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Multi-view co-training for 
microRnA prediction
Mohsen Sheikh Hassani & James R. Green  

MicroRnA (miRnA) are short, non-coding RnAs involved in cell regulation at post-transcriptional and 
translational levels. numerous computational predictors of miRnA been developed that generally 
classify miRnA based on either sequence- or expression-based features. While these methods are 
highly effective, they require large labelled training data sets, which are often not available for many 
species. Simultaneously, emerging high-throughput wet-lab experimental procedures are producing 
large unlabelled data sets of genomic sequence and RNA expression profiles. Existing methods use 
supervised machine learning and are therefore unable to leverage these unlabelled data. in this paper, 
we design and develop a multi-view co-training approach for the classification of miRNA to maximize 
the utility of unlabelled training data by taking advantage of multiple views of the problem. Starting 
with only 10 labelled training data, co-training is shown to significantly (p < 0.01) increase classification 
accuracy of both sequence- and expression-based classifiers, without requiring any new labelled 
training data. After 11 iterations of co-training, the expression-based view of miRNA classification 
experiences an average increase in AUPRC of 15.81% over six species, compared to 11.90% for self-
training and 4.84% for passive learning. Similar results are observed for sequence-based classifiers 
with increases of 46.47%, 39.53% and 29.43%, for co-training, self-training, and passive learning, 
respectively. The final co-trained sequence and expression-based classifiers are integrated into a final 
confidence-based classifier which shows improved performance compared to both the expression 
(1.5%, p = 0.021) and sequence (3.7%, p = 0.006) views. This study represents the first application of 
multi-view co-training to miRnA prediction and shows great promise, particularly for understudied 
species with few available training data.

MicroRNA (miRNA) are involved in cell regulation at the post-transcriptional and translational levels through 
the degradation and translation inhibition of messenger RNA (mRNA). MicroRNA target a wide range of mam-
malian mRNA, affecting biological activities such as cell cycle control1, biological development2,3, differentiation4 
and stress response5–7. Evidence suggests that approximately 60–90% of mRNA have the potential to be targeted 
by miRNA8. Recent studies have also suggested that miRNA may act as tumor suppressors in different cancers 
such as liver9, colon10, prostate11 and bladder cancers12.

The identification of novel miRNA requires an inter-disciplinary approach, in which both computational and 
experimental methods are involved. Through experimental approaches, a number of miRNA have already been 
identified for many distinct species, ranging from more than 2000 known human miRNA, to less than ten known 
mallard miRNA13. These known miRNA have been used as a basis to create a number of computational methods 
to predict new miRNA. Such computational methods almost exclusively use supervised machine learning to 
identify and abstract the patterns present in previously discovered miRNA. These models seek to identify new 
putative miRNA sequences exhibiting these patterns and classify arbitrary sequence windows as being either 
miRNA or non-miRNA. There are generally two different approaches to developing computational predictors 
of miRNA. Methods that examine the RNA sequence directly are referred to as de novo predictors, while meth-
ods that look for evidence of miRNA biogenesis processing within next generation sequencing (NGS) expres-
sion data are referred to as NGS- or expression-based methods14–16. Sequence- and expression-based techniques 
detect pre-miRNA sequences forming miRNA-like hairpins and classify them based on the presence or absence 
of sequence- or expression-based features, respectively.

A significant challenge in the field of miRNA prediction is that, for many species, there is a scarcity of labelled 
examples of known miRNA. This makes the task of miRNA classification a very difficult matter, particularly for 
newly sequenced species where there are few known miRNA exemplars available. According to miRbase13, of 
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the thousands of existing species, experimentally validated miRNA sequences are available for only 271 species. 
Approximately 30% of these species have 15 or fewer known miRNA sequences, meaning that in general most 
species have very few training exemplars available. The majority of current de novo and NGS-based miRNA pre-
diction techniques use supervised learning methods for the detection of novel miRNA, thereby requiring a large 
database of known miRNA. In addition, these methods do not always achieve high accuracy, resulting in many 
sequences being falsely predicted to be miRNA. These false predictions represent a substantial loss of resources, as 
they lead to unnecessary experimental validation costs. Previous work has demonstrated that relying on training 
exemplars from other species leads to reduced classification performance for the target species17. Therefore, if 
we are to create more effective miRNA predictors, either new miRNA sequences must be identified, or a method 
must be designed to create reliable miRNA predictors from smaller numbers of known miRNA exemplars.

While the scarcity of labelled known miRNA data presents a challenge, the emerging abundance of unlabelled 
sequence and expression data represents a hitherto untapped opportunity for miRNA prediction. This prompted 
us to propose a new semi-supervised miRNA prediction technique that extracts maximal information from both 
the limited labelled miRNA data and the unlabelled data, therefore requiring very few known miRNA. We aim 
to not only minimize the number of labelled training exemplars required, but also to improve the performance 
of current prediction methods using fewer samples. In this way, we can create a more efficient method for the 
identification of novel miRNA, particularly for species with few known miRNA, while maximizing the return on 
investment for costly wet-lab validation experiments. As mentioned, almost all previous methods use supervised 
machine learning methods, which only make use of labelled instances for classification. Semi-supervised machine 
learning methods make use of both labelled and unlabelled data for classification; such methods are designed to 
work in situations where we have a small number of known exemplars and a large body of unlabelled data.

We have recently reported on another application of semi-supervised machine learning for miRNA pre-
diction18. In that study, active learning is applied to guide the wet-lab experiments to iteratively increase the 
set of known miRNA within a species. Significant increases in miRNA prediction accuracy were observed 
using active learning; however, this approach presupposes the availability of wet-lab experiments for validat-
ing specific putative miRNA to augment the training set. We here explore the application of another method 
of semi-supervised machine learning: multi-view co-training19. This approach differs from active learning in 
that no additional labelled training data or wet-lab experiments are required. Instead, the training set is grown 
using high-confidence predictions from the classifiers themselves. Over-training is avoided by leveraging multi-
ple views of the problem and applying co-training rather than self-training. As with active learning, multi-view 
co-training aims to learn patterns not only from the few labelled exemplars, but also from the unlabelled data. 
The present study represents the first application of multi-view co-training to the problem of miRNA prediction.

Multi-view co-training has been applied to a range of pattern classification problems over the past few 
years, especially those in which labelled data is either rare or comes at a very high expense. The application of 
co-training has mostly been focused on areas such as natural-language processing and signal processing, where 
data have multiple views, such as text data and web data20. Applications of multi-view co-training to bioinfor-
matics have been limited to prediction of protein function21, prediction of breast cancer survivability22, detection 
of mis-localized proteins in human cancers23, gene expression classification20, cancer sample classification24 and 
phenotype prediction25. We anticipate that multi-view co-training is likely widely applicable to the field of bioin-
formatics, since the lack of labelled data is a concern in most bioinformatics problem domains.

We propose using multi-view co-training for miRNA prediction, which makes use of multiple views of the 
problem to create distinct classifiers – one for each view. Each classifier is initially trained on a small set of labelled 
samples and is applied to an unlabelled data set. The most confidently predicted unlabelled instances from each 
of these views are added to the training set without experimental validation, and this process is repeated multiple 
times. In multi-view co-training, we take advantage of the fact that the problem of miRNA prediction can be 
approached from two distinct views: sequence based de novo prediction or expression-based NGS prediction. 
This creates two views for classification, an expression-based view and a sequence-based view. It should be noted 
that both of these views have been previously applied to miRNA classification independently14 and as an inte-
grated feature set26,27; however, multi-view co-training has yet to be explored in the field of miRNA prediction. 
By applying multi-view co-training, we leverage each view using the other to create iteratively more powerful 
classifiers. The significant advantage of co-training is that there is no need for collecting any new labelled data (i.e. 
we do not require any new costly wet-lab experiments).

In the following sections, we demonstrate that leveraging multiple views of the miRNA prediction problem 
can be used, through multi-view co-training, to create more accurate predictors without actually labelling any 
new data. Performance is compared to self-training, where a single view’s classifier is reinforced with its own 
high-confidence predictions. Ultimately, the two views are combined using a confidence-based system to achieve 
a unified predictor more accurate than either view.

Methods
Data set selection. To develop and evaluate miRNA predictors, we require datasets of “positive” sequences, 
known to be miRNA, and “negative” sequences, that meet the fundamental criteria to be miRNA28, but are known 
to have other functions (i.e. pseudo-miRNA). To demonstrate the broad applicability of the approaches developed 
here, we use datasets from six distinct species: mouse, fruit fly, cow, horse, chicken, and human. For each species, 
we require five data sources: genomic data (UCSC genome browser database29), short RNA NGS expression 
data (NCBI GEO database30), a set of known miRNAs (miRbase - release 2213), a set of known coding regions 
(Ensembl sequence database31), and a set of non-miRNA known functional non-coding RNA (Rfam32). The data 
source for each species is summarized in Table 1.

Expression data were preprocessed using miRDeep2’s “mapper.pl” script33 that automates the mapping of 
read stacks to the reference genome and the computation of RNA secondary structures for each mapped region. 
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Given an NGS data set and a reference genome, this script produces a set of candidate pre-miRNA sequences 
accompanied by their structure and read stacks mapping to the sequence region. These candidate pre-miRNA 
sequences are compared to only the high confidence miRbase dataset for that species; those sequences that match 
to a known miRNA sequence are labelled as true positives. Remaining candidate pre-miRNA form a candidate 
negative set. These sequences are then aligned against the coding region data of the related species using bowtie34 
(up to two mismatches permitted). Since sequences known to form mRNA are unlikely to also form miRNA, all 
candidate negative sequences that align to a coding region are selected as our final true negative data. To ensure 
that the miRNA predictors developed here are not simply distinguishing between coding and non-coding regions, 
all available functional non-coding RNA within the 6 species were added to the negative set; these sequences were 
annotated in Rfam32. These supplementary negative sequences are functional non-coding RNA such as transfer 
RNAs (tRNA) and small nucleolar RNAs (snoRNA). Finally, CD-HIT35 is applied (sequence identity < 90%) to 
remove redundant and highly similar sequences. Table 1 summarizes the final count of true positives and nega-
tives for each of the species.

feature set selection. Data from all species were pooled for each of the sequence and expression-based 
views separately. Sequence-based features are obtained from the widely used HeteroMiRPred collection of 
available features36. These features include sequence-based, secondary-structure-based, base-pair-based, 
triplet-sequence-structure-based and structural-robustness-related features. To find the most informative 
sequence-based features, the correlation-based feature subset selection method in the Weka package37 was 
applied using default parameters to all the training data from the six species. This algorithm minimizes the cor-
relation between selected features while maximizing their predictive strength and has been demonstrated to be 
effective for miRNA prediction17. This results in a vector of 32 sequenced-based features, pertaining to minimum 
free energy derived features, sequence/structure triplet features and dinucleotide sequence motifs, and structural 
robustness features. The eight expression-based features derived in26 were used as our expression-based feature 
set, which consist of: (1) percentage of mature paired miRNA nts, (2) number of pairs in lower stem, (3) the per-
centage of RNA-seq reads in region which are inconsistent with Dicer processing and (4) from the loop region 
that match Dicer processing, (5) the percentage of RNA-seq reads - (6) RNA-seq-reads from the mature miRNA 
and - (7) RNA-seq-reads from miRNA* region which match Dicer processing, and (8) the total number of reads 
in the precursor region, normalized to experiment size.

Classification pipeline. All classifiers in this experiment are built using SKLearn random forest library38, 
using default parameter values except for the number of trees, which was set to 500. Previous studies have demon-
strated that random forest classifiers are effective for the prediction of miRNA17,39 and result in a balance between 
sensitivity and specificity15,40,41. We begin with a large set of labelled data. We then simulate the case where only a 
small subset of the data is labelled (forming our seed training set and independent test set), whereas the majority 
of data are simulated to be unlabelled. This represents a scenario for an understudied or newly sequenced species, 
where only a small number of known miRNA would be available with which to create the miRNA classifier.

For each species, the data are split into 20% hold-out data, which is used for testing the performance of the 
classifier, and the remaining 80% that is used for training the classifier. This distribution of data is randomly 
repeated 100 times, resulting in different seed training, test, and unlabelled sets. Therefore, each learning strategy 
described in this paper is evaluated 100 times using different initial seed training sets. The initial classifier for 
each view is built using a seed training set of 10 labelled samples (5 positive, 5 negative) randomly selected from 
the 80% split. After the initial model is built, it is applied to the remainder of the 80% “unlabelled” set, where the 
single most confident positive and negative predictions will be selected by each view. These two instances will be 
removed from the unlabelled set of their own view and added to the training set of the opposite view. The classi-
fier for each view is re-trained using their new training sets, and this procedure is continued for several iterations. 
After each iteration, the learning curves of each view are plotted, where the area under the precision-recall curve 
(AUPR) is used as the summary performance metric over the 20% hold-out test dataset.

In the present study, for all six species, a total of 11 iterations were performed. More dynamic stopping cri-
teria are available, including the approach suggested by Lewis and Gale42, where the learning curve trends are 
monitored at each iteration; the learning process is stopped once maximum effectiveness has been reached and 
performing extra iterations does not result in a significant increase in performance. As mentioned above, in each 
iteration, the most confidently predicted positive and negative samples are added to the labelled training set of 
the alternate view. Clearly, more samples could be added per iteration to reduce computational load and expedite 

Data 
set Organism

Species 
name

NCBI GEO 
Accession ID # Reads

# positive 
samples

# negative 
samples

hsa H. sapiens Human GSM-1820470 38,210,937 509 842

mmu M. musculus Mouse GSM-1528810 54,947,527 367 844

dme D. melanogaster Fruit-fly GSM-1123781 18,723,989 110 97

bta B. taurus Cow GSE-74879 43,164,654 332 650

gga G. gallus Chicken GSM-2095817 27,937,224 193 104

eca E. caballus Horse GSE-100852 42,178,766 364 224

Table 1. NGS data sets used in this study.
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convergence. However, only two samples were selected in each iteration to ensure that only high-confidence 
predictions were being included in subsequent training sets. Our co-training pipeline can be observed in Fig. 1.

As can be observed from Fig. 1, we used a slightly different approach compared to the standard co-training 
approach originally proposed by Blum and Mitchell19. In most co-training models, a pool is created containing all 
the labelled data. At each iteration, the training set for each classifier is formed from a random subset of the total 
labelled pool. Also, at the end of each iteration, each classifier contributes newly labelled samples to that common 
pool. Our approach differs in that each classifier has its own independent labelled training data and, at the com-
pletion of each iteration, each classifier contributes newly labelled data (i.e. its high confidence predictions) to the 
other classifier’s training pool, not its own training set or to a shared pool.

comparing co-training with benchmark algorithms. To evaluate the effectiveness of our pro-
posed co-training method, we compared our results with two benchmark algorithms: a passive learning and 
self-training approach. The passive co-training strategy follows the multi-view co-training strategy outlined in 
Fig. 1 exactly, except that, in contrast to the actual co-training strategy where only the most confidently predicted 
instances are added to the training set, the two samples selected to be added to the other view’s labelled training 
data were chosen randomly, rather than based on prediction confidence. In this approach, at each iteration the 
two random forest classifiers built using the two view-based feature sets and the training data were applied to the 
80% unlabelled set. For each view, two randomly selected instances were removed from the unlabelled set and 
added to the training set of the other view using the predicted class labels. The selected instances were not selected 
completely at random; rather, they were selected randomly from a group of predictions expected to be either in 
the positive or negative class. To explain further, when the model was applied to the unlabelled set, each of the 
unlabelled instances received a prediction score. This score indicated the probability of that instance being in the 
positive or negative class, with a range of 0 to 100% probability for each class. In the passive approach, we ran-
domly selected one instance that was confidently (i.e. more than 50%) predicted to be a positive and one instance 
that was confidently (i.e. less than 50%) predicted to be a negative. In this way, the intention was to add one posi-
tive and one negative sample at each iteration to keep the training set of the passive approach in balance with that 
of co-training. As with the actual multi-view co-training strategy, this process was repeated for 11 iterations to 
enable direct comparison using the same number of training instances. By comparing our co-training classifier’s 
performance to that of this passive classifier, we can determine the significance of adding the most confidently 
predicted points in performance, while controlling for training set size.

In addition to passive co-training, self-training was used as another benchmark algorithm against which to 
compare our co-training approach. In self-training, each view was strengthened by its own predictions, meaning 
that learning was completed in each view independently43–45. In this approach, we created two classifiers, one 
for each of the sequence- and expression-based views. Each classifier was built using the same random forests, 
view-specific feature sets, and the same training, testing and unlabelled data sets previously described. Each 
classifier was built using its respective training set and, at each iteration, the trained model was applied to the 
unlabelled set. The single most confident positive and negative predictions were then removed from the unla-
belled set and added to the training set of the view itself. This process was continued for the same number of iter-
ations as co-training to fairly compare the results. By making this comparison, the value of using different views 
to strengthen each other can be observed. It was hypothesized that co-training would outperform self-training 
since using one’s own predictions to reinforce one’s beliefs is expected to lead to over-specialization (or drift) and 
reinforcement of a classifier’s errors. This is avoided in co-training since each classifier augments the training set 
of the other view, rather than its own.

Figure 1. Multi-view co-training miRNA prediction framework. 1: Train Model. 2: Apply Model to unlabelled 
data to generate scores. 3: Add 2 top-scoring samples to other view’s training data. 4: Remove 2 top-scoring 
samples from unlabelled data. 5: Repeat steps 1–4 until stopping criterion; output final models.
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combining the views. So far, we have evaluated the performance of each of the individual views developed 
using multi-view co-training. Co-training is frequently used as a means to create a larger labelled data set, rather 
than to perform classification. However, if we were to use co-training itself as a classification tool, it would be 
better to combine both developed views at the end of their learning to produce a more robust classifier. Several 
approaches are possible to combine the multiple views in co-training to arrive at a consensus decision. For the 
“classic” co-training approach44, there is a single pool of quasi-labelled training data. Therefore, a final integrated 
classifier can be trained from that common pool, leveraging features from both views. In the cases where there 
are three or more views available for the problem, voting amongst the views for the class of the instance would be 
another reasonable approach. In our work, we create a combined co-training classifier considering the prediction 
confidence of both views for each instance. We do so using the prediction score produced by our algorithm for 
each instance and consider this a proxy for prediction confidence. When we obtain each view’s prediction score 
for an instance, we accept the predicted class from the view with the highest prediction confidence. For example, 
if an instance is predicted by the sequence-based view to have a 70% probability of being a miRNA, while the 
expression-based classifier predicts it to have a 60% probability of not being a miRNA, the combined co-training 
classifier will predict the instance to be a miRNA.

Results
Establishing the effectiveness of co-training for miRNA prediction. To demonstrate the effective-
ness of applying multi-view co-training for miRNA prediction, we generated the performance learning curves 
of each view for the six species. Figure 2 illustrates the mean performance of the sequence and expression-based 
classifiers at each iteration of co-training for all data sets, averaged over 100 experiments with randomly selected 
seed training sets.

For all six species, substantial improvements in AUPRC are observed over the 11 iterations. The increase 
in performance is most dramatic in the human (hsa) and cow (bta) data sets. In human, the expression-based 
classifier’s average AUPRC increases by 30.6% and the sequence-based classifier more than doubles in average 
AUPRC, undergoing a 121% increase. Multi-view co-training appears to be least effective for chicken (gga) and 
horse (eca). The application of 11 iterations of co-training to the chicken data set resulted in the expression and 
sequence-based classifier’s average AUPRC increasing by 4.12% and 3.80%, respectively. When applied to the 
horse data set, the expression-based classifier’s average AUPRC is enhanced by 4.05%, where the sequence-based 
classifier undergoes an increase of 9.77%. However, for both chicken and horse, the initial classifier was already 
surprisingly effective with initial AUPRC values of over 0.87 for both, leaving little room for improvement due 
to co-training.

Figure 2. Performance of the sequence- and expression-based classifiers, in terms of average area under 
precision-recall curve, for six species, at each of 11 iterations of co-training. Error bars indicate one standard 
deviation.
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Note that the choice of running co-training for exactly 11 iterations was somewhat arbitrary. Supplemental 
Fig. 1 illustrates 15 iterations of co-training for human and clearly demonstrates no significant performance gain 
beyond 11 iterations. Furthermore, it was noted that the average confidence of the top-scoring predictions being 
added to the labelled training set in each iteration began to drop at this point. Based on these results in human, it 
was decided to limit all experiments to 11 iterations.

comparing co-training with benchmark algorithms. Multi-view co-training was compared with two 
benchmark algorithms (see Methods): 1) passive learning, where samples are randomly added to the training set 
of the alternate view in each iteration, and 2) single-view self-training, where learning is completed independently 
in each view and high confidence predictions are added to each view’s own training set at each iteration. In addi-
tion, the final iterations of co-training, passive learning and self-training are compared against a classifier without 
any iterative learning being applied (i.e. a classifier trained solely using the initial seed of 10 samples). This addi-
tional benchmark method is referred to as the “no-learning” classifier and corresponds to iteration zero in Fig. 2. 
After 11 iterations, the final performance of all methods are plotted on a precision-recall curve for each species. 
The full set of PR-curves for all six species are included in Supplemental Figs 2 and 3. Table 2 summarizes these 
curves using mean area under precision-recall curve (AUPRC) over 100 random-seed repetitions. The final row 
of the table indicates the percent increase for each method relative to the no-learning classifier, averaged across 
all six species. For both the expression- and sequence-based classifiers, it can be observed that, in all six species, 
co-training outperforms all other methods. For clarity, the standard deviations are not shown, which were in the 
range of 0.001 to 0.003 for all experiments other than the no-learning case (see Supplemental Table 1 for details). 
To test for the statistical significance of differences between methods observed in our results, the ANOVA test was 
first applied to the results in Table 2. This test indicated that there is a statistically significant difference between 
the mean results of the groups (α = 0.05). A Tukey test was then applied between the co-training results and each 
of the other methods, and all results were found to be statistically significant (at α = 0.01).

By comparing our multi-view co-training approach against single-view self-training and passive approaches, 
we can better comprehend the value of using two views and adding the most confidently predicted instances to 
the training set. The passive co-training approach serves as a control for training set size, whereas the self-training 
approach highlights the value in using two independent views of the problem. From the AUPRC values in Table 2, 
it is evident that co-training outperforms the other classifiers over all of the six data sets. By demonstrating sub-
stantially better results than the passive learning and self-training classifiers, it can be concluded that miRNA 
classification using co-training is the superior method.

A combined co-training classifier. We apply our proposed confidence-based combined co-training algo-
rithm to the data we had previously gathered for the individual views. The performance of the expression- and 
sequence-based classifiers and the combined co-training approaches are compared in Table 3 and illustrated 

Data set

Expression-based classifier’s average AUPRC Sequence-based classifier’s average AUPRC

No-learning Passive learning Self-training Co-training No-learning Passive learning Self-training Co-training

hsa 0.597 0.672(+12.7%) 0.770(+29.0%) 0.779(+30.6%) 0.344 0.616(+79.3%) 0.720(+109.66%) 0.761(+121.4%)

mmu 0.714 0.708(-0.83%) 0.883(+23.7%) 0.955(+33.7%) 0.822 0.887(+7.91%) 0.895(+8.87%) 0.912(+11.0%)

dme 0.810 0.883(+9.10%) 0.886(+9.50%) 0.901(+11.3%) 0.864 0.909(+5.16%) 0.912(+5.51%) 0.921(+6.6%)

bta 0.778 0.827(+6.23%) 0.815(+4.70%) 0.865(+11.1%) 0.357 0.654(+83.1%) 0.732(+104.7%) 0.809(+126.3%)

gga 0.925 0.923(-0.22%) 0.946(+2.26%) 0.964(+4.12%) 0.893 0.894(+0.08%) 0.911(+2.03%) 0.927(+3.79%)

eca 0.921 0.941(+2.11%) 0.942(+2.25%) 0.958(+4.02%) 0.875 0.884(+0.99%) 0.932(+6.43%) 0.961(+9.74%)

Avg. — +4.84% +11.90% +15.81% — +29.43% +39.53% +46.47%

Table 2. Final AUPRC classification results using co-training, single-view (self-training), passive learning, and 
no-learning for expression and sequence-based views. Values in parentheses represent the percent increase 
relative to the no-learning classifier. The last row indicates average increase compared to the base “no-learning” 
classifier, averaged over all six species.

Data Set Expression-based
Sequence-
based

Combined 
Classifier

hsa 0.779 0.761 0.812

mmu 0.955 0.912 0.958

dme 0.901 0.921 0.932

bta 0.865 0.809 0.878

gga 0.964 0.927 0.966

eca 0.958 0.961 0.967

Table 3. Final AUPRC classification results comparing each individual view with the combination of both 
views. Mean AUPRC from 100 repetitions is shown. In all cases, the standard deviation is 0.001 is not shown for 
clarity of presentation. The confidence-based combined classifier performance surpasses both views in all six 
species.
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in Fig. 3 in terms of the average AUPRC values. These results reflect the mean of 100 experiments with ran-
dom seeds, as previously mentioned. In all cases, the combined co-training shows enhanced performance com-
pared to each of the individual views on all data sets by taking advantage of the results from the dominant view. 
The confidence-based combined classifier outperforms the expression- and sequence-based classifiers by 1.5% 
(p = 0.021) and 3.7% (p = 0.006), respectively. A paired t-test was used to test for significant differences across the 
six species in Table 3.

Discussion
We have demonstrated that multi-view co-training is able to significantly boost miRNA classification perfor-
mance, without conducting any expensive wet-lab validation experiments. Following 11 iterations of multi-view 
co-training, the average AUPRC is increased by 15.8% and 46.5% for expression- and sequence-based classifiers, 
respectively. To better understand why co-training is so effective, we included two benchmark methods that 
partially implement multi-view co-training: self-training (ignoring prediction confidence) and passive learning 
(treat each view independently). In the self-training approach, although the most confidently predicted points are 
added to the training set at each iteration, we only make use of one view of the problem. By making this compar-
ison to our multi-view co-training approach, we are observing the effectiveness of strengthening one view using 
the other. By comparing the results of self-training to our co-training approach in Table 2, the advantage of using 
multiple views for training become clear. Here we observe an average co-training AUPRC that is 3.91% and 6.94% 
higher than that of the self-training classifier over all the data sets for expression- and sequence-based classifiers, 
respectively. These results highlight the significance of using multiple views (where applicable) for solving a pat-
tern classification problem.

When examining the learning curves for self-training (data not shown), it was observed that in some cases the 
performance increase would plateau at a much earlier stage compared to co-training. This may be due to the fact 
that the amount of evidence that one view can provide is limited. In these cases, a single-view classifier quickly 
exhausts the information available from that view. Adding any high confidence instances predicted by such a 
classifier to the training set will not further strengthen the view; beyond this point, the classifier is simply adding 
instances with similar characteristics to those already in its labelled training set, therefore providing the classifier 
with redundant data. In contrast, using a different view for augmenting the training set could be highly valuable.

In the passive co-training approach implemented in this study, despite making use of both views of the prob-
lem similar to the co-training approach, we do not use the most confidently predicted instances. Instead, we 
choose expected positive and negative instances randomly and without knowing the model’s confidence in their 
labelling. The results of this approach show a high degree of fluctuation during iterations, demonstrating per-
formance increase in some and decrease in the others. This is due to the random selection of instances to add 
to the training set, which in some cases leads to a mislabelled instance being added to the training set, therefore 
decreasing the classifier’s performance. When comparing the results of this passive approach to our co-training 

Figure 3. Performance of the sequence- and expression-based classifiers and the confidence-based combined 
co-training classifier, in terms of average area under precision-recall curve, for all six data sets, at each of 11 
iterations. Error bars indicate one standard deviation.
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approach, it can be observed that strictly adding high confidence predictions has a significant effect on the clas-
sifier’s performance. By doing so, co-training demonstrates a 10.97% higher average AUPRC over all the data 
sets for the expression-based classifier, and a 17.24% higher average AUPRC for the sequence-based classifier. In 
addition, it can be observed that for the expression-based classifier in the chicken and mouse data sets, passive 
learning actually decreased the performance of the original models by 0.22% and 0.83%, respectively. This means 
that for these experiments, the addition of 22 instances resulted in weaker classifiers rather than strengthening 
them. This is due to the fact that a number of mislabelled points have been added to the original training sets for 
these species, causing the models to become weaker, since they are trained using incorrectly labelled data. These 
results underlie the importance of strictly adding high confidence instances to the training set, and that using 
multiple views alone is not sufficient for building a robust classifier.

The advantage of using multi-view co-training can be clearly seen in cases where one view initially performs 
much worse than the other. From Fig. 2 it can be observed that in all of the data sets, one view clearly outper-
forms the other before the start of co-training. After 11 iterations, it is observed that the weaker view greatly 
improves in performance, and approaches the performance of the stronger view, even surpassing it in two data 
sets (mouse and horse). In other words, by using multiple views, one view can compensate for the weak perfor-
mance of another view. It must also be mentioned that during the different iterations of co-training, no misclas-
sified instances were added to the training set of neither view. This means that in all cases, the top prediction of 
both views was a correct prediction, demonstrating the accuracy of the classifiers developed using co-training. 
The fact that all instances that are newly added to the training set are correctly predicted is evidence that this 
approach is successful.

The co-training variation we have implemented in this study (explained in Section C of Methods) was 
first proposed by Brefeld and Scheffer46 and has been since used by Sokolov and Ben-Hur21. This variation of 
multi-view co-training ensures that the views do not converge and that they are learning from different instances, 
since the majority of the training sets from each view are non-overlapping. Therefore, this method will further 
strengthen each view by directly incorporating evidence provided by another view into its training data. Since 
in this method each algorithm learns from the top predictions of the other algorithm, the algorithm is exposed 
to the risk of drift. That is, if one view starts making false predictions, these will quickly be amplified. To reduce 
the chances of this occurring we only allow each classifier to add one positive and one negative instance to the 
training set of the other classifier at each learning iteration. Future work could compare this approach to tradi-
tional co-training, where a single labelled training set is used, to compare their robustness to drift over a number 
of iterations.Since we ultimately require a single classification from both views, we combined the final view-based 
classifiers trained using co-training to create a combined co-training classifier. The proposed confidence-based 
combination rule proved to be highly effective. This indicates that mispredictions from individual views tend to 
have lower confidence than the correct predictions from the alternate view. By incorporating both views, we can 
take advantage of a greater number of strong predictions, therefore minimizing the number of weak predictions 
in our classifier and increasing performance.

Other than our own work, it appears that the only other published application of semi-supervised machine 
learning for miRNA prediction is by Yones et al.47. In their miRNAss method, they use “transductive learning”, 
as opposed to inductive learning. In this approach, all data (both labelled and unlabelled) are examined to learn 
the “latent structure of the data”. Once clusters of samples are identified, the known labelled samples within each 
cluster are used to label the entire cluster before making a classification decision. Furthermore, they demonstrate 
that their method can be used to automatically select a wide variety of negative points that are representative 
of all negative data, increasing confidence that the selected unlabelled samples are not simply undocumented/
unknown positives. In this way, the miRNAss method is complementary to our own multi-view co-training 
method: miRNAss could be used to initialize the negative set when running our methods for a new species and 
iterative multi-view co-training may be applicable to transductive learning.

conclusions
In this study, we propose a novel multi-view co-training approach for the classification of miRNA. Unlike tradi-
tional approaches to miRNA prediction, in this semi-supervised machine learning approach, miRNA classifiers 
are able to learn from both labelled and unlabelled data. By using a multi-view approach, we leverage the fact 
that the task of miRNA prediction can be examined through two independent views: a sequence-based and an 
expression-based view. By applying co-training to miRNA prediction, we are able to significantly boost classifica-
tion performance, as measured using AUPRC, without requiring any costly wet-lab experiments. Using 11 itera-
tions of co-training, the expression-based view of miRNA classification experiences a 15.81% increase on average 
over all data sets, compared to 11.90% for self-training and 4.84% for passive learning. The sequence-based clas-
sifier also experiences an increase of 46.47% across all species on average, where self-training and passive learn-
ing show 39.53% and 29.43% improvements, respectively. Finally, the developed sequence and expression-based 
classifiers are integrated into a final confidence-based combined co-training classifier which shows improved per-
formance compared to each of the individual views. Considering the fact that we are using an absolute minimum 
number of labelled instances for classification (5 positive, 5 negative), these results demonstrate that multi-view 
co-training is a highly effective approach for miRNA classification. This approach is expected to be particularly 
useful in cases where labelled training data are scarce, such as for newly sequenced species that have yet to be 
thoroughly analyzed or annotated through costly wet-lab experiments.

Data Availability
Our method is available at https://github.com/GreenCUBIC/miRNA_MVCT. All datasets are publicly available 
with accession numbers listed in the manuscript.
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