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a b s t r a c t

It was shown that numerous (known and new) results involving various special functions,
such as the Hurwitz and Lerch zeta functions and Legendre chi function, could be
established in a simple, general and unified manner. In this way, among others, we
recovered the Wang and Williams–Zhang generalizations of the classical Eisenstein
summation formula and obtained their previously unknown companion formulae.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

In a recent paper by Cvijović and Srivastava [1] it was shown that numerous (known or new) results involving various
special functions, such as the Hurwitz zeta function, Lerch zeta function and Legendre chi function, could be established in
a more general context. The main objective of this sequel is to consider, in a general and unified manner, other seemingly
disparate and widely scattered results of this type [2–9], like, for instance, the Wang and Williams–Zhang generalizations
of the classical Eisenstein summation formula. In doing so, we have obtained several new results.
The Bernoulli polynomials and numbers, Bn(x) and Bn, are defined by ([5, p. 59]; for generalizations, see [10,11]):

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π) and Bn := Bn(0) (n ∈ N0 := N ∪ 0; N := {1, 2, 3, . . .}).

The Hurwitz and Riemann zeta functions are given by [5, p. 88 et seq.]:

ζ (s, a) :=
∞∑
n=0

1
(n+a)s and ζ (s) = ζ (s, 1) (a 6∈ Z−0 := {0,−1,−2,−3, . . .}; <(s) > 1). (1.1)

We also use the Lerch (or periodic) zeta function [5, p. 89]:

`s(ξ) :=

∞∑
n=1

e2nπ iξ

ns
(i :=
√
−1; ξ ∈ R; <(s) > 1) (1.2)

E-mail address: djurdje@vinca.rs.

0898-1221/$ – see front matter© 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.camwa.2010.01.026

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/226781841?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
mailto:djurdje@vinca.rs
http://dx.doi.org/10.1016/j.camwa.2010.01.026


D. Cvijović / Computers and Mathematics with Applications 59 (2010) 1484–1490 1485

and the Legendre chi χs(z) (see, for instance, [12]):

χs(z) :=
∞∑
n=0

z2n+1

(2n+ 1)s
(|z| ≤ 1; <(s) > 1). (1.3)

It should be kept in mind that the functions given by (1.1)–(1.3) may be extended by analytic continuation on s. The
Hurwitz and Riemann zeta functions, ζ (s, a) and ζ (s), are meromorphic in s ∈ C, with a sole simple pole at s = 1. If ξ is not
an integer, `s(ξ) is an entire function in s ∈ C, and for an integer ξ it reduces to ζ (s). Similarly, the Legendre chi function
χs(z) is meromorphic with simple pole at s = 1.

2. Statement of main results

Note that, throughout the text, we set an empty sum to be zero and it is assumed that n, p, q and r are positive integers.
Our main results are as follows.

Theorem 1. In terms of the Bernoulli polynomials and the Lerch zeta function, Bn(x) and `s(ξ), we have:

− qn−1
1
n
Bn

(
p
q

)
=
1
q

q∑
r=1

`1−n

(
r
q

)
e−

2π irp
q (p = 1, . . . , q), (2.1)

and

`1−n

(
r
q

)
= −qn−1

1
n

q∑
p=1

Bn

(
p
q

)
e
2π ipr
q (r = 1, . . . , q). (2.2)

Corollary 1A. We have:

1
2
− qB1

(
p
q

)
=

q−1∑
r=1

e−
2π irp
q

[
−
1
2
+
i
2
cot

(
πr
q

)]
(p = 1, . . . , q) (2.3)

and

1
2
−
i
2
cot

(
πr
q

)
=

q∑
p=1

e
2π ipr
q B1

(
p
q

)
(r = 1, . . . , q− 1). (2.4)

Corollary 1B. If n ≥ 2, then, in terms of the Bernoulli polynomials and the derivatives of the cotangent function, we have:

1
n

[
Bn − qnBn

(
p
q

)]
=

i
2(2π i)n−1

q−1∑
r=1

e−
2π irp
q
dn−1

dξ n−1
cot(πξ)

∣∣∣∣
ξ=r/q

(p = 1, . . . , q), (2.5)

and

i
2(2π i)n−1

dn−1

dξ n−1
cot(πξ)

∣∣∣∣
ξ=r/q
= −qn−1

1
n

q∑
p=1

e
2π ipr
q Bn

(
p
q

)
(r = 1, . . . , q− 1). (2.6)

Remark 1 (Eisenstein Summation Formula). Observe that, since B1(x) = x− 1
2 , the formula (2.3) is equivalent to

q−1∑
r=1

sin
(
2πrp
q

)
cot

(
πr
q

)
= −2qB1

(
p
q

)
= q− 2p (p = 1, . . . , q), (2.3∗)

which is the classical Eisenstein summation formula (see, for instance, [6, p. 360, Eq. (1.8)]), so that the sums in (2.1) as well
as in (2.5) can be seen as its generalization.

Remark 2 (Wang Sums). The formula (2.1), bymeans of (3.5) in conjunctionwith `s(1) = ζ (s), could be rewritten as follows:

q−1∑
r=1

`1−n

(
r
q

)
e−

2π irp
q =

1
n

[
Bn − qnBn

(
p
q

)]
(p = 1, . . . , q). (2.1∗)
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In addition, in view of the fact that B2n+1 = 0, it is clear that (2.5) could be written in the form:

q−1∑
r=1

cos
(
2πrp
q

)
d2n−1

dξ 2n−1
cot(πξ)

∣∣∣∣
ξ=r/q
= (−1)n

(2π)2n−1

n

[
q2nB2n

(
p
q

)
− B2n

]
(p = 1, . . . , q) (2.5∗a)

and
q−1∑
r=1

sin
(
2πrp
q

)
d2n

dξ 2n
cot(πξ)

∣∣∣∣
ξ=r/q
= (−1)n−1

2(2π)2n

2n+ 1
q2n+1B2n+1

(
p
q

)
(p = 1, . . . , q− 1). (2.5∗b)

Observe that our formulae (2.1), (2.3) and (2.5), in the form given by (2.1∗), (2.3∗), (2.5∗a) and (2.5∗b), were established by
Wang [3, p. 12, Theorems D and C].

Theorem 2. In terms of the Bernoulli polynomials and the Legendre chi function, Bn(x) and χs(z), we have:

− (2q)n−1
1
n
Bn

(
2p− 1
2q

)
=
1
q

q∑
r=1

χ1−n

(
e
π ir
q
)
e−

π ir(2p−1)
q (p = 1, . . . , q), (2.7)

and

χ1−n

(
e
π ir
q
)
= −(2q)n−1

1
n

q∑
p=1

Bn

(
2p− 1
2q

)
e
π i(2p−1)r

q (r = 1, . . . , q). (2.8)

Corollary 2. In terms of the Bernoulli polynomials and the derivatives of the cosecant function, we have:

1
n

[
Bn

(
1
2

)
− qnBn

(
2p− 1
2q

)]
=

i
2(2π i)n−1

q−1∑
r=1

e−
π ir(2p−1)

q
dn−1

dξ n−1
csc(πξ)

∣∣∣∣
ξ=r/q

(p = 1, . . . , q), (2.9)

and

i
2(2π i)n−1

dn−1

dξ n−1
csc(πξ)

∣∣∣∣
ξ=r/q
= −qn−1

1
n

q∑
p=1

e
π i(2p−1)r

q Bn

(
2p− 1
2q

)
(r = 1, . . . , q− 1). (2.10)

Remark 3 (Trigonometric Derivative Formulae). Observe that the derivative formulae given in (2.6) and (2.10) above were
recently derived by Cvijović (see [8, Theorem] and [9, Theorem 1 and Remark 1]). The formula (2.6) could be written in the
form below:

d2n−1 cot(πξ)
dξ 2n−1

∣∣∣∣
ξ=r/q
=
(−1)n(2qπ)2n−1

n

q∑
p=1

B2n

(
p
q

)
cos

(
2pπr
q

)
(2.6∗a)

and

d2n cot(πξ)
dξ 2n

∣∣∣∣
ξ=r/q
=
(−1)n−12(2qπ)2n

2n+ 1

q∑
p=1

B2n+1

(
p
q

)
sin
(
2pπr
q

)
. (2.6∗b)

Similarly, starting from (2.10), we obtain:

d2n−1 csc(πξ)
dξ 2n−1

∣∣∣∣
ξ=r/q
=
(−1)n(2qπ)2n−1

n

q∑
p=1

B2n

(
2p− 1
2q

)
cos

(
πr(2p− 1)

q

)
(2.10∗a)

and

d2n csc(πξ)
dξ 2n

∣∣∣∣
ξ=r/q
=
(−1)n−12(2qπ)2n

2n+ 1

q∑
p=1

B2n+1

(
2p− 1
2q

)
sin
(
πr(2p− 1)

q

)
. (2.10∗b)

Remark 4 (New Sums). Clearly, the formulae contained in our Theorem 2 and Corollary 2 may be seen as companions to
those in Theorem 1 and Corollaries 1A and 1B. Thus, the following finite sum

q−1∑
r=1

χ1−n

(
e
π ir
q
)
e−

π ir(2p−1)
q =

2n−1

n

[
Bn

(
1
2

)
− qnBn

(
2p− 1
2q

)]
(p = 1, . . . , q), (2.7∗)
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which is obtained from (2.7) by making use of (3.5), (1.1) and χs(1) = (1− 2−s)ζ (s), as well as

q−1∑
r=1

cos
(
πr(2p− 1)

q

)
d2n−1

dξ 2n−1
csc(πξ)

∣∣∣∣
ξ=r/q

= (−1)n
(2π)2n−1

n

[
q2nB2n

(
2p− 1
2q

)
− B2n

(
1
2

)]
(p = 1, . . . , q) (2.9∗a)

and
q−1∑
r=1

sin
(
πr(2p− 1)

q

)
d2n

dξ 2n
csc(πξ)

∣∣∣∣
ξ=r/q

= (−1)n−1
2(2π)2n

2n+ 1
q2n+1B2n+1

(
2p− 1
2q

)
(p = 1, . . . , q− 1) (2.9∗b)

are the previously unknown companions to the Wang sums (see Remark 2).

3. Proof of the results

Proof of Theorems 1 and 2. Our proofs of Theorems 1 and 2 are based on the following two discrete Fourier transformpairs
valid for any complex swith s 6= 1.
The first pair is given by

ζ

(
s,
p
q

)
=
1
q

q∑
r=1

qs`s

(
r
q

)
e−

2π irp
q (p = 1, . . . , q) (3.1)

and

`s

(
r
q

)
=
1
qs

q∑
p=1

ζ

(
s,
p
q

)
e
2π ipr
q (r = 1, . . . , q), (3.2)

where ζ (s, a) and `s(ξ) are theHurwitz and Lerch zeta functions,while the Legendre chi functionχs(z) and ζ (s, a) constitute
the second pair

ζ

(
s,
2p− 1
2q

)
=
1
q

q∑
r=1

(2q)sχs
(
e
π ir
q
)
e−

2π i(2r−1)p
q (p = 1, . . . , q) (3.3)

and

χs

(
e
π ir
q
)
=

1
(2q)s

q∑
p=1

ζ

(
s,
2p− 1
2q

)
e
2π i(2p−1)r

q (r = 1, . . . , q). (3.4)

We first show that (3.1)–(3.4) holds true for the case when<(s) > 1. Indeed, for<(s) > 1, from (1.3) we obtain

`s

(
r
q

)
=

∞∑
k=0

e2π i(k+1)p/q

(k+ 1)s
=

q−1∑
r=0

∞∑
k=0

e2π ikpe2π i(r+1)p/q

qs(k+ (r + 1)/q)s

so that, in view of the definition of the Hurwitz zeta function in (1.1), we have (3.2). Similarly, when<(s) > 1, the formula
(3.4) follows immediately from (1.3). Next, we establish the formulae (3.1) and (3.3) by employing the Fourier inversion
theorem.
Secondwe shall show that the above-given formulae remain valid<(s) ≤ 1, s 6= 1. To do so, observe that (3.1)–(3.4)may

be extended by analytic continuation on s as far as possible. It is well known that the Hurwitz and Riemann zeta functions,
ζ (s, a) and ζ (s), are meromorphic in s ∈ C, with a sole simple pole at s = 1. If ξ is not an integer, `s(ξ) is an entire function
in s ∈ C, and for an integer ξ it reduces to ζ (s). Similarly, the Legendre chi function χs(z) is meromorphic with simple pole
at s = 1. We thus conclude that the formulae (3.1)–(3.4) hold true for any complex s, s 6= 1.
Finally, in view of the known relation [5, p. 85, Eq. (17)]

ζ (1− n, a) = −
1
n
Bn(a) (n ∈ N), (3.5)

the proposed formulae (2.1) and (2.2) aswell as (2.5) and (2.6) follow upon noting that (3.1)–(3.4) are valid for s = 1−n (n ∈
N). �
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Proof of Corollaries 1A, 1B and 2. First, note that (2.1) and (2.7) could be rewritten in the form given by (2.1∗) and (2.7∗).
Next, we shall show that

`0(ξ) = −
1
2
+
i
2
cot(πξ), `1−n(ξ) =

i
2(2π i)n−1

dn−1

dξ n−1
cot(πξ) (ξ ∈ R \ Z; n ∈ N \ {1}) (3.6)

and

χ1−n(eπ iξ ) =
i

2(π i)n−1
dn−1

dξ n−1
csc(πξ) (ξ ∈ R \ Z; n ∈ N). (3.7)

To prove (3.6) note that

∂

∂ξ
`s(ξ) = 2π i`s−1(ξ), (3.8)

which, in turn, follows from (1.2) for <(s) > 2 and by analytic continuation for all s. The definition in (1.2) also yields
`1(ξ) = − log(1− e2π iξ )(ξ ∈ R \ Z) and we from this obtain `0(ξ) by (3.8). Using (3.8) repeatedly with initial value `0(ξ)
leads to the expression in (3.6) for `1−n(ξ).
Likewise, we have (3.7) by making use of

∂

∂ξ
χs(eπ iξ ) = π iχs−1(eπ iξ )

and

χ0(eπ iξ ) =
i
2
csc(πξ) (ξ ∈ R \ Z).

Lastly, upon substituting the obtained formula for `1−n(ξ) (`0(ξ)) given by (3.6) into (2.1∗) and (2.2) we arrive at the
proposed assertions of Corollary 1A (Corollary 1B). In similar manner, by (3.7), (2.7∗) and (2.8), we prove Corollary 2. �

4. Additional results

We begin this section by listing several first values of `−n(ξ).

Examples 1. In view of (3.6) we have (cf. [2, p. 227]):

`−1(ξ) = −
1
4

[
1+ cot2(πξ)

]
,

`−2(ξ) = −
i
8

[
2 cot(πξ)+ 2 cot3(πξ)

]
,

`−3(ξ) =
1
16

[
2+ 8 cot2(πξ)+ 6 cot4(πξ)

]
,

`−4(ξ) =
i
32

[
16 cot(πξ)+ 40 cot3(πξ)+ 24 cot5(πξ)

]
,

`−5(ξ) = −
1
64

[
16+ 136 cot2(πξ)+ 240 cot4(πξ)+ 120 cot6(πξ)

]
,

`−6(ξ) = −
i
128

[
272 cot(πξ)+ 1232 cot3(πξ)+ 1680 cot5(πξ)+ 720 cot7(πξ)

]
,

`−7(ξ) = −
1
256

[
272− 3968 cot2(πξ)− 12 096 cot4(πξ)− 13 440 cot6(πξ)− 5040 cot8(πξ)

]
,

`−8(ξ) = −
i
512

[
7936 cot(πξ)+ 56 320 cot3(πξ)+ 129 024 cot5(πξ)+ 120 960 cot7(πξ)+ 40 320 cot9(πξ)

]
.

Remark 5 (Williams–Zhang Sums). It is easily seen that, upon examining Examples 1, the left-hand side of the Wang sums
(2.1∗) with values of `1−n(ξ), n ≥ 2, from Examples 1 takes two different forms depending on parity of n: in the case of
even n it becomes a linear combination of C2k(q, p)(k = 0, . . . , bn/2c), while for odd n, n ≥ 3, it is a linear combination of
S2k+1(q, p)(k = 0, . . . , bn/2c), where C2k(q, p) and S2k+1(q, p) are the following sums

C2k(q, p) =
q−1∑
r=1

cos
(
2rπp
q

)
cot2k

(
rπ
q

)
(4.1)
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and

S2k+1(q, p) =
q−1∑
r=1

sin
(
2rπp
q

)
cot2k+1

(
rπ
q

)
. (4.2)

Williams and Zhang ([4]; see also [7]) generalized the Eisenstein sum (2.3∗) by summing the trigonometric sums in (4.1)
and (4.2), C2k(q, p), k ≥ 1, and S2k+1(q, p), k ≥ 0. It follows from this analysis that theWilliams–Zhang sums can be recovered
from the Wang sums (2.1∗) in conjunction with (3.6). All that is needed is to know that C0(q, p) = −1 and that S1(q, p) is
the Eisenstein sum given in (2.3∗). Thus, we obtain:

C2(q, p) =
2
3
+ 2q2B2

(
p
q

)
,

S3(q, p) = 2qB1

(
p
q

)
+
4
3
q3B3

(
p
q

)
,

C4(q, p) = −
26
45
−
8
3
q2B2

(
p
q

)
−
2
3
q4B4

(
p
q

)
,

S5(q, p) = −2qB1

(
p
q

)
−
20
9
q3B3

(
p
q

)
−
4
15
q5B5

(
p
q

)
,

C6(q, p) =
502
945
+
46
15
q2B2

(
p
q

)
+
4
3
q4B4

(
p
q

)
+
4
45
q6B6

(
p
q

)
,

S7(q, p) = 2qB1

(
p
q

)
+
392
135
q3B3

(
p
q

)
+
28
45
q5B5

(
p
q

)
+
8
315
q7B7

(
p
q

)
,

C8(q, p) = −
7102
14 175

−
352
105
q2B2

(
p
q

)
−
88
45
q4B4

(
p
q

)
−
32
135
q6B6

(
p
q

)
−
2
315
q8B8

(
p
q

)
.

Examples 2. In view of (3.7) we have:

χ−1(eπ iξ ) = −
1
2
cot(πξ) csc(πξ),

χ−2(eπ iξ ) = −
i
2

[
csc(πξ)+ 2 cot2(πξ) csc(πξ)

]
,

χ−3(eπ iξ ) =
1
2

[
5 cot(πξ) csc(πξ)+ 6 cot3(πξ) csc(πξ)

]
,

χ−4(eπ iξ ) =
i
2

[
5 csc(πξ)+ 28 cot2(πξ) csc(πξ)+ 24 cot4(πξ) csc(πξ)

]
,

χ−5(eπ iξ ) = −
1
2

[
61 cot(πξ) csc(πξ)+ 180 cot3(πξ) csc(πξ)+ 120 cot(πξ)5 csc(πξ)

]
,

χ−6(eπ iξ ) = −
i
2

[
61 csc(πξ)+ 662 cot2(πξ) csc(πξ)+ 1320 cot(πξ)4 csc(πξ)+ 720 cot6(πξ) csc(πξ)

]
.

Remark 6 (NewSums). By analysis analogous to that in Remark 5, bymakinguse of (2.7∗) and (3.7),we arrive at the following
(presumably) new summation formulae

S0(q, p) = −2qB1

(
2p− 1
2q

)
,

C1(q, p) = −2B2

(
1
2

)
+ 2q2B2

(
2p− 1
2q

)
,

S2(q, p) = qB1

(
2p− 1
2q

)
+
4
3
q3B3

(
2p− 1
2q

)
,

C3(q, p) =
5
3
B2

(
1
2

)
+
2
3
B4

(
1
2

)
−
5
3
q2B2

(
2p− 1
2q

)
−
2
3
q4B4

(
2p− 1
2q

)
,

S4(q, p) = −
3
4
qB1

(
2p− 1
2q

)
−
14
9
q3B3

(
2p− 1
2q

)
−
4
15
q5B5

(
2p− 1
2q

)
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C5(q, p) = −
89
60
B2

(
1
2

)
− B4

(
1
2

)
−
4
45
B6

(
1
2

)
+
89
60
q2B2

(
2p− 1
2q

)
+ q4B4

(
2p− 1
2q

)
+
4
45
q6B6

(
2p− 1
2q

)
,

S6(q, p) =
5
8
qB1

(
2p− 1
2q

)
+
439
270
q3B3

(
2p− 1
2q

)
+
22
45
q5B5

(
2p− 1
2q

)
+
8
315
q7B7

(
2p− 1
2q

)
,

where

S2k(q, p) =
q−1∑
r=1

sin
(
rπ(2p− 1)

q

)
cot2k

(
rπ
q

)
csc
(
rπ
q

)
(4.3)

and

C2k+1(q, p) =
q−1∑
r=1

cos
(
rπ(2p− 1)

q

)
cot2k+1

(
rπ
q

)
csc
(
rπ
q

)
. (4.4)
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