bernanke et al. (1999)

and Carlstrom and Fuerst (1997) (and models that build on it) is not only popular but

particularly relevant for our question because it implies a loan contract between banks

and borrowers in which the default rate is endogenously determined and responds to

macroeconomic shocks. Moreover, a key aspect of the framework, consistent with reality,

is a representative bank budget constraint which allows losses associated with defaults
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to emerge from both sources outlined above. This allows the model to make predictions

about the dynamics of aggregate defaults, and implicitly, also about aggregate charge-

offs. While it is well known that financial accelerator models can generate counter-cyclical

defaults, little is known about their implications for charge-offs or for the COD ratio.

We take an off-the-shelf financial accelerator model augmented with New-Keynesian

features in order to explore the endogenous response of COD to a large number of shocks

that generate business cycles (henceforth referred to as the baseline model). We find

that none of the shocks, (together or separately) are able to capture the joint behavior

of charge-offs and defaults summarized above. This baseline financial accelerator model

implies a near perfect correlation between the two variables and so is unable to generate

much variance in the COD ratio. We discuss the reasons behind this failure in more

detail in section 3.5 but it emerges from the value of repossessed assets from defaulted

loans not moving enough to capture the variance in the COD ratio.

Next, we show that a simple modification of the baseline model can break the tight link

between charge-offs and defaults. This modification boils down to introducing exogenous

variation in default costs of the representative bank as suggested by Gunn and Johri

(2013). Having established that default cost shocks can increase the variance of COD

in principle, we proceed to estimate an augmented version of the baseline model (called

the full model) which includes our default cost process and all of the shocks already

included in the baseline model. This procedure allows aggregate U.S. data to discipline

the default cost shocks. We find that the full model not only captures a significant

amount of variation in aggregate banking data including COD and credit spreads, but

also in the standard macroeconomic series studied in the business cycle literature. We

note that COD is not used as an observable in the estimation of the full model so that

it can be used to test the external validity of the baseline and full models.

To summarize, the cyclical movements of the COD ratio present a challenge to conven-

tional financial accelerator models. Our interpretation of the data and model simulations
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is that variation in default costs are a disturbance to the banking system that is large

enough to cause aggregate fluctuations consistent with both macroeconomic data and

the COD ratio. The reason COD is counter-cyclical is because a rise in default costs

causes banks to increase charge-offs more than the rise in the fraction of loans that are

in default. Defaults rise because banks offer worse terms to borrowers by increasing the

spread between the lending rate and the deposit rate for any given amount of leverage.

This leads to reduced borrowing in equilibrium and a recession with lower investment,

output and hours induced by shocks in the banking sector.

1.1 Literature review

We view our study as part of a growing literature that argues that variation in intermedi-

ation costs are a feature of U.S. data and that this variation has important implications

for business cycles. Ajello (2016) explores stochastic variation in intermediation costs to

generate movements in credit spreads and aggregate time series. Our focus on the joint

behaviour of charge-offs over defaults allows us to distinguish between two distinct types

of intermediation costs: those that are specifically related to defaulted funds and those

that are not. While all intermediation costs create a wedge between the lending rate and

the deposit rate (credit spread), only default costs create a wedge between charge-offs

and defaults. We use our COD data to provide external validity to our estimated DSGE

model with stochastic default cost shocks. In their presence, the model can generate

a highly volatile COD series while in their absence, the combined effect of all macroe-

conomic shocks is unable to generate this volatility. Since Ajello (2016) builds on the

Kiyotaki and Moore (2012) framework, there are no equilibrium defaults. As a result

that model does not speak to our COD data. Despite these and other differences, we

note some important implications that are common. Like us, Ajello (2016) finds that in-

termediation cost shocks are important drivers of aggregate output and investment. This

suggests that the widely noted relationship between credit spreads and macroeconomic
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activity may emerge from a number of distinct sources within the financial sector.3

Exogenous variation in credit spreads driven by some form of intermediation cost can

be found in a number of other studies. Curdia and Woodford (2009) study monetary

policy in a New Keynesian model where intermediaries face stochastic variation in these

costs but they do not take the model to the data. Similarly, impulse responses to shocks

to a more fully specified loan production technology that takes as inputs labor and col-

lateral can be found in Goodfriend and McCallum (2007). News about intermediation

cost shocks can be found in Gunn and Johri (2011). See also earlier work in Cooper and

Ejarque (2000). Our model, building on Gunn and Johri (2013), differs from all these

studies in that stochastic variation in the cost of banks is embedded into a model where

loan contracts with entrepreneurs are endogenously determined in equilibrium. The equi-

librium combination of leverage and external finance premium (or credit spread) chosen

by agents in equilibrium depend on bank costs so that neither is entirely exogenously

driven but can respond to shocks within and outside the financial sector.4 In our model

loan contracts also respond to news about future variation in default costs. Indeed the

estimation assigns a significant role to news shocks.

Microeconomic evidence on time varying default costs can be found in the work of

Levin et al. (2004) who construct a panel of 900 U.S. firms from 1997Q1 to 2003Q3. Using

balance sheet information, expected default probabilities and credit spreads, the authors

estimate the parameters that govern the financial contract implied by the Bernanke

et al. (1999) model, including the costs associated with defaulted loans. Levin et al.

(2004) find that these costs vary systematically over the business cycle, rising during

recessions and falling below mean levels during booms. While our structural DSGE

3The negative relationship between credit spreads and aggregate economic activity has been well
known for some time but has been highlighted in Gilchrist and Zakrajek (2012) who construct an
index of credit spreads and show that increases in this spread index are highly predictive of falls in
future economic activity, even more so than the traditional spread between risky corporate bonds and
government bonds.

4Aysun and Honig (2011) study the impact of different levels of intermediation costs on an economy
facing sudden stops. Unlike us, they do not model default costs as a stochastic process.
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model also incorporates the same equations that characterize the loan contract between

intermediaries and firms, the informational content of our estimation of default costs

differs in that we do not use balance sheet data to tie down our shocks. Moreover, we use

aggregate data to estimate the aggregate default costs as opposed to firm level data. In

section 3.5, we show the relationship between COD, our exogenous default cost shocks

and an endogenous expression that captures the general equilibrium effects of all other

possible shocks. This relationship potentially defines a wedge between the implications

of existing financial accelerator models and our COD data which we interpret in terms of

stochastic variation in default costs and show that these shocks are empirically relevant

for understanding U.S. business cycles.

We view the micro evidence in Levin et al. (2004) as corroborating our work based

on aggregate time series. Gunn and Johri (2013) incorporated surprise and anticipated

shocks to default costs in a real version of a financial accelerator model in order to explain

the boom-bust cycle associated with the Great Recession. While that paper was solely

concerned with the financial crisis and associated recession, our work here shows that

both surprise shocks and news shocks to the default cost process are of great importance

in accounting for the joint dynamics of charge-offs and defaults, credit spreads, as well

as other macroeconomic variables.

The rest of the paper is organized as follows. Section 2 provides evidence on the ratio

of charge-offs to defaults. Section 3 presents a summary of the model with a focus on the

financial intermediary while other model elements which are common to a host of New

Keynesian and Financial Accelerator models are relegated to the Appendix. We report

results in section 4 and section 5 concludes.
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2 Empirical evidence on the charge-offs to defaults

ratio

This section presents descriptive statistics on the COD ratio and documents its corre-

lation to key macro and financial variables. We use quarterly FDIC data on insured

commercial banks and savings institutions covering 1984Q1 to 2015Q4. We measure

charge-offs as total charge-offs while defaults are measured as loans and leases 90 days

or more past due. In terms of descriptive statistics, the COD ratio (no filtering or de-

trending) has a mean of 56% and a standard deviation of 22% in our sample. Clearly,

the amount charged-off by banks is not a constant fraction of the amount defaulted on

loans.

Figure 2: Cyclical component of COD and Y in U.S. data

To document the relationship of the COD ratio with other variables over the business

cycle we detrend all the time series using the HP filter with a smoothing parameter

equal to 1600.5 We first compare the cyclical components of COD and GDP in Figure 2.

5More details on our data can be found in the Appendix.
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Movements in the two series appear to be negatively correlated. This pattern is especially

apparent over the last two cycles. Table 1 presents the correlation of COD with some

key variables. COD is negatively correlated with GDP and aggregate investment and

positively correlated with credit spread. The table also shows that credit spread is more

volatile than the COD ratio (18 and 16.4 respectively) while investment (4.5) and GDP

(1.1) are much less volatile.

We now turn to the description of our model.

Table 1: Statistics

Panel 1: U.S. data 1984Q1-2015Q4
Y I cdt sprd COD

correl w/ COD -0.2 -0.3 0.4 1.0
Std Dev. 1.1 4.5 18.0 16.4

3 Model

The model economy is a relatively standard New Keynesian framework with the addi-

tion of a financial accelerator mechanism from Bernanke, Gertler and Gilchrist (1999).

The model builds on Gunn (2018), which is a New Keynesian interpretation of the real

model of Gunn and Johri (2013) that features a stochastic default cost process. The

economy consists of a large number of identical households, a single competitive final

goods firm, a continuum of monopolistically competitive intermediate goods firms, one

each of a competitive capital-producer and financial intermediary, a continuum of risk-

neutral entrepreneurs indexed by i ∈ [0, 1], a continuum of monopolistically competition

labour unions, a competitive employment agency and a monetary policy authority. The

nominal frictions include Calvo-style wage and price stickiness with partial indexation.

We follow the decentralization of Schmitt-Grohe et al. (2007) and Smets and Wouters

(2007) whereby a monopolistic union buys homogeneous labour from households, trans-

forms it into a differentiated labour inputs, and sells it to the employment agency who
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aggregates the differentiated labour into a composite which it then sells to intermediate

goods producers. Since this particular decentralization of wage stickiness implies that

consumption and hours are identical across households, for simplicity we will refer to

a stand-in representative household. The monetary policy authority sets the nominal

interest rate using a rule which is a function of the inflation rate, the output growth rate

and the past nominal interest rate.

There are seven stochastic processes in the model: Jt (preference), νpt (price markup),

νwt (wage markup), zt (neutral technology), θt (default cost), ηt (monetary policy) and

mt (marginal efficiency of investment)6. The processes for technology shocks and default

cost shocks both include a four-period ahead anticipated component. We refer to the

version of the model with all seven stochastic processes as the full model. In addition,

throughout our analysis, we also consider a version of the model where we shut-down the

default cost process θt such that θ is constant, only including the six remaining stochastic

processes commonly found in the literature. We refer to this as the baseline model.

Our description of the model in the main text focuses on the financial sector portion

while other model elements which are common to a host of New Keynesian and Financial

Accelerator models are relegated to Appendix A.

3.1 Financial Intermediary

At the end of each period t the financial intermediary makes a portfolio of loans to the

measure of entrepreneurs, with Bit+1 denoting the loan to the ith entrepreneur, funding

this portfolio of loans by issuing securities, At+1, to the household that promise a risk-

free gross return, Ra
t+1. The financial intermediary has no other sources of funds, and

thus it must generate a total return on its loan portfolio in each aggregate contingency

to just cover its opportunity cost of funds on the household securities. As in Bernanke

et al. (1999), each risk-neutral entrepreneur bears all the aggregate risk on its loan and

6For more details, see the description of stochastic processes in section A.8.
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thus makes state-contingent loan payments that ensure that in each aggregate state of the

world the financial intermediary achieves an expected return equal to its opportunity cost

of funds. This leaves the intermediary with only the idiosyncratic risk associated with

individual loans, which it can diversify away by virtue of holding a large loan portfolio.

3.2 Entrepreneurs

Risk-neutral entrepreneurs accumulate physical capital and make the capacity utilization

decisions for their capital. The timing of the decisions of the ith entrepreneur is as follows.

The entrepreneur enters into period t with predetermined capital stock Kit, purchased

at the end of the previous period from capital producers for price qt−1, as well as debt

obligations Bit. After observing the aggregate state in period t, the entrepreneur chooses

the capital utilization rate uit and then rents capital services K̃it = uitKit at rental

rate rt to intermediate goods firms. The entrepreneur then sells its entire capital stock

to capital-goods producers for price q̄t, realizing its ex-post return to that capital, Rk
it,

given by

Rk
it = ωit

[
uitrt − a(uit) + q̄t

qt−1

]
. (1)

In the above expression, ωi is a random variable providing an idiosyncratic component

to entrepreneur i’s return, such that the ex-ante return to capital is subject to both

idiosyncratic and aggregate risk. The random variable ω is i.i.d across firms and time, has

cumulative distribution function F (ω), and is normalized so that Eω = 1. Note that the

entrepreneur observes this idiosyncratic component when realizing its return, but after

making its capacity utilization decision. As in Christiano et al. (2003), entrepreneurs

incur a cost a(uit) per unit of capital in terms of goods for utilization rate uit, where

a′(·), a′′(·) > 0, such that changing utilization influences the enterpreneur’s return to

capital as in (1). The parameter controling the curvature of the cost function is denoted

εu.
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After realizing its return, the entrepreneur makes any necessary payments to the

financial intermediary to fulfill the terms of its contract determined the previous period.

Finally at the end of the period, the entrepreneur chooses its desired level of capital,

Kit+1, to hold into the following period, buying it from the capital producer for price qt.

Entrepreneurs finance these capital purchases with their own end-of-period net-worth,

Xit+1, and new loans from the financial intermediary Bit+1, such that their financing

satisfies

qtKit+1 = Xit+1 +Bit+1. (2)

Entrepreneurs face a constant probability, γ, of surviving into the next period. When

entrepreneurs die they consume their entrepreneurial equity, ceit. Finally, entrepreneurs

supply a unit time endowment inelastically to the good-producers at wage-rate wet .

3.3 Agency problem and debt-contract

The financial intermediary can observe the average return to capital Rk
t but not an

entrepreneur’s idiosyncratic component ωit, unless it pays a monitoring cost. As a con-

sequence the parties can adopt a financial contract that minimizes the expected agency

costs, in the form of risky-debt where the monitoring costs are incurred only in states

where an entrepreneur fails to make promised debt payments. In the model we pool this

monitoring cost along with all other costs related to the default process and refer to them

as “default costs.” As in Bernanke et al. (1999) these default costs take the form of a

fraction, θt, of the entrepreneur’s gross payout, ωitR
k
t qt−1Kit, however, unlike Bernanke

et al. (1999), here θt is time-varying and follows an exogenous stationary stochastic pro-

cess around its steady state. We refer to it as a default cost (DC) shock, common to all

entrepreneurs, and observable by all agents in the economy.

At the end of period t, the entrepreneur chooses its capital expenditures, qtKit+1 and

associated level of borrowing, Bit+1, with knowledge of neither the aggregate state in
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period t + 1 nor the idiosyncratic realization of ω in period t + 1, ωit+1. Conditional

on these choices, the terms of the contract between the financial intermediary and the

entrepreneur specify a contractual non-default state-contingent gross interest rate, Rl
it+1

that ensures that in each aggregate state of the world, the financial intermediary achieves

an expected return, net of costs, equal to the its opportunity cost of funds. In the event

that the entrepreneur’s idiosyncratic returns are insufficient to cover its contracted debt

payments, the entrepreneur defaults and goes bankrupt, handing over all remaining gross

returns to the financial intermediary, leaving the gross returns less default costs to the

financial intermediary. Note that given the state-contingent contract structure, the loan

rate Rl
it will adjust in period t to reflect the ex-post realization of the aggregate state in

t. We show in the appendix that such a contract results in the condition

[Γ(ω̄it+1)− θt+1G(ω̄it+1)]Rk
t+1qtKit+1 = Ra

t+1 (qtKit+1 −Xit+1) , (3)

where ω̄it+1 is a “cut-off” level of ωit, defined by ω̄it+1R
k
t+1qtKit+1 = Rl

it+1Bit+1, Γ(ω̄)

is the financial intermediary’s expected share of gross returns, given by Γ(ω̄it) = [1 −

F (ω̄it)]ω̄it+
∫ ω̄it

0
ωdF (ω), and where G(ω̄) is given by G(ω̄it) =

∫ ω̄it
0

ωdF (ω). Equation (3)

defines a menu of contracts for a given level of net-worth Xit+1 relating the entrepreneur’s

choice of Kit+1 to the cut-off level of ω̄it+1.

3.4 Entrepreneur’s problem

The ith entrepreneur’s gross return in period t, after realization of the aggregate state

but before the resolution of idiosyncratic risk, is given by

V k
it =

∫ ∞
ω̄it

ωRk
t qt−1KitdF (ω)−Rl

itBit. (4)

Given the definition of Rk
it in (1), all entrepreneurial-indexed variables are predeter-

mined at the timing of the utilization decision, and thus we can simply represent the
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entrepreneur as choosing capacity utilization uit to maximize uitrt − a(uit), yielding the

first-order condition

rt = a′(uit). (5)

For a given level of net-worth Xit+1, the entrepreneur then chooses Kit+1 capital and

the loan cut-off ωit+1 to maximze Et{V k
it+1} subject to the condition that the financial

intermediary’s expected return on the contract equal its opportunity cost of its borrowing,

equation (3). Letting λit+1 be the ex-post value of the Lagrange multiplier conditional

on realization of the aggregate state, and writing the period t + 1 ex-post gross returns

as V k
it+1 = [1− Γ(ω̄it+1]Rk

t+1qtKit+1, where 1 − Γ(ω̄it+1) is the entrepreneur’s expected

share of gross returns, the first-order conditions are then

Γ′(ω̄it+1)− λt+1 [Γ′(ω̄it+1)− θt+1G
′(ω̄it+1)] = 0 (6)

Et

{
[1− Γ(ω̄it+1)]

Rk
t+1

Ra
t+1

+ λt+1

(
[Γ(ω̄it+1)− θt+1G(ω̄it+1)]

Rk
t+1

Ra
t+1

− 1

)}
= 0 (7)

[Γ(ω̄it+1)− θt+1G(ω̄it+1)]Rk
it+1qtKit+1 −Ra

t+1 (qtKit+1 −Xit+1) = 0, (8)

where (6) and (8) hold in each contingency, but (7) holds only in expectation.

3.5 Charge-offs and defaults

In sections 1 and 2 we reported that defaults and charge-offs are not perfectly correlated

in U.S. banking data and that their ratio, COD, is highly volatile. Here we show why

the baseline model has a hard time replicating these facts and how the introduction of

default cost shocks in the full model can, in theory, help the model match those facts.

We calculate the value of defaults in the model as

Deft = F (ω̄t)R
`
tBt = F (ω̄t)ω̄tR

k
t qtKt. (9)

Charge-offs are the difference between the value of defaulted loans and the resources
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obtained by financial intermediaries as part of the default process after incurring all

associated expenses. These include monitoring entrepreneurs who defaulted and the

resources needed to appropriate the returns of these projects. They are calculated as

follows

Choft = F (ω̄t)R
`
tBt − (1− θt)G(ω̄t)R

k
t qtKt = [F (ω̄t)ω̄t − (1− θt)G(ω̄t)]R

k
t qtKt. (10)

We can combine the two equations above to write

CODt =
Choft
Deft

=

[
1− (1− θt)G(ω̄t)

F (ω̄t)ω̄t

]
(11)

which makes it clear that the wedge between charge-offs and defaults depends on the ratio

appearing in square brackets. If θ were a fixed number, as is the case in the baseline

model, only general equilibrium changes in ω̄t would produce variation in this wedge.

As explained in section 3.3, ω̄t is the cutoff value of ωt such that the entrepreneur’s

gross payout exactly equals the contracted amount. In other words, ω̄t is defined by

ω̄tR
k
t qt−1Kt = R`

tBt and it adjusts in response to period t shocks. For example, in

response to a positive productivity shock, the average return to capital Rk
t increases

while the loan rate R` decreases forcing ω̄t down. This implies that fewer entrepreneurs

(with worse shocks) default on their loans. At the same time, the average return on the

defaulted projects is also lower. Recall that G(ω̄t) calculates the average productivity of

entrepreneurs who default while F (ω̄) is a CDF which implies that both of these quantities

are increasing in ω̄. The simultaneous impact of a change in ω̄t on both the numerator

and denominator of COD should imply relatively small changes in COD in the baseline

model compared to the data. If our conjecture is correct, then the baseline model will

display (i) a high correlation between charge-offs and defaults, and (ii) a low variance in

the COD ratio. Of course, very large shocks of just the right magnitude could in principle

generate the required volatility but they would run afoul of other macroeconomic data
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such as real GDP, aggregate investment etc. Our solution is to discipline shocks in the

baseline model using standard observables used in the New Keynesian DSGE literature

and then look at the implied movement in COD from the estimated baseline model in

the next section. The results in Section 4.1 show that our conjecture is correct.

Now suppose that θt is an exogenous random variable. As can be seen from (11),

shocks to θ have a direct positive effect on COD, over and above the general equilibrium

effect coming through the response of ω̄ discussed above. As a result, default cost shocks

break the tight link that exists between charge-offs and defaults in the baseline model and

potentially provide a source for increasing the variance of COD relative to the baseline

model. If, however, changes in ω̄t undo the impact of changes in θt, then we may not

get the desired results. The overall impact of both endogenous and exogenous sources

of movement in COD can only be ascertained by simulating the full model. We provide

these results in section 4.2.

Finally, recall that the remaining parts of the model are described in Appendix A.

That appendix also contains additional details about the agency problem and debt-

contracting problem as well as a definition of equilibrium.

4 Results

4.1 Baseline model: no default cost shocks

Our derivation of the COD ratio implied by the baseline model (see section 3.5) led to the

conjecture that the model with a constant θ would generate a very low variance in that

ratio and nearly perfectly correlated charge-offs and defaults. We test this conjecture by

studying the implications of an estimated version of the baseline model, holding θ con-

stant and only including the six stochastic processes commonly found in the literature.

Measurement error is introduced on consumption, hours, real wage and investment. The

observables used in the model estimation are commonplace – nominal interest rate, the
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inflation rate, total hours, and the growth rates of GDP, aggregate consumption, aggre-

gate investment, and real wage. In addition to these, financial accelerator models also

include the credit spread and we follow suit. Details on data construction and sources

can be found in Appendix B.

4.1.1 Parameterization

In this section we explain how we attribute values to parameters. We group model

parameters in two sets. The first one contains parameters that are not estimated while

the second one contains those estimated using Bayesian methods as in An and Schorfheide

(2007). Since the main goal of estimating the baseline model is to obtain the overall

movement in ω̄t due to the combined general equilibrium effect of all the shocks in the

baseline model, we choose to calibrate all non-shock related parameters to the values

estimated in the literature. Later, when we estimate the full model with default cost

shocks added to the current set of shocks, this approach will have the advantage that all

changes will be the result of new estimates of the stochastic elements of the model and

none will be due to changes in parameters. For completeness, we note that our results are

not sensitive to actually estimating the typical parameters around our calibrated values.

For parameters in the non-estimated set, we use typical values established in the

literature or we choose the parameters to match relevant steady state quantities in the

model economy with analogous quantities in the data. The values of parameters not

estimated are shown in Table 2. Beginning with the parameters common to standard

real-business cycle models, we set the share of labor in production, α to 0.67, and the

depreciation of physical capital, δ to 0.025. On the preference side, we set the household’s

subjective discount factor β to 0.99, implying a net annualized risk-free interest rate of

4.1%, and implying a quarterly gross return on household financial assets Rd = (1 +

rf )0.25 = 1.0101. Three other parameters appear in the utility function in equation

(A.16). They are the curvature parameter on the disutility of labour (σL), the weight on
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the disutility of labour in the utility function (ΨL), and the consumption habit persistence

parameters (b). We follow Christiano et al (2014a) and set σL = 1. We set ΨL so that

the household time allocated to market work hours is normalized to 0.3. We come back

to the habit parameter below.

Table 2: Parameters not estimated

Description Parameter Value

Household subjective discount factor β 0.99
Curvature on disutility of labour σL 1
Steady state hours-worked Nss 0.3
Habit persistence parameter b 0.8

Capital depreciation rate δ 0.025
Curvature, investment adjustment cost s′′ 6
Curvature, utilization cost εu 2
Labour share in production α 0.67
Household share of total labour in production τ 0.99

Monetary policy smoothing parameter ρrn 0.8
Monetary policy weight on inflation φpi 1.75
Monetary policy weight on output growth φy 0.2
Calvo price stickiness ζp 0.7
Calvo wage stickiness ζw 0.8
Price indexing weight on inflation ιp 0.2
Wage indexing weight on inflation ιw 0.5
Steady state price markup λp ≡ 1/νp 1.1
Steady state wage markup λw ≡ 1/νw 1.1
Steady state government spending-GDP ratio G

Y
0.18

Steady state default rate Fω̄ 0.0076
Steady state external finance premium EFP 0.005
Steady state fractional monitoring cost θ 0.12

For the parameters associated with the financial contract and the entrepreneur, we

follow Bernanke et al. (1999) in setting these parameters. In steady state, the external

finance spread, Rk −Rd, equals 0.005 quarterly, leverage, K/X, is approximately 2, and

the fraction of entrepreneurs defaulting each quarter is 0.0076. We set the quarterly

survival rate of entrepreneurs to 0.9799, the variance of log ω̄ to 0.0908, and steady-state

18



fraction of gross returns lost in default, θ, to 0.12.

We now discuss the parameters in the New Keynesian block of the baseline model.

Values are taken to be round numbers in the range between well known studies such as

Smets and Wouters (2007) and Ajello (2016).

The habit persistence parameter (b) is set to .8 which is in the range of .7 to .85

found in the literature. We set price and wage stickiness parameters (ζp = .7 and ζw = .8

respectively) to be within the tight range found in the literature, noting that the latter

tends to be estimated higher in many studies. Similarly, the price and wage indexation

parameters (ιp = .2 and ιw = .5), lie between the values estimated in Ajello and Smets

and Wouters (2007). The nominal interest rate smoothing parameter (ρrn) is usually

found to be very persistent. We use a value of 0.8. For the monetary policy weight on

inflation (φπ) we use 1.75 and for the monetary policy weight on output (φy) we use

0.2. The cost functions curvature parameters associated with utilization and adjustment

costs (εu and s′′ respectively) are set to 2 and 6, respectively.

We now turn to the autocorrelation and variance of our shocks. These are all esti-

mated using Bayesian methods using the prior distributions reported in Table 3. First,

all of the shocks autocorrelation parameters share a beta distribution with mean 0.5 and

standard deviation 0.2. Second, the standard deviations of all anticipated and unan-

ticipated innovations share an inverse gamma distribution with mean 1 and a standard

deviation of 10. The upper bound of the uniform distribution of the standard deviation

of the measurement error on any series (consumption, hours, investment and wages) is

10% of the standard deviation of that series. The lower bound of the uniform prior

distribution is 0.001 for all four observables.
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Table 3: Baseline Model: priors and posteriors

Description Parameter Prior Posterior 90% HPD Prior Prior
mean mean interval distrib. std dev.

autocorrelation of shocks
Technology process ρz 0.5 0.359 0.293 0.421 beta 0.2

MEI process ρmei 0.5 0.974 0.970 0.978 beta 0.2
Preference process ρJ 0.5 0.498 0.400 0.558 beta 0.2

Monetary policy process ρη 0.5 .0035 .0004 .0067 beta 0.2
Price markup process ρνp 0.5 0.918 0.905 0.932 beta 0.2
Wage markup process ρνw 0.5 0.233 0.206 0.257 beta 0.2

standard deviation of shocks

Technology, unanticipated εz 1 9.545 7.393 11.133 inverse gamma 10
Technology, anticipated ε4z 1 16.614 14.378 19.450 inverse gamma 10

MEI, unanticipated εm 1 7.259 6.863 7.801 inverse gamma 10
Preferences, unanticipated εJ 1 25.678 24.127 27.815 inverse gamma 10

Monetary policy, unanticipated εη 1 0.378 0.139 0.979 inverse gamma 10
Price markup, unanticipated ενp 1 0.3667 0.319 0.413 inverse gamma 10
Wage markup, unanticipated ενw 1 0.448 0.387 0.506 inverse gamma 10

standard deviation of measurement errors
Hours 0.203 0.404 0.402 0.405 uniform 0.117

Consumption growth 0.031 0.061 0.061 0.061 uniform 0.017
Investment growth 0.094 0.160 0.159 0.162 uniform 0.053

wage growth 0.044 0.086 0.086 0.086 uniform 0.025
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Finally, we solve the model by using standard methods to linearize the non-linear

system about its steady state.

4.1.2 Estimation results

Table 3 also reports the posterior distributions of estimated parameters. The top panel il-

lustrates the degree of persistence of shocks. Price markup shocks and marginal efficiency

of investment (MEI) shocks are the most persistent with a first-order autocorrelation co-

efficient above 0.9. Technology shocks, preference shocks and wage markup shocks are

moderately persistent (autocorrelation in the 0.3-0.5 range). Monetary policy shocks

essentially exhibit no serial correlation.

The second panel of Table 3 reveals a great deal of variation in the estimated stan-

dard deviations of the different shocks. They range from less than .5 for monetary policy

shocks, price and wage markup shocks all the way to 25.7 for preference shocks. Unan-

ticipated and anticipated shocks to technology, and MEI range from 7 for MEI to 16.6

for anticipated technology shocks. The last panel reports the mean of the estimated

posterior of the standard deviation of measurement error which tends to lie below .5. All

posterior means are slightly higher than the prior means.

4.1.3 Implications of estimated baseline model

We now compare the baseline model’s predictions to the statistics reported in the first

panel of Table 4 based on U.S. data. The second panel of that table reports two sets of

statistics. The first row reports the theoretical moments of HP filtered variables implied

by the estimated shock parameters. The second set uses the smoothed time series implied

by the parameter estimates and the estimated shocks (we HP filter the smoothed series

just like we HP filter U.S. time series). As conjectured, the standard deviation of the

COD ratio is much lower than its counterpart in U.S. data (less than 1 versus 15.6) and

the correlation of defaults and charge-offs is nearly perfect.
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Table 4: Baseline Model

SD(chof)
SD(y)

SD(def)
SD(y)

SD(COD)
SD(y)

cor(chof, def)

Panel 1: U.S. data 1984Q1-2015Q4
21.8 14.7 15.6 0.7

Panel 2: Estimated Baseline Model (no default cost shocks)
Theoretical (HP 1600) 6.6 6.4 0.3 1
Simulated (HP 1600) 18.4 17.8 0.6 1

Panel 3: Higher Variance (Theoretical; HP 1600)
double std deviation of εz 7.4 7.1 0.3 1
double std deviation of ε4z 6.3 6.0 0.2 1
double std deviation of εm 6.8 6.6 0.3 1
double std deviation of εJ 5.3 5.1 0.2 1
double std deviation of εη 7.4 7.1 0.3 1
double std deviation of ενp 7.4 7.1 0.3 1
double std deviation of ενw 6.7 6.4 0.3 1

As additional evidence that the shocks’ general equilibrium effect on ω̄ is too small

to produce significant variation in COD in the baseline model, we conduct the following

exercise: (i) keeping all parameters at the values shown in Table 3; (ii) we double the

standard deviation of one of the shocks: (iii) then we calculate theoretical moments and

report them in the third panel of Table 4. Clearly, doubling the standard deviations of

shocks has very little impact on the relative standard deviation of the COD ratio and no

effect at all on the correlation of defaults and charge-offs. We conclude that the baseline

model cannot produce the joint behavior of defaults and charge-offs.

4.2 The full model: adding stochastic default cost shocks

4.2.1 Default costs shocks — charge-offs and defaults statistics

We argued above using equation (11) that variation in θ has the potential to lower the

correlation between charge-offs and defaults as well as raise the variance of COD. We now

add these default cost shocks to the baseline model (adopting the parameters estimates

reported in Table 3) and use model simulations to document how the relevant statistics
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change with the standard deviation of anticipated and unanticipated θ shocks (denoted

σ4
θ and σ0

θ respectively) as well as with the autocorrelation parameter ρθ. The second

panel of Table 5 is divided into three parts. In the first part, we increase the standard

deviation of the surprise component from 1 to 10 keeping ρθ = 0.9 (no anticipated shocks

are included). In the second part we increase the standard deviation of the anticipated

component from 1 to 10 keeping ρθ = 0.9 (no surprise shocks are included). In the third

part, we increase ρθ from .5 to .99 (only surprise shocks are included).

Table 5: Specifications with Default Cost Shocks

SD(chof)
SD(y)

SD(def)
SD(y)

SD(COD)
SD(y)

cor(chof, def)

Panel 1: U.S. data 1984Q1-2015Q4
21.8 14.7 15.6 0.7

Panel 2: Default costs shocks added to Baseline Model
(Theoretical; HP 1600)

σ0
θ σ4

θ ρθ
0 0 0 6.6 6.4 0.3 1

1 0 0.9 6.7 6.4 0.8 0.99
10 0 0.9 12.4 7.3 7.1 0.86

0 1 0.9 6.7 6.4 0.7 0.99
0 10 0.9 10.5 7.6 7.0 0.75

10 0 0.5 9 6.4 5.7 0.78
10 0 0.99 15.3 9.6 7.2 0.93

Panel 3: Estimated Full Model
Simulated (HP 1600) 17.9 24.4 25.9 0.28

Looking at the last two columns of Table 5, it is clear that increasing the variance

of the anticipated and unanticipated intermediation costs shocks have large (and very

similar) impacts on these statistics. The standard deviation of COD relative to that

of GDP rises from below 1 to 7 while the correlation between charge-offs and defaults

falls from .99 to .86 with unanticipated shocks and .99 to .75 with anticipated shocks.

Increasing ρθ causes an increase in the correlation of charge-offs and defaults and a small
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positive impact on the relative standard deviation of COD. Additional analysis, not

displayed here, reveals that the larger the variance of the default cost shocks, the lower

the correlation and the larger is the relative standard deviation of COD. The first two

columns of the table reveal that increasing the volatility of default costs has a larger

influence on the volatility of charge-offs than on defaults, and this helps to explain why

COD becomes more variable.

4.2.2 Estimation of the full model with default cost shocks

The results in section 4.2.1 reveal that the endogenous movements in ω̄ in response to

θt shocks do not reverse the primary effects on COD. The next step is to discipline the

size of these shocks to U.S. data and use the full model, estimated without the COD

series, to make predictions about the moments of COD. These can then be compared to

the U.S. data moments discussed earlier. To do this, we use the same parameter values

and macroeconomic data as used in the estimation of the baseline model. In addition,

all stochastic series included in the baseline model are also included here with the same

priors. The only difference is the addition of default cost shocks. As before, for the

priors, all shocks are treated exactly the same. Table 6 displays the prior and posterior

distributions from this exercise.7

There is some variation across shocks in their degree of persistence and volatility.

Default cost shocks, technology shocks and price markup shocks are the most persistent

(autocorrelation coefficient=0.96) while wage markup shocks exhibits very little serial

correlation (coefficient=0.04). The persistence of other shocks lie between these two

extremes. The default cost shocks have the highest standard deviations (10 for the

unanticipated component and 12 for the anticipated one) followed by mei shocks (6) and

preference shocks (3.5). All other shocks have standard deviations less than one. The

standard deviation of measurement errors is also quite small and close to the priors.

7Estimated shocks are in Figure 6 while historical and simulated/smoothed variables are displayed
in Figure 7. These figures are in Appendix C.
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Table 6: Full Model: priors and posteriors

Description Parameter Prior Posterior 90% HPD Prior Prior
mean mean interval distrib. std dev.

autocorrelation of shocks
Technology process ρz 0.5 0.9607 0.9319 0.9907 beta 0.2

MEI process ρmei 0.5 0.8961 0.847 0.947 beta 0.2
Default cost process ρθ 0.5 0.9627 0.9471 0.9787 beta 0.2
Preference process ρJ 0.5 0.8028 0.7405 0.8684 beta 0.2

Monetary policy process ρη 0.5 0.498 0.404 0.5914 beta 0.2
Price markup process ρνp 0.5 0.9576 .9069 0.9977 beta 0.2
Wage markup process ρνw 0.5 0.0354 0.0044 0.0652 beta 0.2

standard deviation of shocks
Technology, unanticipated εz 1 0.286 0.217 0.355 invg 10
Technology, anticipated ε4z 1 0.322 0.233 0.413 invg 10

MEI, unanticipated εm 1 6.162 4.252 8.060 invg 10
Default cost, unanticipated εθ 1 10.141 8.747 11.472 invg 10
Default cost, anticipated ε4θ 1 12.078 10.541 13.594 invg 10

Preferences, unanticipated εJ 1 3.501 3.073 3.934 invg 10
Monetary policy, unanticipated εη 1 0.133 0.119 0.144 invg 10

Price markup, unanticipated ενp 1 0.130 0.118 0.141 invg 10
Wage markup, unanticipated ενw 1 0.436 0.388 0.482 invg 10

standard deviation of measurement errors
Hours 0.203 0.275 0.174 0.382 uniform 0.117

Consumption growth 0.031 0.058 0.054 0.061 uniform 0.017
Investment growth 0.094 0.175 0.161 0.186 uniform 0.053

wage growth 0.044 0.041 0.003 0.074 uniform 0.025
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Comparing the estimates of the shock processes to those of the baseline model, we

note a few changes. In the full model, the posterior mean of the standard deviation of

technology shocks falls a lot for both anticipated and unanticipated shocks. Preference

shocks are also estimated to be much less volatile. In terms of persistence, monetary

policy shocks display an increased autocorrelation in the full model.

Panel 3 of Table 5 displays the relative standard deviation of the COD ratio for the

smoothed COD series based on the actual estimated shocks in the full model. It is clear

that the full model is successful at producing volatility in COD with a relative standard

deviation of 25.9 versus 0.6 in the baseline model. It is also successful at lowering the

correlation of charge-offs and defaults (0.28 versus 1 in the baseline model). Furthermore,

the third panel of Table 7 shows that in the full model COD is negatively correlated with

output and investment just like in U.S. data (see panel 1). Remarkably, the full model

matches exactly the correlation of COD and credit spreads. This correlation is 0.4 while

the baseline model predicts a correlation of 1 (see panel 2). We reiterate that the shocks

in the full model were estimated without using COD as an observable.

Table 7: Statistics

Panel 1: U.S. data 1984Q1-2015Q4
Y I cdt sprd COD

correl w/ COD -0.2 -0.3 0.4 1.0
Std Dev. 1.1 4.5 18.0 16.4

Panel 2: Baseline Model
Y I cdt sprd COD

correl w/ COD -0.5 -0.4 1.0 1.0
Std Dev. 1.1 4.0 18.0 0.6

Panel 3: Full Model
Y I cdt sprd COD

correl w/ COD -0.5 -0.8 0.4 1.0
Std Dev. 1.1 4.5 18.0 27.3
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Figure 3: COD (U.S. data) and θ (full model)

Gunn and Johri (2013) argue that default cost shocks help understand the boom-bust

cycle associated with the “great recession”. A glance at Figure 3 reveals that COD was

below trend in the quarters preceding the financial crisis while output boomed. This was

followed by a sharp rise in COD above trend during the crisis while output plummeted

below trend. The path of the default cost shock θ based on the estimated model is

displayed in Figure 3. It provides a visualization of the ideas discussed in Gunn and

Johri (2013). In addition, Figure 3 suggests that variation in default costs may have

played an important role in other boom-bust episodes as well.

We can use variance decomposition analysis based on the full model to understand

the contribution of default cost shocks to U.S. business cycles at various horizons. The

top panel of Table 8 reports the unconditional variance decomposition results. Since

default cost shocks were shown in Gunn and Johri (2013) to cause large movements in

credit spreads, it is not surprising that they account for 98% of the variance in credit

spreads. Interestingly, they also account for a noticeable fraction (at least 30%) of the
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variance of all observables except real wage growth. Price markup shocks also have an

important role. They account for more than 15% of the variance of hours worked, output

growth, inflation and wage rate growth. Preference shocks explain half of the variance

in consumption growth while wage markup shocks explain 70% of the variance of wage

growth. Finally, MEI shocks explain nearly 20% of the variance in investment growth.

Table 8: Model with default cost shocks: variance decomposition

Observable z z4 m η νp νw J θ θ4

Unconditional variance decomposition
Hours worked 1.01 1.33 12.19 3.17 18.44 7.06 4.75 17.54 34.51
Consumption growth 1.45 1.55 2.33 1.52 7.49 3.15 50.02 10.97 21.52
Output growth 1.77 1.52 7.72 4.95 16.97 4.85 6.5 14.87 40.86
Investment growth 0.45 0.41 19.25 0.93 5.66 1.36 0.64 26.97 44.33
Nominal int. rate 1.01 0.61 10.9 5.13 9.09 4.35 3.39 22.68 42.83
Inflation 2.33 1.12 7.96 2.03 21.21 9.44 3.29 17.84 34.79
Wage growth rate 1.78 0.85 0.89 0.14 19.05 70.65 0.09 2.12 4.44
Credit spread 0.04 0.03 0.75 0.58 0.7 0.15 0.09 56.68 40.98

1-Period ahead Conditional variance decomposition
Hours worked 2.83 0.86 3.91 5.84 12.13 6.84 5.52 18.46 43.61
Consumption growth 1.54 1.45 1.12 1.88 7.83 3.15 60.03 7.66 15.34
Output growth 1.5 0.95 3.87 6.01 15.55 3.98 5.68 18.55 43.92
Investment growth 0.38 0.24 20.91 1.08 4.97 1.1 0.44 29.01 41.87
Nominal int. rate 1.53 0.07 5.35 21.46 13.33 6.51 3.31 15.63 32.81
Inflation 3.23 0.01 5.64 1.77 28.85 12.81 2.81 14.79 30.08
Wage growth 1.96 0.08 0.53 0.13 20.74 71.64 0.11 1.52 3.3
Credit spread 0.05 0.01 1.62 1.1 1.02 0.19 0.03 87.41 8.57

Conditional variance decompositions at horizons one, three, eight and twelve periods

ahead share the patterns documented above for the unconditional decomposition. One

difference between the latter results and the one-period ahead variance decomposition

(see second panel of Table 8) is the role of monetary policy shocks that account for 21% of

the variance in the nominal interest rate.8 The one-period ahead decomposition gives us

a sense of the magnitude of the pure news effect of an anticipated shock (i.e. the effects on

8Three, eight and twelve-period ahead variance decompositions are in Appendix C.
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endogenous variables after the news is received but before the shock is actually realized).9

The second panel of Table 8 shows that the pure news effect of the anticipated default cost

shock is very significant for several of the observables. A pattern appearing in all variance

decomposition results is that, except for credit spreads, the anticipated component of

default cost shocks always explains more than the unanticipated component.

Figure 4 shows the impulse responses to a surprise positive shock to θ. A rise in θt

means that all else equal, the financial intermediary loses a larger share of the value of

defaulting loans in that period. In order to cover its lower net of costs return on defaulted

loans and satisfy its zero profit condition, the financial intermediary then raises the loan

rate rlt, driving up the credit spread. This increases the proportion of loans that default

as entrepreneurs are forced to pay higher borrowing costs. Moreover, since the financial

intermediary loses a larger fraction of each unit of defaulted loans due to the rise in θt,

charge-offs have to increase more than defaults, and the COD ratio rises immediately.

Additionally, since θt is persistent, the rise in θt implies a rise in θt+1, altering the terms

for new loan contracts established in period t. In particular, the rise in θt+1 shifts

the menu of contracts describing the combinations of cut-off productivity and leverage

consistent with the terms of the contract, such that the rise in θt+1 reduces the level of

leverage consistent with the contract. All else equal, this leads to a fall in demand for

new physical capital by entrepreneurs leading into period t+ 1. This kicks off a chain of

general equilibrium effects that leads to an overall fall in aggregate activity. See Gunn

and Johri (2013) for a detailed discussion.

Figure 5 shows the impulse responses to a four period out anticipated positive shock

to θ that is eventually realized four periods out. The impact of the anticipated shock

in Figure 5 is similar to that of the case of the persistent surprise shock in Figure 4,

9Note that Sims (2016) argues that unconditional variance decompositions and conditional variance
decompositions at horizons greater than the news shock anticipation horizon (defined as the time gap
between the period when the news is received and the period where the exogenous variable actually
changes) do not provide an accurate calculation of the pure news effect of an anticipated shock because
they combine together the pure news effect of the anticipated shock on observables and the effects
triggered by the actual realization of the shock.
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except that with no actual change in θ in the initial period, the initial impact on the

financial intermediary’s zero-profit condition is absent. Instead, the sole initial impact

effect is through the anticipated shift in contractual terms leading into the expected

change in θ in four periods, resulting in a direct drop in the demand for new capital

and economic activity in that period. This expected impact on economic activity in

four periods then triggers a drop in activity in the preceding periods through various

inter-temporal channels described in detail in Gunn and Johri (2013) and Gunn (2018).

Importantly - and in contrast to the surprise shock case in Figure 4 - all of the initial

response of credit spreads, charge-offs and CODs in the three periods preceding the rise

in θ are due to general equilibrium effects only10. Thus while credit spreads and charge-

offs rise on impact, they only reach their peak later when default costs θ actually rise.

Furthermore, COD barely moves on impact, movements in ω̄ being its only driving force

absent any variation in θ.

The larger contribution of the anticipated component of default cost shocks shown in

the variance decompositions earlier can also be seen in Figures 4 and 5. To make the com-

parison of these two sets of responses more meaningful, we set the standard deviations

of the surprise and news components to the same value. A comparison of Figures 4 and

5 reveals that the initial responses of output growth, inflation, hours, wage growth, con-

sumption growth and nominal interest rate are similar in both figures but slightly larger

in Figure 5 (anticipated shock). The slightly larger responses to an anticipated shock,

combined with the larger estimated standard deviation of anticipated shocks (20% larger

than surprise shocks) explain the larger shares of variance of observables explained by

the anticipated component of default cost shocks versus their unanticipated component.

To understand why the surprise component of default cost shocks is more important

than the anticipated component for the variance of the credit spread (especially at short

10Note however that if the news shock is realized four periods out, there will be a rise in θ four periods
out that will impact the financial intermediary’s budget constraint in that future period through the
realized change in θ in the future, thereby also impacting COD significantly in that period. In contrast, a
pure unrealized news shock to θ can only impact COD through general equilibrium effects at all horizons.
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horizons), it is instructive to relate this result to the impulse responses in figures 4 and

5 and to the correlation of credit spreads with output and investment in U.S. data. The

1-period ahead variance decomposition shows that unanticipated θ shocks explain almost

all of the variance in credit spread in the very short run. As explained above and as seen

in the figures, it is clear that unanticipated default cost shocks are more effective at

producing variance in credit spread in the very short run since the initial response to a

θ news shocks is much smaller (about 3 times smaller) than the response to a surprise θ

shock. Also, as Figure 5 shows, the initial response of credit spread to a θ news shock

is muted with most of the adjustment in credit spread happening when θ actually goes

up four periods after the news arrives. This pattern of response would tend to produce a

negative correlation between current output (investment) and credit spreads four period

later. However, the correlation of output (investment) with credit spreads four period

later is only 0.09 (0.04) in our U.S. data. Hence, to capture the co-movement of credit

spread with key macro aggregates like output and investment, anticipated default cost

shocks play a less prominent role than surprise shocks.

We conclude that a business cycle model augmented with default cost shocks can not

only help rationalize the behavior of COD and credit spread but also play an important

role in the observed variation of hours worked, investment growth, and output growth

over the business cycle.

5 Conclusions

U.S. banks are required to charge-off the value of losses incurred on delinquent loans

including all costs incurred as part of the default process. We show that the total amount

charged-off does not mechanically follow the total value of defaulted funds as both vary

over the business cycle. Moreover, the ratio of charge-offs to defaults is highly volatile

and negatively correlated with GDP and positively correlated with credit spreads.
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In this paper we show that the canonical business cycle model with bank lending and

endogenous defaults associated with Bernanke et al. (1999) cannot explain the patterns

discussed above. This occurs because default costs rise and fall in proportion to the

value of defaulted loans. Next, we show that the introduction of default cost shocks

in the model can reconcile the model predictions with the data. Finally we discipline

the default cost shocks to U.S. macroeconomic data in a medium scale New Keynesian

Financial Accelerator model with a large number of other stochastic processes in addition

to default cost shocks. The model augmented with default costs fits U.S. macroeconomic

data well and variance decomposition exercises reveal that default cost shocks play a

significant role in explaining variance in these series. Our results suggest that between

1984 and 2015 shocks within the financial sector contributed to over half the variance in

the growth rate of real GDP. We use the ratio of total charge-offs over defaults to provide

external validity to the estimated model by comparing the predicted moments to actual

U.S. data and find that the model does a good job in predicting moments associated with

this ratio.
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A Additional Model Detail

A.1 Agency problem and debt-contract

The discussion in the main text regarding the financial intermediary implies that in each
aggregate state in period t, the financial intermediary’s budget constraint is

ξt = Ra
tAt, (A.1)

where ξt is the intermediary’s return on its entire loan portfolio after idiosyncratic un-
certainty has been realized, and where Ra

t and At are predetermined.
In the financial contract, the cut-off value ω̄it is defined as

ω̄it+1R
k
t+1qtKit+1 = Rl

t+1Bit+1. (A.2)

If the entrepreneur’s realization exceeds the threshold such that ωt+1(i) ≥ ω̄t+1(i), the
entrepreneur pays the financial intermediary the contracted amount Rl

it+1Bit+1, keeping
the amount ωit+1R

k
t+1qtKit+1 − Rl

it+1Bit+1. If ωit+1 < ω̄it+1, the entrepreneur defaults,
receives nothing, and the financial intermediary receives (1 − θt)ωit+1R

k
t+1qtKit+1. As

with Rl
it, ω̄it adjusts to reflect the aggregate ex-post realizations of the aggregate state

in period t.
Given these contract details, we can write the financial intermediary’s expected return

on a given loan contract in a given aggregate contingency in period t+ 1 as

ξit+1 = [1− F (ω̄it+1)]Rl
it+1Bit+1 + (1− θt+1)

∫ ω̄it+1

0

ωRk
t+1qtKit+1dF (ω) (A.3)

Substituting in (A.2), we can write (A.3) in terms of the cut-off ω̄ as

ξ(ω̄it+1, θt+1) =

[
[1− F (ω̄it+1)]ω̄it+1 + (1− θt+1)

∫ ω̄it+1

0

ωdF (ω)

]
Rk
t+1qtKit+1. (A.4)

Defining the financial intermediary’s expected share of gross returns Γ(ω̄) as

Γ(ω̄it) = [1− F (ω̄it)]ω̄it +

∫ ω̄it

0

ωdF (ω), (A.5)

and defining G(ω̄) as

G(ω̄it) =

∫ ω̄it

0

ωdF (ω), (A.6)

we can re-write the financial intermediary’s expected return on a given loan contract in
a given aggregate contingency as

ξt+1(ω̄it+1, θt+1) = [Γ(ω̄it+1)− θt+1G(ω̄it+1)]Rk
t+1qtKit+1, (A.7)

where the terms in square brackets represent the financial intermediary’s share of profits
net of default costs. The requirement that the financial intermediary earn an expected
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return in every aggregate contingency equal to its opportunity cost of funds,

ξt+1(ω̄it+1, θt+1) = Rt+1Bit+1 (A.8)

then serves as a restriction to define a menu of contracts over loan quantity and cut-off
value for the entrepreneur. Substituting in qtKit+1 = Xit+1 + Bit+1 and (A.7) we can
then write this as

[Γ(ω̄it+1)− θt+1G(ω̄it+1)]Rk
t+1qtKt+1(i) = Ra

t+1 (qnt Kit+1 −Xit+1) (A.9)

which for a given level of net-worth Xit+1 defines a menu of contracts relating the en-
trepreneur’s choice of Kit+1 to the cut-off ω̄it+1.

A.2 Entrepreneur’s contract problem

The entrepreneur’s expected gross return, conditional on the ex-post realization of the
aggregate state but before the resolution of idiosyncratic risk, is given by

V k
it+1 =

∫ ∞
ω̄it+1

ωRk
t+1qtKit+1dF (ω)−Rl

it+1Bit+1. (A.10)

Substituting in the definitions above yields

V k
it+1 = [1− Γ(ω̄it+1)]Rk

t+1qtKit+1, (A.11)

where 1− Γ(ω̄it+1) is the entrepreneur’s expected share of gross returns.
For a given level of net-worth Xit+1, the entrepreneur’s optimal contacting problem

is then
maxKit+1,ω̄it+1

Et{V k
it+1} (A.12)

subject to the condition that the financial intermediary’s expected return on the contract
equal its opportunity cost of its borrowing, equation (3). Letting λit+1 be the ex-post
value of the Lagrange multiplier conditional on realization of the aggregate state, the
first-order conditions are then

Γ′(ω̄it+1)− λt+1 [Γ′(ω̄it+1)− θt+1G
′(ω̄it+1)] = 0 (A.13)

Et

{
[1− Γ(ω̄it+1)]

Rk
t+1

Ra
t+1

+ λt+1

(
[Γ(ω̄it+1)− θt+1G(ω̄it+1)]

Rk
t+1

Ra
t+1

− 1

)}
= 0 (A.14)

[Γ(ω̄it+1)− θt+1G(ω̄it+1)]Rk
it+1qtKit+1 −Ra

t+1 (qnt Kit+1 −Xit+1) = 0 (A.15)

where (A.13) and (A.15) hold in each contingency, but (A.14) holds only in expectation.
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A.3 Household

The stand-in household’s lifetime utility is given by

E0

∞∑
t=0

βtJt

[
log(Ct − bCt−1)−ΨL

Nh
t

1+σL

1 + σL

]
(A.16)

where Ct is consumption, Nt is hours-worked, β is the subjective discount factor and
Jt follows an exogenous stochastic preference process which we refer to as a preference
shock.

The household enters into each period with real financial securities At which serve as
deposits with the financial intermediary, and nominal bonds Bn

t , earning risk-free gross
real rate of return Ra

t and risk-free gross nominal rate of return Rn
t respectively, receiving

nominal wage W h
t for supplying hours Nh

t to the labour union, and receiving a share of
real profits from the capital-producers, goods-producers, financial intermediary, labour
union and employment agency, denoted collectively as Ft. At the end of the period,
the household chooses its consumption Ct, its holdings of financial securities At+1 and
nominal nominal bonds Bn

t+1. The household’s period t budget constraint is given by

Ct + At+1 +
Bn
t+1

Pt
= Ra

tAt +Rn
t

Bn
t

Pt
+
W h
t

Pt
Nh
t + Ft, (A.17)

where Pt is the price of the final good in terms of the nominal unit under the control of
the central bank. The household’s problem is to choose sequences of Ct, N

h
t , At+1 and

Bn
t+1 to maximize (A.16) subject to (A.17).

Letting λt be the Lagrange multiplier associated with the household’s budget con-
straint, the first-order conditions with respect to Ct, N

h
t , At+1 and Bn

t+1 are respectively

λt =
Jt

Ct − bCt−1

− βbEt
Jt+1

Ct+1 − bCt
(A.18)

λt
W h
t

Pt
= ΨLJtN

h
t

σL (A.19)

λt = βEtR
a
t+1 (A.20)

λt = βEtR
n
t+1

Pt
Pt+1

. (A.21)

A.4 Final goods firm and intermediate goods firms

The final goods firm produces the final good Yt by combining differentiated intermediate
goods yjt, j ∈ [0, 1], according to the technology

Yt =

[∫ 1

0

y
νpt
jt dj

] 1
νpt

, 0 < νp ≤ 1. (A.22)
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where νpt follows an exogenous stochastic process which we refer to as a price markup
shock. The producer acquires each jth intermediate good at price Pjt, and sells the
final good at price Pt where it may be used as a consumption or as an input into the
production of investment goods. Each period the producer chooses intermediate goods
yjt ∀j to maximize profits PtYt −

∫ 1

0
Pjtyjtdj, yielding a standard demand curve

yjt =

[
Pjt
Pt

] 1
νp−1

Yt, (A.23)

for the jth intermediate good, and nominal price index

Pt =

[∫ 1

0

P
νp/(νp−1)
jt dj

] (νp−1)

νp

. (A.24)

The jth intermediate goods firms produces the differentiated good yjt according to
the technology

yjt = ztñ
α
jtk̃

1−α
jt , (A.25)

where zt is total factor productivity that follows an exogenous stochastic process which
we refer to as a technology shock, ñjt is total hours-worked, and k̃jt is physical capital
services. Hours-worked is a composite of both household and entrepreneurial labour,
such that ñjt = nΩ

jt(n
e
jt)

1−Ω, where njt is worker labour, nejt is entrepreneurial labour ,
and where Ω parameterizes the elasticity of the hours composite to household labour.
Capital services is defined by k̃jt = ujtkit, where kjt is the stock of physical capital and
ujt is the utilization rate of that stock, chosen by the entrepreneurs.

The jth firm hires njt and nejt at wage rates Wt and wet respectively, rents capital

services k̃jt at rate rt, and sells its output at price Pjt. Intermediate goods firms have
market power, and can thus set prices subject to the demand curve (A.23). The firms
face Calvo frictions in setting their prices such that each period they can re-optimize
prices with probability 1 − ζp. A firm that is unable to re-optimize its price in a given
period re-sets it according to the indexation rule Pjt = Pjt−1π

ιp
t−1π

1−ιp , 0 ≤ ιp ≤ 1,
where πt = Pt/Pt−1 and π is its steady state, and where 0 ≤ ιp ≤ 1. A firm that can
re-optimize its price in period t chooses its price P ∗jt to maximize

Et

∞∑
s=0

ζspβ
sλt+sPt
λtPt+1

[
P ∗jt(Π

s
k=1π

ιw
t+k−1π

1−ιw)yjt+s − Pt+sS(yjt+s)
]
, (A.26)

where βs λt+sPt
λtPt+1

is the household owner’s nominal discount factor, given the production

technology (A.25) and the demand curve for yjt, and where S(yjt) is the firm’s real cost
function as a solution to its cost-minimization problem for a given level of output yjt.
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A.5 Employment agency and employment unions

The employment agency combines differentiated labour nqt, q ∈ [0, 1], into a composite
Nt according to

Nt =

[∫ 1

0

nνwtqt dq

] 1
νwt

, 0 < νw ≤ 1. (A.27)

where νwt follows an exogenous stochastic process which we refer to as a wage markup
shock. Each period the agency acquires each qth differentiated labour service at wage Wqt

from the labour union, and sells the composite labour to the intermediate goods producers
for wage Wt. The agency chooses nqt ∀q to maximize profits WtNt−

∫ 1

0
Wqtnqtdq, yielding

a demand function

nqt =

[
Wqt

Wt

] 1
νw−1

Nt, (A.28)

for the qth labour type, and wage index

Wt =

[∫ 1

0

W
νw/(νw−1)
qt dq

] (νw−1)
νw

. (A.29)

The qth labour union acquires labour Nh
t from the household at wage W h

t , differenti-
ates it into labour type nqt, q ∈ [0, 1], and then sells it to the employment agency for wage
Wqt. The unions have market power, and can thus choose the wage for each labour type
subject to the labour demand curve (A.28). The unions face Calvo frictions in setting
their wages, such that each period they can re-optimize wages with probability 1 − ζw.
A union that is unable to re-optimize wages re-sets it according to the indexation rule
Wqt = Wqt−1π

ιw
t−1π

1−ιw , 0 ≤ ιw ≤ 1, where πt = Pt/Pt−1 and π is its steady state, and
where 0 ≤ ιw ≤ 1. A union that can re-optimize its wage in period t chooses its wage
W ∗
qt to maximize

Et

∞∑
s=0

ζswβ
sλt+sPt
λtPt+1

[
W ∗
qt(Π

s
k=0π

ιw
t+k−1π

1−ιw)−W h
t+s

]
nqt+s, (A.30)

subject to the demand curve for nqt.

A.6 Capital-producer

The competitive capital-goods producer operates a technology that combines existing
capital with new investment goods to create new installed capital. At the end of each
period it purchases existing capital Kk

t from entrepreneurs at price q̄t, combining it with
investment It to yield new capital stock Knk

t , which it sells back to entrepreneurs in the
same period at price qt. The capital-producer faces investment adjustment costs in the
creation of new capital, and incurs depreciation in the process, so that

Knk
t = (1− δ)Kk

t + It

[
1− S

(
mtIt
It−1

)]
, (A.31)
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where mt follows an exogenous stochastic process that we refer to as a marginal efficiency
of investment (MEI) shock (see Justiniano et al. (2010)), and S(x) is an investment
adjustment cost function based on Christiano et al. (2005) with the properties S(x) = 0,
S ′(x) = 0, and S ′′(x) = s′′, where s′′ is a parameter. The capital producer’s period t
profits are given by Πk

t = qnt K
nk
t −qtKk

t −It. Since the capital producer faces intertemporal
investment adjustment costs, it faces a dynamic problem, choosing Knk

t , Kk
t and It to

maximize

E0

∞∑
t=0

βtλt
λ0

Πk
t (A.32)

subject to (A.31).
The capital producer’s first-order conditions are given by

q̄t = qt(1− δ) (A.33)

qnt −
1

Υt

− qnt S
(
mtIt
It−1

)
− qnt S ′

(
mtIt
It−1

)
mtIt
It−1

+Et

{
βλt+1

λt
qnt+1mt+1

I2
t+1

I2
t

S ′
(
mt+1It+1

It

)}
.

(A.34)

A.7 Monetary policy

Monetary policy takes the form of a monetary authority that sets the gross nominal
interest rate Rn

t+1 according to a rule in the form

Rn
t+1

Rn
=

(
Rn
t

Rn

)ρR [(Πt

Π

)φπ ( Yt
Yt−1

)φy]1−ρR

ηt, (A.35)

where variables without subscripts are steady-state values, Πt is the gross inflation rate,
and ηt follows an exogenous stochastic process that we refer to as a monetary policy
shock.

A.8 Stochastic processes

There are 7 stochastic processes in the model: Jt (preference), νpt (price markup), νwt
(wage markup), zt (technology), θt (DC), η (monetary policy) and mt (MEI). All the
stochastic processes Ξt, where Ξ = Jt, νpt, νwt, zt, θt, ηt,mt, evolve according to the sta-
tionary process

ln(Ξt/Ξ) = ρΞ ln(Ξt−1/Ξ) + uΞt, (A.36)

where ρΞ < 1, Ξ denotes the mean of the process and uΞt is the shock innovation. We
potentially allow for news shocks to the technology and default cost processes, such that
for these processes, the innovation uΞt contains both an anticipated and unanticipated
component, whereas for the remaining stochastic processes, the innovation uΞt contains
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only an unanticipated component, such that

uΞt =

{
εpΞt−p + ε0Ξt Ξ = {zt, θt}
ε0Ξt Ξ = {Jt, νpt, νwtmt ηt}

(A.37)

where p > 0, εpΞt−p is a news shock that agents receive in period t−p about the innovation
in t, and ε0Ξt is a surprise shock. All shocks are mean zero and uncorrelated over time
and with each other. The news and surprise shocks have standard deviation σpΞ and σ0

Ξ

respectively.

A.9 Equilibrium

Equilibrium in this economy is defined by contingent sequences of Ct, c
e
t (i)∀i, Nt, Nth ,

njt∀j, ujt∀j, nejt∀j, Pjt∀j, yjt∀j, It, At+1, Kit+1∀i, uit∀i, Bit+1∀i, ω̄it+1∀i, Knk
t , Kk

t , Bn
t+1,

Wt, W
h
t , W e

t , Wqt, rt, R
a
t+1, Rl

it+1∀i, Rk
t , q̄t, qt, R

n
t , Pt, that satisfy the following conditions:

(i) the allocations solve the household’s, final goods-producer’s, intermediate goods pro-
ducers’, financial intermediary’s, entrepreneurs’, capital producer’s, employment agency’s
and employment union’s problems, taking prices as given, (ii) all markets clear, (iii)
the resource constraint Ct + Ce

t + qnt Φ( It
Kt
Kt) + θtG(ω̄t)q

n
t−1R

k
tKt = Yt holds, where∫ 1

0
Kit+1 = Kt+1,

∫ 1

0
Bit+1 = Bt+1,

∫ 1

0
Xit+1 = Xt+1,

∫ 1

0
ceit+1 = Ce

t+1,
∫ 1

0
N e
i = N e = 1 and

where all entrepreneurs choose the same cut-off such that ω̄it+1 = ω̄t+1 ∀i, and therefore
Rl
it+1 = Rl

t+1 ∀i.
Equilibrium in the capital goods market implies that Knk

t = Kt+1 and Kk
t = Kt, and

equilibrium in the securities market implies that At = Bt. Nominal bonds are in zero
net-supply such that Bn

t = 0.
In equilibrium the financial intermediary’s return on its entire loan portfolio just

covers its opportunity cost of funds, implying that its budget constraint holds in every
aggregate contingency and after idiosyncratic uncertainty is resolved as

[Γ(ω̄t+1)− θt+1G(ω̄t+1)]Rk
t+1qtKt+1 = Ra

t+1At+1. (A.38)

Aggregate net-worth evolves as the accumulated gross returns of surviving entrepreneurs
plus their labour income. Letting Vt be aggregate gross entrepreneurial returns, we can
compute it as the average gross idiosyncratic returns,

Vt = [1− Γ(ω̄t)]R
k
t q
n
t−1Kt, (A.39)

which after making substitutions yields

Vt = Rk
t q
n
t−1Kt −

[
Ra
tBt + θtG(ω̄t)R

k
t q
n
t−1Kt

]
, (A.40)

so that aggregate net-worth evolves as

Xt+1 = γVt + wet . (A.41)

Finally, entrepreneurial consumption Ce
t is equal to the aggregated gross return of dying
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entrepreneurs,
Ce
t = (1− γ)Vt. (A.42)

For reference later in the discussion of our results, we also define the equilibrium real
risk-free net interest rate as rft = 1

Etβ
λ1t+1
λ1t

− 1, the credit spread as Rl
t−Ra

t , and leverage

as Lt =
qnt Kt+1

Xt+1
.
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B Data

• Real Gross Domestic Product, 3 Decimal, Billions of Chained 2009 Dollars, Quar-
terly, Seasonally Adjusted Annual Rate.
Source: search on series code GDPC96 at https://fred.stlouisfed.org/

• Gross Domestic Product - Implicit Price Deflator - 1996=100, Seasonally Adjusted
Source: search on series code GDPDEF at https://fred.stlouisfed.org/

• Personal Consumption Expenditures, Billions of Dollars, Seasonally Adjusted An-
nual Rate
Source: search on series code PCEC at https://fred.stlouisfed.org/

• Fixed Private Investment, Billions of Dollars, Seasonally Adjusted Annual Rate
Source: search on series code FPI at https://fred.stlouisfed.org/

• Civilian Employment: Sixteen Years and Over, Thousands, Seasonally Adjusted
Source: search on series code CE16OV at https://fred.stlouisfed.org/

• Effective Federal Funds Rate
Source: search on FEDFUNDS at https://fred.stlouisfed.org/

• Average Weekly Hours Duration, Nonfarm Business, All Persons, : index, 1992 =
100, Seasonally Adjusted
Source: search on series code PRS85006023 at https://fred.stlouisfed.org/

• Hourly Compensation Duration, Nonfarm Business, All Persons, : index, 1992 =
100, Seasonally Adjusted.
Source: Search series id PRS85006103 at U.S. Bureau of Labour Statistics,
http://data.bls.gov/cgi-bin/srgate

• Labor Force Status : Civilian noninstitutional population - Age : 16 years and over
- Seasonally Adjusted - Number in thousands.
Source: Search series id LNS10000000 at U.S. Bureau of Labour Statistics,
http://data.bls.gov/cgi-bin/srgate

• Credit Spread: Moody’s Seasoned Baa Corporate Bond Yield Relative to Yield on
10-Year Treasury Constant Maturity, Percent, Quarterly, Not Seasonally Adjusted.
Source: search on series code BAA10YM at https://fred.stlouisfed.org/

• Charge-offs: Total charge-offs on Total Loans and Leases, All FDIC-Insured Insti-
tutions, Millions of Dollars,
Source: Quarterly Loan Portfolio Performance Indicators
https://www.fdic.gov/bank/analytical/qbp/timeseries/loan-performance.xls

• Defaults: Loans 90 days or more past due, All FDIC-Insured Institutions, Millions
of Dollars,
Source: Quarterly Loan Portfolio Performance Indicators
https://www.fdic.gov/bank/analytical/qbp/timeseries/loan-performance.xls
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• QUSPAMUSDA: Total Credit to Private Non-Financial Sector, Adjusted for Breaks,
for United States. Source: search on series code QUSPAMUSDA at https://fred.stlouisfed.org/
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C Additional results
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Figure 6: Shocks from full model estimation

47



20 60 100
-10

0

10
n_obs

20 40 60 80 100120
-4

-2

0

2
dc_obs

20 40 60 80 100120

-2

0

2
dy_obs

20 60 100
-10

-5

0

5
dinvest_obs

20 40 60 80 100120
-1

0

1

2
rn_obs

20 40 60 80 100120
-1

-0.5

0

0.5

pi_obs

20 60 100

-2

0

2

dw_obs

20 40 60 80 100120
-50

0

50

100
cspread_obs

Figure 7: Historical and Smoothed Variables - full model estimation
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Table 9: Conditional variance decomposition

:
Observable z z4 m η νp νw J θ θ4

3-Period ahead
Hours worked 0.51 1.32 8.11 4.06 15.03 6.41 4.98 17.67 41.9
Consumption growth 1.9 1.97 1.3 1.63 9.52 3.8 51.88 9.33 18.66
Output growth 1.78 1.36 8.28 4.38 16.95 4.54 4.75 17.21 40.75
Investment growth 0.41 0.32 18.35 0.83 5.26 1.17 0.51 28.09 45.06
Nominal int. rate 1.38 0.03 8.02 8.79 11.66 5.88 3.66 19.81 40.78
Inflation 2.26 0.03 7.37 1.97 19.32 8.97 3.22 18.89 37.97
Wage growth 2.21 0.37 0.52 0.12 23.79 68.13 0.12 1.49 3.26
Credit spread 0.05 0.01 1.93 1.2 1.06 0.17 0.02 86.85 8.71

8-Period ahead
Hours worked 0.25 0.64 11.05 2.37 16.87 5.82 2.54 20.34 40.12
Consumption growth 1.99 2.45 1.55 1.57 9.66 3.81 50.32 9.58 19.08
Output growth 1.7 1.75 8.88 3.74 15.77 4.16 4.61 17.74 41.65
Investment growth 0.40 0.43 16.15 0.68 5.07 1.08 0.52 27.82 47.85
Nominal int. rate 0.72 0.27 9.74 2.39 5.4 3.01 2.93 25.87 49.67
Inflation 1.34 0.71 8.23 1.71 11.18 5.29 2.79 23.47 45.28
Wage growth 2.16 1.51 0.74 0.12 23.41 66.28 0.12 1.81 3.86
Credit spread 0.03 0.01 2.81 1.08 0.79 0.1 0.03 61.15 34.01

12-Period ahead
Hours worked 0.25 0.55 11.11 1.73 15.57 4.91 1.63 22.03 42.23
Consumption growth 1.74 2.14 2.62 1.42 8.48 3.4 47.32 11.11 21.77
Output growth 1.67 1.72 8.67 3.72 15.52 4.19 4.86 17.84 41.81
Investment growth 0.41 0.43 16.34 0.71 5.11 1.13 0.54 27.67 47.67
Nominal int. rate 0.5 0.29 9.17 1.56 3.61 2.08 2.32 27.66 52.81
Inflation 1.16 0.63 7.8 1.51 9.76 4.58 2.48 24.62 47.46
Wage growth 2.07 1.47 1.25 0.14 22.44 63.9 0.12 2.85 5.75
Credit spread 0.03 0.02 4.89 1.26 0.76 0.1 0.12 58.08 34.73
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