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Graphical abstract 

 

Highlights 

 New type of photoactive antibacterial surface 

 Simple route to fabricate hCQDs/PDMS nanocomposites 

 hCQDs/PDMS nanocomposites eradicate bacteria under blue light efficiently 
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Abstract   

Despite of great researcher’s efforts the design of antibacterial surfaces is still a big challenge 

due to appearance of mutated bacteria strains resistant to antibiotics. In this work, results of 

structural, mechanical, cytotoxic and antibacterial activities of hydrophobic carbon quantum 

dots/polydimethylsiloxane surface are presented. Antibacterial action of this surface is based 

on the generation of reactive oxygen species which cause bacteria damage by oxidative 

stress. At the same time, this surface is not cytotoxic towards the NIH/3T3 cells. Swelling-

encapsulation-shrink method is applied for encapsulation of hydrophobic carbon quantum 

dots in medical grade silicone-polydimethylsiloxane. XPS and photoluminescence 

spectroscopy analyses confirm that hydrophobic carbon quantum dots have been 

encapsulated successfully into polydimethylsiloxane polymer matrix. Based on stress-strain 

test the improvement of mechanical properties of these nanocomposites is established. It is 

shown by electron paramagnetic resonance spectroscopy and luminescence method that 

nanocomposite generates singlet oxygen initiated by 470 nm blue light irradiation. 

Antibacterial testing shows the nanocomposite in the form of foil kills Staphylococcus 

aureus, Escherichia coli and Klebsiella pneumoniae very effective only after 15 min 

irradiation.  

Keywords: Hydrophobic carbon quantum dots; medical grade polydimethylsiloxane; 

antibacterial surfaces; visible light sterilization.  

1.Introduction 

Design of new types of antibacterial surfaces is of great importance due to increased 

formation of antibiotic-resistant bacteria strains on many surfaces both in healthcare 

institutions and industries (i.e. food industry or pharmaceutical industry). Formation of these 
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surfaces is very big challenge because many parameters such as surface roughness, 

wettability, surface resistance, surface morphology or surface charge can affect more or less 

bacteria adhesion or later bacteria eradication effectively [1‒3]. Apart from surface 

properties, size and shape as well as charge of bacteria strains play a very significant role in 

bacteria adhesion to various surfaces [2].  

Different strategies have been applied to develop new antibacterial materials. At first, 

leaching of biocides was used to kill bacteria more or less efficiently, i.e. essential oils with 

biocidal activity were used to develop alternative disinfection strategies for indoor 

environments or in the food industry, on contaminated surfaces and equipment in food 

processing environments [4‒6]. But main drawback of this method is development of 

bacterial resistance to so far developed antibiotics. Later, new metal based antibacterial 

surfaces (coatings of Ag, Cu or Mo) were used to kill bacteria by releasing of metallic ions 

[7‒9]. Nowadays, apart from surfaces mentioned above there are new types of antibacterial 

surfaces or coatings: superhydrophobic ones and those doped by materials that produce 

reactive oxygen species (singlet oxygen, superoxide, hydroxyl radicals, hydrogen peroxide)-

photosensitizers (PS). By applying antibacterial phodynamic therapy (APDT), PS have been 

excited to a singlet excited state by ultraviolet or visible light. From this state electrons are 

then moving to a triple state or return to a ground state. Singlet oxygen can be generated if 

they transfer their electrons or energy to molecular oxygen [10,11]. Superhydrophobic 

surfaces repel bacteria by reducing adhesion forces between bacteria and a surface. In this 

way, these surfaces enable easy removal of bacteria from them [12]. 

Up-to-now many reports referring to antibacterial surfaces which eradicate bacteria by 

generating reactive oxygen species (ROS) have been published. Polymers (polyurethane, 

polydimethylsiloxane) doped with different molecules and nanoparticles (porphyrin, 

methylene blue (MB), crystal violet (CV)/ZnO, Au-MB, carbon quantum dots/Ag) kill wide 
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range of bacteria (Staphyloccocus aureus (S. aureus), Staphylococcus epidermidis (S. 

epidermis), Sacchromyces cerevisiae, Escherichia coli (E. coli), Bacillus subtilis (B. subtilis)) 

effectively under visible light [13‒20].  Recently, it was shown that graphene nanoplatelets 

coated on silicone rubber showed strong antibacterial activity toward S. epidermis [21]. 

In this paper we present results of structural, mechanical and antibacterial properties 

as well as cytotoxicity study of polydimethylsiloxane (PDMS) impregnated by hydrophobic 

carbon quantum dots (hCQDs). Carbon quantum dots (CQDs) are 0-dimensional 

nanomaterials with high chemical stability, high photoluminescence, low cost synthesis and 

resistance to photobleaching [22,23]. As photoactive materials CQDs which are dispersible in 

water show very good antibacterial and anticancer activity towards different bacteria and 

cancer cells under blue light irradiation [24‒31]. Under ambient light they show very low 

toxicity against bacteria. Therefore, they can be used for bioimaging [32‒35]. To encapsulate 

CQDs in polymers such as PDMS or polyurethane, they must be dispersible in toluene or 

acetone which swell used polymer. Because of its biocompatibility, biodurability, antiallergic 

property, PDMS are widely used in medical devices dominantly as wound care gels, flexible 

drainage tubes or semi-rigid implants [36]. One of its most important usage is as silicone 

tubing during hemodialysis [37]. The main request for tubing during hemodialysis is the 

maintaining of its sterility. Therefore, light irradiated PDMS with encapsulated hCQDs in the 

form of tube has a very good perspective. In this work we have also investigated how 

structural and surface properties affected antibacterial activity of hCQDs/ 

polydimethylsiloxane (hCQDs/PDMS). 

2. Experimental 

2.1. Preparation of hCQDs and hCQDs/PDMS nanocomposites 

The PDMS was prepared by the following: two component polymers were mixed 

(Silpuran 6000/60A and Silpuran 6000/60B-Wacker Chemie AG) in ratio 1:1 in a beaker. 
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Hydraulic press (Fontijne Holland SRA 100EC 225x320 NA) was heated to 165 oC. Polymer 

mixture was cured in a mold with thickness of 1 mm between Teflon foils and then 

compressed with a press of 100 kN for 5 min at 165 oC. Press was cooled down between steel 

plates for 2 min and dried in oven for 4 h at 200 oC. 

The hCQDs were prepared according to procedure described in detail in ref. [38].  

The hCQDs/PDMS nanocomposites were prepared by the following: pieces of PDMS 

samples (25x25x1 mm3) were dipped in hCQDs solution in toluene (50 mL). The 

concentration of hCQDs was 0.94 mg/mL. Swelling-shrink-encapsulation method was used 

to encapsulate hCQDs in PDMS. Swelling procedure lasted 28 h at room temperature. The 

hCQDs nanocomposites were dried at 80 oC for 12 h in vacuum furnace to eliminate toluene 

from nanocomposites. The scheme for preparation of hCQDs/PDMS nanocomposites is 

presented in Fig. 1. 

2.2. Characterization of hCQDs/PDMS nanocomposites 

Swelling measurements of the PDMS and hCQDs/PDMS nanocomposites were 

conducted at room temperature in toluene. The PDMS and hCQDs/PDMS nanocomposite 

samples were chopped in 10x10x1 mm3 pieces and dipped in solvent for the next 28 h. 

Samples were weighed every 2 h until constant weight was measured. Measured values from 

three parallel swelling experiments were averaged. Gravimetric method has been used to 

calculate the swelling degree [39]. 

The leaching behaviour of hCQDs/PDMS nanocomposites was determined by the 

following: samples (10x10x1 mm3) were dipped in 20 mL of Milly-Q water for 24 h. UV-Vis 

spectra of water aliquot in which hCQDs/PDMS nanocomposites were immersed, 

hCQDs/PDMS nanocomposites before and after immersion in water were measured on a 

Shimadzu UV−vis−NIR SolidSpec-3700 spectrophotometer to check the potential leaching of 

hCQDs. Leaching experiments were done in triplicate. 
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The mechanical properties of the prepared samples were characterized by the Instron 

3365 (Instron Corporation, USA) at extension of 1 mm/s, which was increased to 5 mm/s 

after 1% extension of the test sample. For each measurements, 10 samples according norm 

ASTM D638 were prepared and the results are calculated the arithmetic mean and standard 

deviation for selected characteristics. 

Chemical composition of the hCQDs and hCQDs/PDMS nanocomposites was 

determined by X-photoelectron spectroscopy (XPS). XPS was performed on Thermo 

Scientific K-Alpha XPS system using monochromatic Al K X-ray source [38]. All XPS 

measurements were performed three times. 

The contact angle (CA) measurements of the PDMS and hCQDs/PDMS 

nanocomposites were conducted by the Surface Energy Evaluation System (SEE System; 

Advex Instruments, Czech Republic) and the software from this system has been used for 

further analysis. Deionized water was used for testing. All tests were repeated three times.  

Degradation stability test of neat PDMS and hCQDs/PDMS nanocomposites were 

conducted under blue light (BL) irradiation for 6 h. Samples were put directly on the lamp at 

wavelength of 470 nm (3W, V-TAC, Bulgaria). XPS measurements of both samples were 

conducted to check the effect of BL on the structure of PDMS and hCQDs/PDMS 

nanocomposites. 

To visualize hCQDs, transmission electron microscopy (TEM-JEOL JEM-1400 

operated at 120 kV) was used [38]. The hCQDs were deposited on graphene oxide copper 

support grid by drop casting and dried at room temperature. 

Surface morphology of the PDMS and hCQDs/PDMS nanocomposites was recorded 

by AFM (Quesant, USA) operated in tapping mode at room temperature. Root-mean-square 

roughness-RMS of PDMS and hCQDs/PDMS nanocomposites was determined by Gwyddion 

software [40]. More than 20 AFM images were used for RMS determination. 
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Photoluminescence (PL) measurements of the hCQDs and hCQDs/PU 

nanocomposites were performed on a RF-5301PC (Shimadzu, Japan) 

spectrofluorophotometer at excitation wavelengths between 320 and 480 nm. PL 

measurements were repeated three times. The homogeneity of the hCQDs/PDMS 

nanocomposites was verified over the large area PL mapping by confocal Raman microscope 

(Alpha 300 R, Witec). 

Electron paramagnetic spectroscopy (EPR) was used to determine singlet oxygen 

generation of PDMS and hCQDs/PDMS nanocomposites. 2,2,6,6-tetramethylpiperidine 

(TEMP) molecules used a spin trap react with 1O2 quickly, and form stable, EPR active 

product, TEMP-1O2 (TEMPO). Both samples were dipped in ethanol solutions of 2,2,6,6-

tetramethylpiperidine (TEMP). Concentration of TEMP was 2 %wt. The EPR experiments 

were done at room temperature using a Varian E-line spectrometer. The spectrometer 

operated at a frequency of 9.5 GHz. The hCQDs/PDMS nanocomposites and PDMS control 

were dipped into TEMP solution. All samples were treated in different conditions:  dark, 

exposed to ambient light (AL) and BL, respectively. The wavelength of BL was 470 nm (3W, 

V-TAC, Bulgaria). The EPR spectra of TEMP solutions exposed to BL were measured after 

2, 4, 6 and 12 h. EPR experiments were performed in triplicate. 

The singlet oxygen formation after excitation of individual samples with Nd:YAG 

laser (wavelength 355 nm, pulse width ~5 ns) was measured using time-resolved near-

infrared luminescence spectroscopy [41]. Singlet oxygen luminescence at 1270 nm was 

measured in reflection mode. The measurements were performed in air- and oxygen 

atmosphere, in vacuum, and with samples immersed in H2O and D2O. 

2.3. Cytotoxicity determination 

Cytotoxicity was determined according to ISO standard 10993-5: cytotoxicity of 

extracts prepared from the influence of the hCQDs/PU nanocomposites is determined. 
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Sterilization of the samples has been done under the same conditions as for the antibacterial 

testing. ISO standard 10993-12 was applied to prepare extracts [42]. Mouse embryonic 

fibroblast cell line (ATCC CRL-1658 NIH/3T3, USA) was used as a model cell line. Cells 

were seeded at concentration 1x105 cell/mL to pre incubate in the micro-titration test plates 

(TPP, Switzerland) for 24 h. Subsequently, the cultivation media was replaced by previously 

prepared mixture of culture media with extracts and cultivated for 24 h. Then, MTT assay 

was used to determine the cell viability [38]. The cytotoxicity is presented as a reduction of 

cell viability in percentage when compared to cell cultivated in medium without the extracts 

of tested materials. T-test was applied to determine statistical differences.  

 

 

2.4. Antibacterial testing  

The antibacterial testing of the PDMS and hCQDs/PDMS nanocomposites was 

conducted on E. coli CCM 4517, S. aureus CCM 4516 and Klebsiella pneumoniae (K. 

pneumoniae) CCM 4516. These bacteria strains were purchased from CCM (Czech 

Collection of Microorganisms). Sterilization by UV lamp (258 nm) of all samples was done 

for 30 min prior to the testing. Antibacterial activity was conducted according to ISO 22196 

standard [38]. Sample dimension was 25x25x1 mm3. The concentration of hCQDs inside 

PDMS for antibacterial measurements was 4.6 mg/cm3. Used inoculum of S. aureus was 

1.6x106 cfu/mL, E. coli was 6.6x106 cfu/mL and of K. pneumoniae was 1.6x106 cfu/mL. To 

reveal the effect of BL on bacteria strains, PDMS and hCQDs/PDMS nanocomposites were 

irradiated at 470 nm with power of 15 W for 60 min. The distance from the lamp and samples 

was 50 cm in order to provide homogeneous illumination of the samples. Equations used for 

determination of the number of viable bacteria per cm2 per test specimen and calculation of 
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antibacterial activity are given in ref. [36]. All testing was done in three experiments, each 

with four repetitions. 

3. Results and discussion 

3.1. Swelling degree and leaching behavior of hCQDs/PDMS 

Fig. S1a (Supporting information) shows the swelling degree of neat PDMS and 

hCQDs/PDMS, respectively. Swelling degree was determined for three samples of neat 

PDMS and hCQDs/PDMS to check the reproducibility of measurement. In Fig. S1a one can 

notice that there is a time dependence of hCQDs encapsulation inside polymer matrix. The 

swelling degree of PDMS increases gradually with swelling time. After 4 h of hCQDs 

encapsulation saturation occurs and further swelling of PDMS contributes to slight hCQDS 

concentration variation.  

Leaching behavior of hCQDs/PDMS nanocomposites is presented in Fig. S1 (b,c). 

We performed these testing to check whether any leakage of hCQDs from PDMS occurred 

during time in water environment. Fig. S1b shows absorbance spectra of the hCQDs 

dissolved in toluene (curve 1) and water aliquot in which hCQDs/PDMS nanocomposites 

were dipped for 24 h (curve 2). As could be seen from this figure there was not any trace of 

presence of hCQDs in water after 24 h (Fig. S1b-curve 2). Absorbance spectra of 

hCQDs/PDMS nanocomposites (curve 1) and hCQDs/PDMS after 24 immersions in water 

are presented in Fig. S1c. Similar spectra indicate that leakage of hCQDs from polymer does 

not occur during 24 h. Thus this material can be used in contact with human/animal liquids. 

3.2. Stress-strain measurements 

Stress-strain measurements have conducted to investigate the effect of hCQDs 

encapsulation in polymer on mechanical properties of PDMS. PDMS polymer is well-known 

for its superior properties (chemical stability, high thermal resistance, outstanding insulating 

properties, low toxicity and low glass temperature) compared to other polymers [43]. This 
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polymer shows low mechanical strength (0.1–0.4 MPa) because Si-O bonds are longer than 

C-C bonds. Mechanical properties can show stretch ability of polymer before breakage. 

These properties are very important when polymer is used as antibacterial surface especially 

its strength, toughness and flexibility. Table S1 shows the Young’s modulus, tensile stress 

and tensile strain at break. Based on data presented in Table S1 Young’s modulus has been 

changed (almost ten times decreased) after hCQDs encapsulation. As for tensile strain and 

tensile stress values, it is noticed that they increase slightly after hCQDs encapsulation in 

PDMS. Based on these results we concluded that hCQDs encapsulation in PDMS contributed 

to variation of Young’s modulus of hCQDs/PDMS nanocomposites to a great extent. 

 

 

3.3. Contact angle measurements 

To check surface wettability of neat PDMS and hCQDs/PDMS nanocomposites we 

conducted CA measurements. Water droplets were deposited on the neat PDMS surface (Fig. 

S2a) and hCQDs/PDMS nanocomposites (Fig. S2b). Average values of contact angles of neat 

PDMS and hCQDs/PDMS nanocomposites are 107.8o±2.6o and 115.8o±2.6o, respectively. 

Encapsulation of hCQDs in polymer matrix affect the surface wettability slightly. 

3.4. Chemical analysis 

XPS technique was used to determine the content of certain elements presented in 

PDMS and hCQDs/PDMS as well as structural changes of PDMS polymer after hCQDs 

encapsulation. Fig. 2 and Tables S2 and S3 show the content of detected elements and 

characteristic bonds between them in PDMS and hCQDs/PDMS nanocomposites 

respectively. Based on data presented in Table S2 we noticed that there is an upshift of C1s 

peak after hCQDs encapsulation (284.26→284.32 eV) and increase of C content for 1.8 At%. 

As for O and Si contents, encapsulation of hCQDs contributes to decrease of O and Si 
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contents for 0.3 and 1.3 At% respectively. Data listed in Table S3 show that the content of C-

Si bonds decreases for 5.4 At% after hCQDs encapsulation whereas the contents of  C-O  and 

C=O increase for 0.3 and 0.8 At%. The contents of sp2 and sp3 bonds increased after 

encapsulation of hCQDs for 3.4 and 0.9 At% respectively. 

The obtained results of XPS  indicate encapsulation of hCQDs in polymer matrix. 

3.5. The hCQDs/PDMS nanocomposite degradation 

Potential degradation of PDMS polymer and hCQDs/PDMS nanocomposites was 

investigated by exposing of these samples to BL for 6 h. Results are presented in Tables S2 

and S3. XPS results show that BL irradiation of all samples induce minor changes in the 

contents of C, O and Si. But, after BL irradiation for 6 h, the content of sp3 increases (3.8 

At% for PDMS and 2.5% for hCQDs/PDMS) whereas the content of sp2 decreases (4.4 At% 

for PDMS and 4.8% for hCQDs/PDMS). Therefore, BL irradiation contributes to changes in 

sp2 and sp3 both of PDMS and hCQDs/PDMS samples. 

3.6. Surface morphology 

Fig. 3(a,b) shows top view AFM images of neat PDMS and hCQDs/PDMS 

nanocomposites as well as TEM micrograph of hCQDs-inset of Fig. 3b. From these figures it 

could be noticed grain structure of neat PDMS and hCQDs/PDMS nanocomposites. The 

grain size increases after hCQDs encapsulation in polymer matrix. Surface roughness of neat 

PDMS is 74.2 nm whereas RMS of hCQDs/PDMS nanocomposites is 86.2 nm. Based on 

these RMS values we can conclude that hCQDs encapsulation in polymer matrix contributes 

to increase of surface roughness of nanocomposites. The average size of hCQDs encapsulated 

in polymer was 5 nm. 

3.7. Photoluminescence and PL mapping 

Fig. 4 (a,b) shows PL intensities of hCQDs and hCQDs/PDMS nanocomposites. As 

can be seen from Fig. 4b the hCQDs/PDMS nanocomposites emit blue-green light. The 
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highest PL intensity is for 360 nm excitation wavelength whereas the appropriate upshift is 

73 cm-1. The highest up-shift (112 cm-1) is for 320 nm excitation wavelength. The blue-green 

light emission of hCQDs/PDMS nanocomposites is a strong evidence of hCQDs 

encapsulation inside polymer matrix. Fig. 4c presents optical micrograph of hCQDs/PDMS 

nanocomposites including overlay of PL mapping. This figure shows homogenous PL across 

the whole nanocomposites without any streaks which is a clear evidence of hCQDs 

encapsulation inside PDMS. 

In our previous research we established that PL property of hCQDs occurs due to the 

confinement effects and recombination of electron−hole pairs. Recombination of electron-

hole pairs occurs dominantly in small sp2 islands surrounding by sp3 carbon network. The 

other important factor that contributes to PL of hCQDs is surface defects caused by the 

presence of oxygen functional groups over the surface and edges of the hCQDs [44,45]. Since 

hCQDs/PDMS nanocomposites emit blue-green light under different excitation wavelengths 

we concluded that hCQDs encapsulated inside polymer retain their PL property.  

3.8. Singlet oxygen generation detemined by EPR and luminescence measurements 

EPR and luminescence measurements have been performed to measure singlet oxygen 

production of hCQDs/PDMS nanocomposites. Singlet oxygen belongs to a group of ROS 

which are responsible for death of different bacteria strains and cancer cells. It is a very 

reactive form of oxygen that effectively destroy bacteria membrane wall, kill malignant cells 

by apoptosis and/or necrosis, shut down the tumor microvasculature and stimulate the host 

immune system [46]. To follow the formation of singlet oxygen (1O2), 2,2,6,6-

tetramethylpiperidine (TEMP) was used as a spin trap. At the beginning we tested neat 

PDMS polymer for singlet oxygen production. We established that this sample does not 

produce singlet oxygen under any conditions. 
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Fig. 5a,b presents singlet oxygen generation by hCQDs/PDMS nanocomposites under 

different conditions: in dark, AL for 12 h and BL with different irradiation time (2, 4, 6 and 

12 h). As can be noticed from Fig. 5a, hCQDs/PDMS nanocomposites did not produce singlet 

oxygen in dark and under AL irradiation for 12 h. But during irradiation by BL 

hCQDs/PDMS nanocomposites start to generate singlet oxygen already after 6 h of 

irradiation. Massive production of singlet oxygen occurs after 12 h of BL. 

Apart from EPR spectroscopy where EPR signals reflect only singlet oxygen diffused 

to nanocomposite environment and formed a complex with TEMP, we used luminescence at 

1270 nm method to determine singlet oxygen production of hCQDs in polymer matrix and its 

decay in both polymer matrix and its environment (Fig. 5c). The calculated lifetime of singlet 

oxygen photogenerated by the hCQDs/PDMS nanocomposite is 45 μs-(Fig. S3a), which is 

relatively high value in comparison with other polymeric matrices [47]. Fig. 5c shows laser 

excited singlet oxygen luminescence of the hCQDs/PDMS nanocomposites as a function of 

time - data are corrected to signals in vacuum, where no singlet oxygen is formed. From this 

figure it is obvious that hCQDs/PDMS nanocomposites produce singlet oxygen. In this way 

polymer serves as a reservoir of singlet oxygen with relatively high lifetime. Removal of 

oxygen from PDMS needs at least 30 minutes of evacuation by rotatory pump.  

Longer rise time indicates presence of relatively long lived excited states that is 

quenched by oxygen to form singlet oxygen. Immersion of hCQDs/PDMS into H2O (with 

lifetime of singlet oxygen about 3.5 μs) slightly influenced calculated singlet oxygen lifetime 

(from 45±1 to 42±2 μs in H2O) (Fig. S3b). These observations indicate that luminescence of 

singlet oxygen comes predominantly from the bulk of polymer with minor contribution of 

singlet oxygen diffused to H2O. In contrast to previous study of hCQDs/polyurethane 

nanocomposites with lower lifetime of singlet oxygen (~ 12 μs) [48], hCQDs/PDMS 

nanocomposites serve as a reservoir of singlet oxygen for relatively high time after excitation 
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(several tens of μs) and can gradually release singlet oxygen to their environment, where is 

effectively quenched. The small amount of singlet oxygen diffused outside polymer is 

probably due low surface-to-volume ratio of samples. Nanoparticles or nanofiber materials 

with high surface-to-volume ratio should better release singlet oxygen to the environment for 

photo-oxidation of biological structures. The diffusion path of singlet oxygen in H2O is tens 

to hundreds of nm during its lifetime [41]. This means that bacteria (or other 

biological/chemical species) should be in close contact with surfaces for efficient 

antibacterial activity. 

Possible mechanisms of single oxygen generation by CQDs were described in the 

literature: a) singlet oxygen is generated through energy transfer to molecular oxygen [49], b) 

there is an additional step in singlet oxygen generation (generation of superoxide anion). In 

this way, electron transfer is an intermediate step for singlet oxygen generation by GQDs 

[50]. Based on results presented above and our previous results [29] we concluded that 

energy transfer has dominant role in singlet oxygen production of hCQDs/PDMS 

nanocomposites. 

3.9. Cytotoxicity of hCQDs/PDMS nanocomposites 

It is very important to investigate cytotoxic property of hCQDs/PDMS 

nanocomposites due to their possible usage as antibacterial surface. Cytotoxicity of 

hCQDs/PDMS nanocomposites was determined by MTT assay. The methodology of testing 

is in accordance to the ISO standard, where the cells are cultivated in presence of either pure 

cultivation medium or cultivation medium mixed with various concentration of extract from 

tested samples. The NIH/3T3 cell line was used as standard cell line for cytotoxicity testing. 

In Fig. 6 results of cell viability in various extract concentrations are presented. We tested 

neat PDMS and hCQDs/PDMS nanocomposites. 
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As could be seen from Fig. 6a neat PDMS is not cytotoxic no matter extract 

concentration whereas hCQDs/PDMS nanocomposites do not show any cytotoxicity as well. 

Results induce possible usage of hCQDs/PDMS nanocomposites as a medical device for 

short term contact with human body. 

3.10. Antibacterial assay 

To investigate antibacterial activity of hCQDs/PDMS nanocomposites towards Gram 

positive and Gram negative bacteria strains we conducted antibacterial testing against three 

bacteria: S. aureus, E.coli and K. pneumoniae. Results are presented in Table 1.  

Based on results presented in Table 1 we noticed that neat PDMS did not show any 

antibacterial activity with or without BL. Samples were irradiated by BL at 470 nm because it 

had earlier reported that light with wavelength longer than 405 nm did not eradicate bacteria 

itself [51]. 

As for hCQDs/PDMS nanocomposites they showed very good activity towards S. 

aureus, E. coli  and K. pneumoniae. Namely, after 15 min irradiation by BL, S. aureus, E. 

coli and K.pneumoniae were eradicated completely. Therefore, S. aureus, E. coli and K. 

pneumoniae are very sensitive to hCQDs/PDMS samples irradiated by BL. The possible 

mechanism for bacterial death can be the following: ROS (generated singlet oxygen in our 

case) damage bacterial cell wall and cause bacterial death by oxidative stress. The generation 

and clearance of ROS in bacterial cells are balanced in normal conditions. But when the 

excessive production of ROS is presented (under the effect of hCQDs) the redox balance of 

cell favors oxidation. This unbalanced state produces oxidative stress, which damages the 

individual components of bacterial cells [52]. 

Antibacterial results presented above are very important because S. aureus is 

transmitted through contact with the organism in a purulent lesion or on the hands. 

Furthermore, burn units are contaminated very easily. This bacteria can remain virulent for 
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10 days on dry surfaces. K. pneumoniae is transmitted through contact with contaminated 

surfaces and objects, medical equipment and blood products and can remain more than 2 h on 

dry inanimate surfaces [53]. The usage of hCQDs/PDMS nanocomposites under BL as 

antibacterial surfaces can contribute dramatically to efficient eradication of these bacteria 

strains because they are killed only after 15 min of BL irradiation. Compared to our previous 

results related to hCQDs/polyurethane (hCQDs/PU) nanocomposites, the hCQDs/PDMS 

showed better antibacterial effects towards S. aureus and E. coli [48]. The hCQDs/PDMS 

nanocomposites showed better antibacterial results compared to CV-MgO/PU, CV-ZnO/PU 

nanocomposites as well as Cu/PU and MB-Au/PDMS nanocomposites [17, 54, 55].  

3.11. The effect of surface roughness and wettability on antibacterial activity  

Different properties of materials need to be considered (surface energy, wettability, 

surface charges, surface roughness) to design antibacterial surfaces which kill various 

bacteria strains effectively. There are many studies reported the effect of surface wettability 

on bacteria adhesion [3]. Surfaces with moderate wettability are more favorable compared to 

high hydrophobic or hydrophilic surface. Materials with low surface energy adhere weaker 

bacteria than materials with higher surface energy. Surface roughness is very important 

parameter of each surface but the effect of this parameter is limited because the shape and 

size of bacteria can also play very significant role in bacterial interaction with surfaces. In 

this section we have compared RMS, CA and antibacterial activity for three materials with 

hCQDs: Langmuir-Blodgett (LB) hCQDs thin films [38], hCQDs/PU [48] and 

hCQDs/PDMS nanocomposites. Table 2 presents results of RMS, CA and antibacterial 

activity of LB hCQDs thin films deposited on SiO2 (LBhCQDs/SiO2) [38], hCQDs/PU 

nanocomposites [48] and hCQDs/PDMS nanocomposites. 

As can be seen from Table 2 variation of CA values are not so significant. On the 

other hand, range of RMS values is quite large. Katsikogianni and Missirlis showed that 
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bacteria dominantly adhere to surface topography features as large as their own diameters 

[56,57]. They claimed also that asperity size as well as its shapes affect strongly bacterial 

adhesion. In our investigation, we established that rougher polymer surface has bigger 

diffusion channels of singlet oxygen than smoother surfaces. Faster diffusion of singlet 

oxygen to surface decreases time of eradication of the investigated bacteria. 

All three sample types did not show any antibacterial activity without BL irradiation. 

Under BL irradiation all sample show moderate to excellent antibacterial activity. 

Furthermore, the hCQDs/PDMS nanocomposites are bactericidal not only towards S. aureus 

and E. coli but against K. pneumoniae. The latter bacteria is common for any type of 

healthcare facilities and formation of antibacterial surfaces with high efficacy was a big 

challenge.  

In our research we supposed that generation of singlet oxygen by hCQDs had a key 

role in antibacterial activity of hCQDs/PDMS nanocomposites. But, surface roughness of 

hCQDs/PDMS nanocomposites contributed significantly to better adhesion of bacteria to 

surface and their further effective elimination. 

4. Conclusions 

In this paper we have investigated structural, mechanical properties and antibacterial 

activity of hCQDs/PDMS nanocomposites. The hCQDs has been encapsulated in polymer by 

simple swelling-encapsulation-shrink method. Different characterization techniques have 

shown that hCQDs were encapsulated in PDMS successfully, they retained their PL and 

ability of singlet oxygen production. Young’s moduls of hCQDs/PDMS nanocomposites has 

been changed to a great extent where tensile strength and tensile stress has been varied 

slightly. BL irradiated polymer serves as a reservoir of singlet oxygen with relatively high 

lifetime.  Large surface roughness of 86.2 nm significantly promoted fast singlet oxygen 

diffusion to the surface. 
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 Low power BL source triggered singlet oxygen generation in the hCQDs/PDMS 

nanocomposites. In this way nanocomposite eradicated 5logs of S. aureus, E. coli and K. 

Pneumoniae in 15 minutes. On the other side, this nanocomposite is not cytotoxic towards the 

NIH/3T3 cells. In this way, the hCQDs/PDMS nanocomposite is a promising candidate for 

visible light triggered sterilization application in hospitals, pharmaceutical or food industries. 
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Table 1. Antibacterial activity of neat PDMS and hCQDs/PDMS nanocomposites towards S. 

aureus, E. coli and K. pneumoniae. Nanocomposites were irradiated by BL for 15 min and 60 

min. 

Samples 

Time 

(min) 

S. aureus E. coli      K.pneumoniae 

  N  

(cfu/cm2

) 

R=Ut-At N 

 (cfu/cm2) 

R=Ut-At N  

(cfu/cm2) 

R=Ut-At 

PDMS 15 1.7x107 Ut=5.1 4.3x106 Ut=5.5 2.3x106 Ut=5.2 

hCQDs/PDMS 15 <1 5.1 <1 5.5 <1 5.2 

PDMS 60 1.1x105 Ut=5.04 7.6x105 Ut=5.8 1.1x105 Ut=5.04 

hCQDs/PDMS 60 <1 5.04 <1 5.8 <1 5.04 
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Table 2. RMS, contact angles (CA) and antibacterial efficiency of three different systems: 

LBhCQDs/SiO2, hCQDs/PU and hCQDs/PDMS. 

Samples RMS (nm) CA (o) Antibacterial efficiency 

LBhCQDs/SiO2 0.3 99.9           moderate 

hCQDs/PU 3.05 111.9           excellent 

hCQDs/PDMS 86.2 107.8          excellent 
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Figure captions 

Fig. 1. Schematic view of hCQDs/PDMS nanocomposites preparation. 

Fig. 2. Deconvoluted XPS spectra of a) C1s peak of PDMS, b) C1s peak of hCQDs/PDMS 

nanocomposites, c) O1s peak of PDMS and d) O1s peak of hCQDs/PDMS. 

Fig. 3. Top view AFM images of pure PDMS (a) and hCQDs/PDMS nanocomposites (b); 

TEM micrograph of hCQDs-inset of Fig. 1b. 

Fig. 4. PL spectra of a) hCQDs and b) PL of hCQDs/PDMS nanocomposites; c) optical 

micrograph of hCQDs/PDMS nanocomposites including overlay of PL mapping. 

Fig. 5. a) EPR spectra of the TEMPO sample (black curve), and the hCQDs/PDMS 

nanocomposites in dark (red curve), under AL (green curve), under BL (blue curve) for 12 h; 

b) EPR spectra of hCQDs/PDMS nanocomposites under different BL irradiation time; c) 

Laser excited singlet oxygen luminescence of the hCQDs/PDMS nanocomposites vs. time - 

data are corrected to signals in vacuum, where no singlet oxygen is formed.  

Fig. 6. NIH/3T3 cell viability in various extract concentrations. Cytotoxicity in relative 

values equal to 1 corresponds to 100 % cell survival compared to reference. Values >0.8 are 
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assigned to no cytotoxicity, 0.6–0.8 to mild cytotoxicity, 0.4–0.6 to moderate cytotoxicity, 

and <0.4 to severe cytotoxicity.  

 

 

 

 

 

 

 

Fig. 1 
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Fig. 2 

 

 

 

 

 

 

 

 

 ACCEPTED M
ANUSCRIP

T



 32 

 

 

Fig. 3 
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Fig. 4 
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Fig. 5 
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Fig. 6 
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