Eur. Phys. J. C (2012) 72:2252 DOI 10.1140/epjc/s10052-012-2252-2 brought to you by

THE EUROPEAN PHYSICAL JOURNAL C

Erratum

Erratum to: Measurement of $D^{*\pm}$ meson production and determination of $F_2^{c\bar{c}}$ at low Q^2 in deep-inelastic scattering at HERA

The H1 Collaboration

F.D. Aaron^{5,h}, C. Alexa⁵, V. Andreev²⁵, S. Backovic³⁰, A. Baghdasaryan³⁸, S. Baghdasaryan³⁸, E. Barrelet²⁹, W. Bartel¹¹, K. Begzsuren³⁵, A. Belousov²⁵, P. Belov¹¹, J.C. Bizot²⁷, M.-O. Boenig⁸, V. Boudry²⁸, I. Bozovic-Jelisavcic², J. Bracinik³, G. Brandt¹¹, M. Brinkmann¹¹, V. Brisson²⁷, D. Britzger¹¹, D. Bruncko¹⁶, A. Bunyatyan^{13,38}, G. Buschhorn^{26,†}, L. Bystritskaya²⁴, A.J. Campbell¹¹, K.B. Cantun Avila²², F. Ceccopieri⁴, K. Cerny³², V. Cerny^{16,g}, V. Chekelian²⁶, J.G. Contreras²², J.A. Coughlan⁶, J. Cvach³¹, J.B. Dainton¹⁸, K. Daum^{37,c}, B. Delcourt²⁷, J. Delvax⁴, E.A. De Wolf⁴, C. Diaconu²¹, M. Dobre^{12,j,k}, V. Dodonov¹³, A. Dossanov²⁶, A. Dubak^{30,f}, G. Eckerlin¹¹, S. Egli³⁶, A. Eliseev²⁵, E. Elsen¹¹, L. Favart⁴, A. Fedotov²⁴, R. Felst¹¹, J. Feltesse¹⁰, J. Ferencei¹⁶, D.-J. Fischer¹¹, M. Fleischer¹¹, A. Fomenko²⁵, E. Gabathuler¹⁸, J. Gayler¹¹, S. Ghazaryan¹¹, A. Glazov¹¹, L. Goerlich⁷, N. Gogitidze²⁵, M. Gouzevitch^{11,e}, C. Grab⁴⁰, A. Grebenyuk¹¹, T. Greenshaw¹⁸, B.R. Grell¹¹, G. Grindhammer²⁶, S. Habib¹¹, D. Haidt¹¹, C. Helebrant¹¹, R.C.W. Henderson¹⁷, E. Hennekemper¹⁵, H. Henschel³⁹, M. Herbst¹⁵, G. Herrera²³, M. Hildebrandt³⁶, K.H. Hiller³⁹, D. Hoffmann²¹, R. Horisberger³⁶, T. Hreus^{4,d}, F. Huber¹⁴, M. Jacquet²⁷, X. Janssen⁴, L. Jönsson²⁰, A.W. Jung¹⁵, H. Jung^{11,4,l}, M. Kapichine⁹, I.R. Kenyon³, C. Kiesling²⁶, M. Klein¹⁸, C. Kleinwort¹¹, T. Kluge¹⁸, R. Kogler¹¹, P. Kostka³⁹, M. Kraemer¹¹, J. Kretzschmar¹⁸, K. Krüger^{15,a}, M.P.J. Landon¹⁹, W. Lange³⁹, G. Laštovička-Medin³⁰, P. Laycock¹⁸, A. Lebedev²⁵, V. Lendermann¹⁵, S. Levonian¹¹, K. Lipka^{11,j}, B. List¹², J. List¹¹, R. Lopez-Fernandez²³, V. Lubimov²⁴, A. Makankine⁹, E. Malinovski²⁵, P. Marage⁴, H.-U. Martyn¹, S.J. Maxfield¹⁸, A. Mehta¹⁸, A.B. Meyer¹¹, H. Meyer³⁷, J. Meyer¹¹, S. Mikocki⁷, I. Milcewicz-Mika⁷, F. Moreau²⁸, A. Morozov⁹, J.V. Morris⁶, M. Mudrinic², K. Müller⁴¹, Th. Naumann³⁹, P.R. Newman³, C. Niebuhr¹¹, D. Nikitin⁹, G. Nowak⁷, K. Nowak¹¹, J.E. Olsson¹¹, D. Ozerov²⁴, P. Pahl¹¹, V. Palichik⁹, I. Panagoulias^{11,b,x}, M. Pandurovic², Th. Papadopoulou^{11,b,x}, C. Pascaud²⁷, G.D. Patel¹⁸, E. Perez^{10,e}, A. Petrukhin¹¹, I. Picuric³⁰, S. Piec¹¹, H. Pirumov¹⁴, D. Pitzl¹¹, R. Plačakytė¹², B. Pokorny³², R. Polifka³², B. Povh¹³, V. Radescu¹⁴, N. Raicevic³⁰, T. Ravdandorj³⁵, P. Reimer³¹, E. Rizvi¹⁹, P. Robmann⁴¹, R. Roosen⁴, A. Rostovtsev²⁴, M. Rotaru⁵, J.E. Ruiz Tabasco²², S. Rusakov²⁵, D. Šálek³², D.P.C. Sankey⁶, M. Sauter¹⁴, E. Sauvan²¹, S. Schmitt¹¹, L. Schoeffel¹⁰, A. Schöning¹⁴, H.-C. Schultz-Coulon¹⁵, F. Sefkow¹¹, L.N. Shtarkov²⁵, S. Shushkevich²⁶, T. Sloan¹⁷, I. Smiljanic², Y. Soloviev²⁵, P. Sopicki⁷, D. South¹¹, V. Spaskov⁹, A. Specka²⁸, Z. Stavkova¹¹, M. Steder¹¹, B. Stella³³, G. Stoicea⁵, U. Straumann⁴¹, T. Sykora^{4,32}, P.D. Thompson³, T. Toll¹¹, T.H. Tran²⁷, D. Traynor¹⁹, P. Truöl⁴¹, I. Tsakov³⁴, B. Tseepeldorj^{35,i}, J. Turnau⁷, K. Urban¹⁵, A. Valkárová³², C. Vallée²¹, P. Van Mechelen⁴, Y. Vazdik²⁵, D. Wegener⁸, E. Wünsch¹¹, J. Žáček³², J. Zálešák³¹, Z. Zhang²⁷, A. Zhokin²⁴, H. Zohrabyan³⁸, F. Zomer²⁷

¹I. Physikalisches Institut der RWTH, Aachen, Germany

²Vinca Institute of Nuclear Sciences, University of Belgrade, 1100 Belgrade, Serbia

- ³School of Physics and Astronomy, University of Birmingham, Birmingham, UKⁿ
- ⁴Inter-University Institute for High Energies ULB-VUB, Brussels and Universiteit Antwerpen, Antwerpen, Belgium^o
- ⁵National Institute for Physics and Nuclear Engineering (NIPNE), Bucharest, Romania⁹
- ⁶Rutherford Appleton Laboratory, Chilton, Didcot, UKⁿ
- ⁷Institute for Nuclear Physics, Cracow, Poland^p
- ⁸Institut für Physik, TU Dortmund, Dortmund, Germany^m
- ⁹Joint Institute for Nuclear Research, Dubna, Russia
- ¹⁰CEA, DSM/Irfu, CE-Saclay, Gif-sur-Yvette, France
- ¹¹DESY, Hamburg, Germany

- ¹³Max-Planck-Institut für Kernphysik, Heidelberg, Germany
- ¹⁴Physikalisches Institut, Universität Heidelberg, Heidelberg, Germany^m
- ¹⁵Kirchhoff-Institut für Physik, Universität Heidelberg, Heidelberg, Germany^m
- ¹⁶Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovak Republic^r

¹²Institut für Experimentalphysik, Universität Hamburg, Hamburg, Germany^m

- ¹⁷Department of Physics, University of Lancaster, Lancaster, UKⁿ
- ¹⁸Department of Physics, University of Liverpool, Liverpool, UKⁿ
- ¹⁹Queen Mary and Westfield College, London, UKⁿ
- ²⁰Physics Department, University of Lund, Lund, Sweden^s
- ²¹CPPM, Aix-Marseille Université, CNRS/IN2P3, 13288 Marseille, France
- ²²Departamento de Fisica Aplicada, CINVESTAV, Mérida, Yucatán, México^v
- ²³Departamento de Fisica, CINVESTAV IPN, México City, México^v
- ²⁴Institute for Theoretical and Experimental Physics, Moscow, Russia^w
- ²⁵Lebedev Physical Institute, Moscow, Russia^q
- ²⁶Max-Planck-Institut für Physik, München, Germany
- ²⁷LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France
- ²⁸LLR, Ecole Polytechnique, CNRS/IN2P3, Palaiseau, France
- ²⁹LPNHE, Université Pierre et Marie Curie Paris 6, Université Denis Diderot Paris 7, CNRS/IN2P3, Paris, France
- ³⁰Faculty of Science, University of Montenegro, Podgorica, Montenegro²
- ³¹Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic^t
- ³²Faculty of Mathematics and Physics, Charles University, Praha, Czech Republic^t
- ³³Dipartimento di Fisica Università di Roma Tre and INFN Roma 3, Roma, Italy
- ³⁴Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria⁴
- ³⁵Institute of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia
- ³⁶Paul Scherrer Institut, Villigen, Switzerland
- ³⁷Fachbereich C, Universität Wuppertal, Wuppertal, Germany
- ³⁸Yerevan Physics Institute, Yerevan, Armenia
- ³⁹DESY, Zeuthen, Germany
- ⁴⁰Institut für Teilchenphysik, ETH, Zürich, Switzerland^u
- ⁴¹Physik-Institut der Universität Zürich, Zürich, Switzerland^u

Received: 19 October 2012 / Revised: 22 November 2012 / Published online: 14 December 2012 © The Author(s) 2012. This article is published with open access at Springerlink.com

Erratum to: Eur. Phys. J. C (2011) 71:1769 DOI 10.1140/epjc/s10052-011-1769-0

In the extraction of the charm contribution $F_2^{c\bar{c}}$ to the proton structure function F_2 in our recent publication [1], we have not properly taken into account the running of the electromagnetic coupling α_{em} . The measured cross sections were corrected to the Born level for QED radiation, but not for the running of α_{em} . This was not taken properly into account in the extraction of $F_2^{c\bar{c}}$.

The online version of the original article can be found under doi:10.1140/epjc/s10052-011-1769-0.

^a e-mail: kruegerk@mail.desy.de

^bAlso at Physics Department, National Technical University, Zografou Campus, GR-15773 Athens, Greece.

^cAlso at Rechenzentrum, Universität Wuppertal, Wuppertal, Germany.

^dAlso at University of P.J. Šafárik, Košice, Slovak Republic.

eAlso at CERN, Geneva, Switzerland.

^fAlso at Max-Planck-Institut für Physik, München, Germany.

^gAlso at Comenius University, Bratislava, Slovak Republic.

^hAlso at Faculty of Physics, University of Bucharest, Bucharest, Romania.

ⁱAlso at Ulaanbaatar University, Ulaanbaatar, Mongolia.

^jSupported by the Initiative and Networking Fund of the Helmholtz Association (HGF) under the contract VH-NG-401.

^kAbsent on leave from NIPNE-HH, Bucharest, Romania.

¹On leave of absence at CERN, Geneva, Switzerland.

^mSupported by the Bundesministerium für Bildung und Forschung, FRG, under contract numbers 05H09GUF, 05H09VHC, 05H09VHF, 05H16PEA.

ⁿSupported by the UK Science and Technology Facilities Council, and formerly by the UK Particle Physics and Astronomy Research Council. ^oSupported by FNRS-FWO-Vlaanderen, IISN-IIKW and IWT and by Interuniversity Attraction Poles Programme, Belgian Science Policy.

^pPartially Supported by Polish Ministry of Science and Higher Education, grant DPN/N168/DESY/2009.

^qSupported by the Deutsche Forschungsgemeinschaft.

^rSupported by VEGA SR grant no. 2/7062/27.

^sSupported by the Swedish Natural Science Research Council.

^tSupported by the Ministry of Education of the Czech Republic under the projects LC527, INGO-LA09042 and MSM0021620859.

^uSupported by the Swiss National Science Foundation.

^vSupported by CONACYT, México, grant 48778-F.

^wRussian Foundation for Basic Research (RFBR), grant no. 1329.2008.2 and Rosatom.

^xThis project is co-funded by the European Social Fund (75%) and National Resources (25%) - (EPEAEK II) - PYTHAGORAS II.

^ySupported by the Romanian National Authority for Scientific Research under the contract PN 09370101.

^zPartially Supported by Ministry of Science of Montenegro, no. 05-1/3-3352.

[†]Deceased.

Fig. 1 Extrapolation factors from the visible phase space to the total phase space for the D^* meson as determined from HVQDIS and CASCADE. The error bars show the extrapolation uncertainty which is determined by varying the theory parameters listed in Tables 1 and 2 of [1]

In addition, the cross-section predictions of the CAS-CADE program were calculated with fixed α_{em} . The cross section in the visible range calculated with running α_{em} is 5.63 nb (instead of 5.09 nb given in [1]). The conclusions on the description of the data by CASCADE are unchanged. The extrapolation factors, defined as the ratios of the full cross section σ_{full}^{theo} to the cross section σ_{vis}^{theo} in the visible phase space of the D^* meson, are changed slightly. In the determination of the uncertainties of the CASCADE extrapolation factors, an inconsistent proton parton distribution function (PDF) was used in [1] for the factorisation scale variation. Using the correct PDF set leads to reduced uncertainties of the extrapolation factors. The amended values are shown in Fig. 1, which replaces Fig. 15 of [1].

The amended values of $F_2^{c\bar{c}}$ extracted from measured $D^{*\pm}$ cross sections with the HVQDIS program and with

Fig. 2 $F_2^{c\bar{c}}$ as derived from D^* data with HVQDIS (*points*). The inner error bars show the statistical uncertainty, the outer error bar the statistical and experimental systematic uncertainty added in quadrature. The extrapolation uncertainty within the HVQDIS model is shown as a *blue band* in the bottom of the plots. The outer (*orange*) band shows the model uncertainty obtained from the difference in $F_2^{c\bar{c}}$ determined with HVQDIS and CASCADE. The data are compared to the measurement of $F_2^{c\bar{c}}$ with the H1 vertex detector [2] (*open squares*), to NLO DGLAP predictions from HVQDIS with two different proton PDFs, and to the $F_2^{c\bar{c}}$ prediction of HERAPDF1.0

the CASCADE program are lower by about 6 up to 11% as compared to [1]. The corrected values of $F_2^{c\bar{c}}$ and its uncertainties are given in Table 1, which replaces Table 11 of [1]. The amended $F_2^{c\bar{c}}$ values are compared to a measurement based on lifetime information determined with the H1 silicon vertex detector [2] and with theoretical predictions in Figs. 2, 3 and 4, which replace Figs. 16, 17 and 18 of [1], respectively.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Table 1 $F_2^{c\bar{c}}$ in bins of Q^2 and *x* extracted from measured D^* cross sections with two different programs, HVQDIS and CASCADE. The extrapolation uncertainty δ_{ext} is determined by varying model parameters within a program. The statistical (δ_{stat}) and systematic (δ_{syst}) uncertainties arise from the determination of the D^* cross section and are the same for both programs

Q^2 [GeV ²]	x	HVQDIS		δ _{stat} [%]	δ _{svst} [%]	CASCADE	
		$F_2^{c\bar{c}}$	δ _{ext} [%]		-,	$F_2^{c\bar{c}}$	δ _{ext} [%]
6.5	$1.3 imes 10^{-4}$	0.2036	$\pm^{8.5}_{8.7}$	±6.7	$\pm^{8.1}_{7.6}$	0.1750	$\pm^{13.1}_{13.9}$
6.5	$3.2 imes 10^{-4}$	0.1497	$\pm^{4.3}_{3.2}$	±5.5	$\pm^{8.1}_{7.6}$	0.1364	$\pm^{7.5}_{8.3}$
6.5	$5.0 imes 10^{-4}$	0.1446	$\pm^{4.2}_{4.5}$	±5.4	$\pm^{7.2}_{7.2}$	0.1305	$\pm^{7.2}_{7.3}$
6.5	$8.0 imes 10^{-4}$	0.0979	$\pm^{5.7}_{3.4}$	± 8.1	$\pm^{7.4}_{7.0}$	0.0925	$\pm^{4.8}_{5.2}$
6.5	$2.0 imes 10^{-3}$	0.0698	$\pm^{10.8}_{7.2}$	± 8.6	$\pm^{9.8}_{10.5}$	0.0812	$\pm^{2.4}_{3.1}$
12.0	3.2×10^{-4}	0.2711	$\pm^{8.7}_{5.6}$	±7.7	$\pm^{7.9}_{7.6}$	0.2368	$\pm^{10.0}_{10.5}$
12.0	$5.0 imes 10^{-4}$	0.2009	$\pm^{3.1}_{2.9}$	±6.6	$\pm^{7.2}_{7.0}$	0.1799	$\pm^{4.7}_{4.6}$
12.0	$8.0 imes 10^{-4}$	0.1605	$\pm^{4.6}_{2.3}$	±7.8	$\pm^{7.3}_{7.4}$	0.1462	$\pm^{3.7}_{4.0}$
12.0	$2.0 imes 10^{-3}$	0.1149	$\pm^{6.1}_{3.5}$	± 8.9	$\pm^{7.6}_{7.8}$	0.1093	$\pm^{2.2}_{2.1}$
12.0	3.2×10^{-3}	0.0732	$\pm^{11.6}_{7.4}$	±12.0	$\pm^{9.3}_{10.2}$	0.0890	$\pm^{2.4}_{5.5}$
20.0	$5.0 imes 10^{-4}$	0.3019	$\pm^{4.6}_{5.0}$	± 8.8	$\pm^{9.0}_{8.7}$	0.2664	$\pm^{6.9}_{7.0}$
20.0	$8.0 imes 10^{-4}$	0.2730	$\pm^{3.8}_{2.1}$	±6.1	$\pm^{7.1}_{7.4}$	0.2538	$\pm^{3.4}_{3.7}$
20.0	$1.3 imes 10^{-3}$	0.2007	$\pm^{4.0}_{2.9}$	± 8.0	$\pm^{8.4}_{8.1}$	0.1908	$\pm^{1.5}_{1.8}$
20.0	3.2×10^{-3}	0.1283	$\pm^{5.3}_{3.5}$	±9.3	$\pm^{7.0}_{7.5}$	0.1261	$\pm^{1.7}_{1.7}$
20.0	$5.0 imes 10^{-3}$	0.0970	$\pm^{13.6}_{6.0}$	±12.5	$\pm^{11.7}_{11.1}$	0.1214	$\pm^{2.9}_{3.2}$
35.0	$8.0 imes 10^{-4}$	0.3690	$\pm^{3.6}_{3.0}$	±8.3	$\pm^{8.2}_{8.0}$	0.3247	$\pm^{5.0}_{5.0}$
35.0	$1.3 imes 10^{-3}$	0.2993	$\pm^{2.8}_{2.4}$	±6.7	$\pm^{7.0}_{7.3}$	0.2735	$\pm^{2.5}_{2.8}$
35.0	3.2×10^{-3}	0.1894	$\pm^{3.7}_{2.4}$	± 8.5	$\pm^{7.7}_{7.6}$	0.1767	$\pm^{2.1}_{2.3}$
35.0	$5.0 imes 10^{-3}$	0.1516	$\pm^{4.2}_{2.7}$	±9.9	$\pm^{8.4}_{8.6}$	0.1445	$\pm^{1.2}_{1.3}$
35.0	$8.0 imes 10^{-3}$	0.0799	$\pm^{11.2}_{6.5}$	±14.9	$\pm^{11.8}_{10.5}$	0.1046	$\pm^{4.1}_{3.6}$
60.0	$1.3 imes 10^{-3}$	0.3659	$\pm^{2.8}_{1.5}$	±11.3	$\pm^{8.2}_{8.2}$	0.3227	$\pm^{2.4}_{2.4}$
60.0	3.2×10^{-3}	0.2843	$\pm^{3.4}_{1.3}$	±9.5	$\pm^{8.1}_{7.7}$	0.2613	$\pm^{1.9}_{1.8}$
60.0	$5.0 imes 10^{-3}$	0.1748	$\pm^{3.5}_{2.6}$	±13.2	$\pm^{8.2}_{7.7}$	0.1551	$\pm^{1.7}_{1.6}$
60.0	$8.0 imes 10^{-3}$	0.1326	$\pm^{5.5}_{1.4}$	±17.9	$\pm^{7.9}_{8.0}$	0.1259	$\pm^{2.4}_{2.3}$
60.0	$2.0 imes 10^{-2}$	0.0484	$\pm^{10.9}_{6.8}$	±56.4	$\pm^{10.3}_{13.2}$	0.0687	$\pm_{6.5}^{}$

Fig. 3 $F_2^{c\bar{c}}$ as derived from D^* data with HVQDIS (*points*). The inner error bars show the statistical uncertainty, the outer error bars the statistical and experimental systematic uncertainty added in quadrature. The extrapolation uncertainty within the HVQDIS model is shown as a blue band in the *bottom* of the plots. The outer (*orange*) band shows the model uncertainty obtained from the difference in $F_2^{c\bar{c}}$ determined with HVQDIS and CASCADE. The data are compared to the measurement of $F_2^{c\bar{c}}$ with the H1 vertex detector [2] (*open squares*) and to predictions from the global PDF fits CT10 (*dashed line*), MSTW08 at NNLO (*dark dashed-dotted line*), NNPDF2.1 (*shaded band*) and ABKM (*light dashed-dotted line*)

Fig. 4 $F_2^{c\bar{c}}$ as a function of Q^2 for different *x*, as derived from D^* data with HVQDIS (*points*). The inner error bars show the statistical uncertainty, the outer error bar the total uncertainty, including statistical, experimental systematic, extrapolation and model uncertainty added in quadrature. The data are compared to the measurement of $F_2^{c\bar{c}}$ with the H1 vertex detector [2] (*open squares*), to NLO DGLAP predictions from HVQDIS with two different proton PDFs, and to the $F_2^{c\bar{c}}$ prediction of HERAPDF1.0

References

- F.D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 71, 1769 (2011). arXiv:1106.1028
- F.D. Aaron et al. (H1 Collaboration), Eur. Phys. J. C 65, 89 (2010). arXiv:0907.2643