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1. Introduction and preliminaries

It is quite remarkable that, with exception of the sine and cosine function, very few integrals of other trigonometric
functions can be found in the literature. For the sake of illustration, we note that in Section 2.5.26 of the standard reference
text by Prudnikov et al. [11, pp. 436–438], among not more than half a dozen definite cotangent integrals, each of the
following moments:

In =
π/2∫
0

xn cot x dx =
(

π

2

)n
(

1

n
− 2

∞∑
k=1

ζ(2k)

22k(n + 2k)

)
(n ∈ N) (1.1)

and

Jn =
π/4∫
0

xn cot x dx = 1

2

(
π

4

)n
(

2

n
−

∞∑
k=1

ζ(2k)

42k−1(n + 2k)

)
(n ∈ N), (1.2)

N := {1,2,3, . . .} being the set of natural numbers, is listed as the most general (see also [9, p. 456, Section 3.748]). More-
over, it has turned out that all these tabulated integrals are classical results and they were already recorded as long ago
as 1867 [2, pp. 306–310, Tables 204–206] and 1891 [10, Tables 204–206]. Similarly, there are not many available tangent,
cosecant and secant integrals, and almost all of the known ones are the nineteenth century results.
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In recent years, several general families of definite integrals involving the tangent or secant function have been evaluated
in closed form by making use of some elementary arguments (see, for details, [7]). In this sequel, four classes of the
trigonometric moment integrals (i.e., the cotangent, tangent, cosecant and secant moment integrals) are evaluated in closed
form by applying the contour integration method in conjunction with the Cauchy integral theorem. In all cases, closed
contour (introduced by Cho et al. [3]) of the same shape is used and it is shown that the integrals are expressible only in
terms of the Hurwitz zeta function and elementary functions. In addition, several interesting (known or new) special cases
and consequences of our main results are also considered.

The Hurwitz (or generalized) zeta function ζ(s,a) is an analytic function of s in the whole complex s-plane (except for a
simple pole at s = 1) and is defined by the following series [12, p. 88, Eq. (1)]:

ζ(s,a) =
∞∑

k=0

1

(k + a)s

(�(s) > 1; a �= 0,−1,−2, . . .
)
, (1.3)

whenever it converges and (by analytic continuation) elsewhere.
The Riemann zeta function ζ(s) is a special case of the Hurwitz zeta function [12, p. 96, Eq. (1)]

ζ(s) = ζ(s,1) (1.4)

and it is also an analytic function in the whole complex s-plane, except for the simple pole at s = 1.
Define the alternating counterpart of ζ(s,a) by

η(s,a) =
∞∑

k=0

(−1)k

(k + a)s

(�(s) > 0
)

(1.5)

and observe that there exists the following readily derivable relationship:

η(s,a) = 1

2s

[
ζ

(
s,

a

2

)
− ζ

(
s,

a + 1

2

)]
(1.6)

between ζ(s,a) and η(s,a). The relationship (1.6) can be used to continue η(s,a) analytically to the whole complex s-plane.
We shall also use the Dirichlet beta function β(s) defined by [1, p. 807, Eq. (23.2.21)]

β(s) =
∞∑

k=0

(−1)k

(2k + 1)s
= 1

4s

[
ζ

(
s,

1

4

)
− ζ

(
s,

3

4

)]
(1.7)

and the Dirichlet eta function η(s) defined by [1, p. 807, Eq. (23.2.19)]

η(s) := η(s,1) = (
1 − 21−s)ζ(s). (1.8)

In our present investigation, some or all of the following known identities involving ζ(s,a) and ζ(s) will be used implicitly
[12, p. 88 et seq.]:

ζ(s,1) = ζ(s) = 1

2s − 1
ζ

(
s,

1

2

)
,

ζ(s) = 1

qs

q∑
j=1

ζ

(
s,

j

q

)
(q ∈ N),

and

ζ(s,a) = ζ(s,a + n) +
n−1∑
k=0

1

(k + a)s

(�(s) > 1; a �= 0,−1,−2, . . .
)
,

the first two of which yield

ζ

(
s,

1

3

)
+ ζ

(
s,

2

3

)
= (

3s − 1
)
ζ(s),

ζ

(
s,

1

4

)
+ ζ

(
s,

3

4

)
= 2s(2s − 1

)
ζ(s),

and

ζ

(
s,

1
)

+ ζ

(
s,

5
)

= (
2s − 1

)(
3s − 1

)
ζ(s).
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Finally, throughout this paper, G denotes the Catalan constant defined by

G :=
∞∑

k=0

1

(2k + 1)2
= 1

42

[
ζ

(
2,

1

4

)
− ζ

(
2,

3

4

)]
= 1

8

[
ζ

(
2,

1

4

)
− π2

]
, (1.9)

so that

G ∼= 0.915965594177219015 · · · .

2. Statements of the main results

In what follows, in order to simplify our presentation, we shall use the following definition:

Zq(s, xq) :=
{

η(s, xq) (q is odd),

ζ(s, xq) (q is even),
(2.1)

xq := x(q) being any real sequence, and ζ(s,a) and η(s,a) are the above-defined functions.

Remark 1. Although, throughout the text of this paper, we use ζ(s), β(s), η(s,a), η(s) as well as Zq(s, xq), it is clear
that all of the deduced expressions could be expressed only in terms of the Hurwitz zeta function ζ(s,a), since these
aforementioned functions are all related to ζ(s,a) [see Eqs. (1.4), (1.7), (1.6) and (1.8)].

It is assumed that n, p and q are arbitrary positive integers, �x	 denotes the greatest integer not exceeding the real
number x and an empty sum is understood (as usual) to be nil.

Now we are ready to state our main results as Theorems 1 and 2 below.

Theorem 1. Let ζ(s), ζ(s,a) and η(s,a) be, respectively, the functions defined by (1.4), (1.3) and (1.5), respectively.

(i) If 0 <
p
q < 1, then

pπ/q∫
0

φn cot φ dφ =
(

pπ

q

)n

ln

[
2 sin

(
pπ

q

)]

+ (−1)�n/2	{1 + (−1)n}
2−(n+1)n!ζ(n + 1) + 2n!

(
pπ

q

)n+1

·
[ �(n+1)/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2 k + 1)!
1

(2p π)2k
sin

(
2lpπ

q

)
ζ

(
2k,

l

q

)

+
�n/2	∑
k=1

q∑
l=1

(−1)k−1

(n − 2k)!
1

(2pπ)2k+1
cos

(
2lpπ

q

)
ζ

(
2k + 1,

l

q

)]
; (2.2)

(ii) Let Zq be given by (2.1). If 0 <
p
q < 1

2 , then

pπ/q∫
0

φn tan φ dφ = −
(

pπ

q

)n

ln

[
2 cos

(
pπ

q

)]

+ (−1)�n/2	{1 + (−1)n}
2−(n+1)

(
1 − 2−n)

n!ζ(n + 1) + 2n!
(

pπ

q

)n+1

·
[ �(n+1)/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k + 1)!
(−1)l−1

(2pπ)2k
sin

(
2lpπ

q

)
Zq

(
2k,

l

q

)

+
�n/2	∑
k=1

q∑
l=1

(−1)k−1

(n − 2k)!
(−1)l−1

(2pπ)2k+1
cos

(
2lpπ

q

)
Zq

(
2k + 1,

l

q

)]
. (2.3)
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Theorem 2. Let ζ(s), ζ(s,a) and η(s,a) denote the functions defined as in (1.4), (1.3) and (1.5), respectively.

(i) If 0 <
p
q < 1, then

pπ/q∫
0

φn csc φ dφ =
(

pπ

q

)n

ln

[
tan

(
pπ

2q

)]

+ (−1)�n/2	{1 + (−1)n}
n!(1 − 2−(n+1)

)
ζ(n + 1) + 2 · n!

(
pπ

q

)n+1

·
[ �(n+1)/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k + 1)!
1

(2pπ)2k
sin

(
(2l − 1)pπ

q

)
ζ

(
2k,

2l − 1

2q

)

+
�n/2	∑
k=1

q∑
l=1

(−1)k−1

(n − 2k)!
1

(2pπ)2k+1
cos

(
(2l − 1)pπ

q

)
ζ

(
2k + 1,

2l − 1

2q

)]
; (2.4)

(ii) Let Zq be given by (2.1) and let β(s) be the function defined as in (1.7). If 0 <
p
q < 1

2 , then

pπ/q∫
0

φn sec φ dφ =
(

pπ

q

)n

ln

[
tan

(
pπ

2q
+ π

4

)]

+ (−1)�(n+1)/2	{1 − (−1)n}
n!β(n + 1) + 2n!

(
pπ

q

)n+1

·
[ �(n+1)/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k + 1)!
(−1)l−1

(2pπ)2k
cos

(
(2l − 1)pπ

q

)
Zq

(
2k,

2l − 1

2q

)

−
�n/2	∑
k=1

q∑
l=1

(−1)k−1

(n − 2k)!
(−1)l−1

(2pπ)2k+1
sin

(
(2l − 1)pπ

q

)
Zq

(
2k + 1,

2l − 1

2q

)]
. (2.5)

Several immediate consequences of the application of our integral formulas and some illustrative special cases will be
given in Section 4. Here we present a few sets of illustrative examples.

Example Set 1. Let G be the Catalan constant (1.9). Then

(1)

π/2∫
0

φ2 cot φ dφ = π2

4
ln 2 − 7

8
ζ (3);

(2)

π/3∫
0

φ2 cot φ dφ = π2

18
ln 3 − 2π

27
√

3
− 13

18
ζ (3) + π

9
√

3
ζ

(
2,

1

3

)
;

(3)

π/4∫
0

φ2 cot φ dφ = π

4
G + π2

32
ln 2 − 35

64
ζ (3);

(4)

π/6∫
0

φ2 cot φ dφ = − π3

27
√

3
− 1

3
ζ (3) + π

72
√

3

[
ζ

(
2,

1

3

)
+ ζ

(
2,

1

6

)]
.

Example Set 2. Each of the following integral formulas holds true:

(1)

π/2∫
0

φ2 csc φ dφ = 2Gπ − 7

2
ζ (3);
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(2)

π/3∫
0

φ2 csc φ dφ = − 2π3

9
√

3
− π2

18
ln 3 − 35

18
ζ (3) + π

9
√

3
ζ

(
2,

1

6

)
;

(3)

π/4∫
0

φ2 csc φ dφ = − π3

8
√

2
G + π2

16
ln

(√
2 − 1

) −
(

7

2
+ 7

√
2

4

)
· ζ (3)

+ π

32
√

2

[
ζ

(
2,

1

8

)
+ ζ

(
2,

3

8

)]
+ 1

64
√

2

[
ζ

(
3,

1

8

)
+ ζ

(
3,

7

8

)]
;

(4)

π/6∫
0

φ2 csc φ dφ = 2

27
Gπ + π2

36
ln

(
2 − √

3
) − 7

2
ζ (3)

+ π

432

[
ζ

(
2,

1

12

)
+ ζ

(
2,

5

12

)
− ζ

(
2,

7

12

)
− ζ

(
2,

11

12

)]

+ 1

288
√

3

[
ζ

(
3,

1

12

)
− ζ

(
3,

5

12

)
+ ζ

(
3,

7

12

)
− ζ

(
3,

11

12

)]
.

Remark 2. The existence of the cotangent and cosecant integrals in (2.2) and (2.4) is assured, since the integrands involved
have no other singularities on [0, φ] (0 < φ < 1) except for the removable singularity at φ = 0.

Remark 3. It is noteworthy that Theorems 1 and 2 enable the closed-form evaluation of the given integrals in terms of a
finite combination of values of the Hurwitz zeta function and elementary functions (see Remark 1). Moreover, it is clear
that Theorems 1 and 2 can also be rewritten in terms of the polygamma function ψ(n)(z), since there exists the following
relationship between the Hurwitz zeta function ζ(s,a) and the polygamma function ψ(n)(z) [1, p. 260, Eq. (6.4.101)]:

ψ(n)(z) = (−1)n+1n!ζ(n + 1, z) (z �= 0,−1,−2, . . . ; n ∈ N). (2.6)

Remark 4. It is interesting to note that, as is shown in Example Sets 1∗ and 2∗ below, even modern-day algorithms for
symbolic integration work rather unsatisfactorily on the integrals described by Theorems 1 and 2. PolyGamma[n, z], i.e., the
polygamma function ψ(n)(z) given by (2.6), is not problematic here, since it is, in essence, the Hurwitz zeta function ζ(n, z),
but it is hard to see how it is possible, in general, to reduce the polylogarithm function PolyLog[n, z] to ζ(n, z).

Example Set 1∗. Consider the integral formulas (1) to (4) in Example Set 1. The results of integration by means of
Mathematica 6.0 (Wolfram Research) are given below:

Out[1] = 1

8
π2 Log[4] − 7 Zeta[3]

8
,

Out[2] = iπ3

54
+ 1

54
π2 Log[27] + 1

3
iπ PolyLog

[
2,−(−1)1/3] − 13 Zeta[3]

18
,

Out[3] = Catalanπ

4
+ 1

64
π2 Log[4] − 35 Zeta[3]

64
,

Out[4] = − iπ3

216
+ 1

6
iπ PolyLog

[
2,−(−1)2/3] − Zeta[3]

3
.

Example Set 2∗. Evaluation of the integral (3) in Example Set 2 yields in the following result:

Out[3] = Catalanπ

8
+ iπ3

384
+ 1

16
π2 Log

[
1 − (−1)1/4] − 1

16
π2 Log

[
1 + (−1)1/4]

− 1

128
(−1)3/4π PolyGamma

[
1,

1

8

]
+ 1

128
(−1)1/4π PolyGamma

[
1,

3

8

]

+ 1

128
(−1)3/4π PolyGamma

[
1,

5

8

]
− 1

128
(−1)1/4π PolyGamma

[
1,

7

8

]

+ 1

2
iπ PolyLog

[
2,−1 + i√

2

]
+ 2 PolyLog

[
3, (−1)1/4] − 2 PolyLog

[
3,−1 + i√

2

]

− 7 Zeta[3]
2

.
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Remark 5. It is not assumed in Theorems 1 and 2 above that the fraction p/q is a reduced fraction; however, it is clear that,
when p/q is in a reduced form, then the formulas give the simplest expressions.

Remark 6. Several general families of definite integrals involving the tangent or secant function have been more recently
evaluated in closed form by making use of the elementary arguments [7]. The integrals in (2.3) and (2.5) were then deduced
as immediate corollaries of these results [7, p. 573, Corollary 2.4]. We note also that a recent result proven by Cho et al.
[3, p. 465, Eqs. (20) and (22)] is similar to the formula (2.4), but it involves, in addition to elementary functions and ζ(s,a),
the double sum [3, p. 565, Eq. (21)] which, in general, does not appear to be easily tractable. Cho et al. [3] computed several
particular cases of this sum which enabled them to deduce a number of interesting special cases of the integrals in (2.5)
[3, pp. 466–467, Eqs. (23) to (29)].

3. Proofs of the main results

At the outset, we note that the proofs of Theorems 1 and 2 require the following two known results [11, p. 491, En-
try 2.6.5.9]:

1∫
0

tα−1

1 − tμ
(ln t)n dt = (−1)n n!

μn+1
ζ

(
n + 1,

α

μ

) (�(α) > 0; �(μ) > 0
)

(3.1)

and [11, p. 488, Entry 2.6.4.4]

1∫
0

tα−1

1 + tμ
(ln t)n dt = (−1)n n!

μn+1
η

(
n + 1,

α

μ

) (�(α) > 0; �(μ) > 0
)
. (3.2)

In order to derive the integral formulas (2.2) to (2.5), we use contour integration and the Cauchy integral theorem.
We begin by recalling the Cauchy integral theorem (sometimes called the Cauchy–Goursat theorem) which states that the
contour integral of a complex-valued function Φ(z) of the complex variable z vanishes whenever the contour is a piecewise
smooth simple closed curve and Φ(z) is analytic on and inside the contour. The interested reader is referred to any standard
text on Complex Analysis for further details.

In our proofs of Theorems 1 and 2, we shall first consider the following the complex-valued functions:

fcsc(z)

fsec(z)

⎫⎬
⎭ = (ln z)n

z2 ∓ 1
and

fcot(z)

ftan(z)

⎫⎬
⎭ = z(ln z)n

z2 ∓ 1
(z ∈ C), (3.3)

which are so chosen because their integrals on the unit circle involve, for our purposes, the needed trigonometric functions.
For instance, we have

2
∮

|z|=1

fcsc(z)dz = in

2π∫
0

φn csc φ dφ
(
i := √−1

)
.

Furthermore, all functions in (3.3) have no singularities that lie on and inside the contour Γ described below (see Fig. 1),
and thus the Cauchy integral theorem can be applied.

Next, we integrate these functions in the positive (counter-clockwise) direction along the following contour in the com-
plex z-plane (which will hereafter be denoted by Γ ):

0 < δ � x � 1 − η (0 < η < δ);
z = 1 + ηeiφ

(
φ varies from π to

π

2

)
;

z = eiφ
(

arctanη � φ � pπ

q

)
;

z = ueipπ/q (u varies from 1 to δ);
z = δeiφ

(
φ varies from

pπ

q
to 0

)
.

Moreover, in the case of the functions fcot and fcsc, we let

0 <
p

< 1,

q
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Fig. 1. Integration contour Γ .

and, in the case of the functions ftan and fsec, we suppose that

0 <
p

q
<

1

2
.

It is tacitly assumed that we work here with the principal branch of the logarithm function. This means that the branch
of the logarithm function whose imaginary part lies in the semi-closed interval (−π,π ] is taken. We note that the contour
Γ is analogous to the contours used by De Doelder [8] and introduced (more recently) by Cho et al. [3].

Proof of Theorem 1. Consider the contour integration of fcot and ftan in (3.3) along the contour Γ . Since both of our
functions are analytic on Γ and within the region enclosed by Γ , in light of the Cauchy integral theorem, for the fixed p
and q, we have

lim
δ↓0
η↓0

[ 1−η∫
δ

x(ln x)n

x2 ∓ 1
dx + i

π/2∫
π

(1 + ηeiφ)[ 1
2 ln(1 + 2η cosφ + η2) + iθ]n

(1 + ηeiφ)2 ∓ 1
ηeiφ dφ

+ in

2

pπ/q∫
arctanη

(
φn ·

{
cot φ

− tan φ

}
+ i

)
dφ + eipπ/q

δ∫
1

ueipπ/q(ln u + i pπ
q )n

u2e2ipπ/q ∓ 1
du

+ i

0∫
pπ/q

δeiφ(ln δ + iφ)n

δ2e2iφ ∓ 1
δeiφ dφ

]
= 0

({
0 <

p
q < 1

0 <
p
q < 1

2

})
, (3.4)

where use is made of the following relationship:

1 + ηeiφ = (
1 + 2η cosφ + η2) 1

2 eiθ (0 � θ � arctanη).

Upon taking the indicated limits, it is easy to show that

1∫
0

x(ln x)n

x2 ∓ 1
dx ±

1∫
0

(
ln u + i

pπ

q

)n uei2pπ/qdu

1 ∓ u2e2ipπ/q
+ in+1

2

pπ/q∫
0

φn dφ

+ in

2

pπ/q∫
0

φn
{

cot φ

− tan φ

}
dφ = 0

({ 0 <
p
q < 1

0 <
p
q < 1

2

})
. (3.5)

Next, since(
ln u + i

pπ

q

)n

= in
(

pπ

q

)n
[

1 +
n∑

k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k

(ln u)k

]
, (3.6)

we may rewrite the equations in (3.5) in the following forms:

1

2

pπ/q∫
φn cot φ dφ = �(

I1
n − I2

n(p,q) − I3
n(p,q)

) (
0 <

p

q
< 1

)
(3.7)
0



D. Cvijović, H.M. Srivastava / J. Math. Anal. Appl. 351 (2009) 244–256 251
and

1

2

pπ/q∫
0

φn tan φ dφ = �(
J 1
n − J 2

n(p,q) − J 3
n(p,q)

) (
0 <

p

q
<

1

2

)
, (3.8)

where the integrals I1
n, I2

n(p,q) and I3
n(p,q), and the integrals J 1

n , J 2
n(p,q) and J 3

n(p,q), are as given below.
Now, by observing that

0 <
p

q
< 1,

we evaluate the cotangent integral (3.7).
First, clearly, the integral I1

n given by

I1
n = in

1∫
0

x(ln x)n

1 − x2
dx = in(−1)nn!2−(n+1)ζ(n + 1),

follows at once as a special case of (3.1) with

α = 2 and μ = 2.

The integral I2
n(p,q) is elementary and it is not difficult to show that

(
q

pπ

)n

I2
n(p,q) =

1∫
0

ue2ipπ/q

1 − u2e2ipπ/q
du = −1

2
ln

[
2 sin

(
pπ

q

)]
+ i

(
π

4
− pπ

2q

)
.

In the case of I3
n(p,q), we have

I3
n(p,q) = ei2pπ/q

(
pπ

q

)n 1∫
0

n∑
k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k u(ln u)k

1 − u2e2ipπ/q
.

We thus need only to verify the following evaluation:

I3
n(p,q) =

(
pπ

q

)n n∑
k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k q−1∑
l=0

e(2l+2)ipπ/q

1∫
0

u2l+1(ln u)k

1 − u2q
du

= n!
(

pπ

q

)n+1 n∑
k=1

ik

(n − k)!
1

(2pπ)k+1

q∑
l=1

e2lipπ/qζ

(
k + 1,

l

q

)

= n!
(

pπ

q

)n+1
[ �n/2	∑

k=1

q∑
l=1

(−1)k

(n − 2k)!
e2lipπ/q

(2pπ)2k+1
ζ

(
2k + 1,

l

q

)

+
�(n+1)/2	∑

k=1

q∑
l=1

i(−1)k−1

(n − 2k + 1)!
e2lipπ/q

(2pπ)2k
ζ

(
2k,

l

q

)]
,

which is obtained by making use of the elementary identity:

1

1 − u2e2ipπ/q
= 1

1 − u2q

q−1∑
l=0

u2l e2ipπ l/q

and the integral in (3.1). Lastly, by making use of (3.7), and upon taking the real parts of I1
n, I2

n(p,q) and I3
n(p,q), we arrive

at the required formula (2.2).
Now, by considering the hypothesis that

0 <
p

q
<

1

2
,

we evaluate the tangent integral (3.8).
The integral J 1

n is the special case of (3.2):

J 1
n = in

1∫
x(ln x)n

1 + x2
dx = (−1)ninn!2−(n+1)

(
1 − 2−n)

ζ(n + 1),
0
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J 2
n(p,q) is readily deducible as follows:

(
q

pπ

)n

J 2
n(p,q) =

1∫
0

ue2ipπ/q

1 + u2e2ipπ/q
du = 1

2
ln

[
2 cos

(
pπ

q

)]
+ i

π p

2q
,

while the integral J 3
n(p,q) is given by

J 3
n(p,q) =

(
pπ

q

)n 1∫
0

n∑
k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k ue2ipπ/q(ln u)k

1 + u2e2ipπ/q
.

In view of the following elementary identity:

1

1 + u2e2ipπ/q
= 1

1 − (−1)qu2q

q−1∑
l=0

(−1)lu2le2ipπ l/q,

and the integrals in (3.1) and (3.2), it is not difficult to show that

J 3
n(p,q) =

(
pπ

q

)n n∑
k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k

·
q−1∑
l=0

(−1)le(2l+2)ipπ/q

1∫
0

u2l+1(ln u)k

1 − (−1)qu2q
du

= n!
(

pπ

q

)n+1
[ �n/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k)!
(−1)l

(2pπ)2k+1
e2lipπ/q Zq

(
2k + 1,

l

q

)

+
�(n+1)/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k + 1)!
i(−1)l−1

(2pπ)2k
e2lipπ/q Zq

(
2k,

l

q

)]
,

where Zq [see Eq. (2.1)] denotes either ζ(s,a) or η(s,a) depending upon the parity of q. Finally, the proposed integral
formula (2.3) follows by making use of (3.8), and upon taking the real parts of J 1

n , J 2
n(p,q) and J 3

n(p,q).
This completes the proof of Theorem 1. �

Proof of Theorem 2. Our proof of Theorem 2 runs along the same lines as the proof of Theorem 1.
Here, we consider the integration of the complex functions fcsc and fsec (3.3) around the above-described closed

contour Γ . In this way, by the Cauchy integral theorem, we arrive at the expressions analogous to those in (3.4) and,
upon taking the limits, we find for the fixed p and q that

1∫
0

(ln x)n

x2 ∓ 1
dx ± eipπ/q

1∫
0

(
ln u + i

pπ

q

)n du

1 ∓ u2e2ipπ/q
+ in

2

pπ/q∫
0

φn
{

csc φ

i sec φ y

}
dφ = 0

({ 0 <
p
q < 1

0 <
p
q < 1

2

})
, (3.9)

which, in turn, and in view of (3.6), can be rewritten as follows:

1

2

pπ/q∫
0

φn csc φ dφ = �(
I 1

n − I 2
n (p,q) − I 3

n (p,q)
) (

0 <
p

q
< 1

)
(3.10)

and

1

2

pπ/q∫
0

φn sec φ dφ = �(
J 1

n + J 2
n (p,q) + J 3

n (p,q)
) (

0 <
p

q
<

1

2

)
, (3.11)

I 1
n , I 2

n (p,q) and I 3
n (p,q), and J 1

n , J 2
n (p,q) and J 3

n (p,q), being the integrals given below.
Now, in order to evaluate the cosecant integral (2.4), we use the following results:

I 1
n = (−1)nin

1∫
0

(ln x)n

1 − x2
dx = inn!(1 − 2−(n+1)

)
ζ(n + 1),

I 2
n (p,q)

(
q

pπ

)n

=
1∫

eipπ/q

1 − u2e2ipπ/q
du = iπ

4
− 1

2
ln

[
tan

(
pπ

2q

)]
,

0
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and

I 3
n (p,q) =

(
pπ

q

)n 1∫
0

n∑
k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k eipπ/q(ln u)k

1 − u2e2ipπ/q
du

= n!
(

pπ

q

)n+1
[ �n/2	∑

k=1

q∑
l=1

(−1)k

(n − 2k)!
e(2l−1)ipπ/q

(2pπ)2k+1
ζ

(
2k + 1,

2l − 1

2q

)

+
�(n+1)/2	∑

k=1

q∑
l=1

i(−1)k−1

(n − 2k + 1)!
e(2l−1)ipπ/q

(2pπ)2k
ζ

(
2k,

2l − 1

2q

)]
,

and we readily obtain the required formula by making use of (3.10) in conjunction with taking the real parts of I 1
n , I 2

n (p,q)

and I 3
n (p,q).

Similarly, in order to derive the integral formula (2.5), the following integrals are needed:

J 1
n = (−1)nin+1

1∫
0

(ln x)n

1 + x2
dx = in+1n!β(n + 1),

iJ 2
n (p,q)

(
q

pπ

)n

=
1∫

0

eipπ/q

1 + u2e2ipπ/q
du = π

4
+ i

2
log

[
tan

(
pπ

2q
+ π

4

)]
,

and

J 3
n (p,q) = −i

(
pπ

q

)n 1∫
0

n∑
k=1

(−1)k
(

n

k

)
ik

(
q

pπ

)k eipπ/q(ln u)k

1 + u2e2ipπ/q
du

= n!
(

pπ

q

)n+1
[ �n/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k)!
i(−1)l−1

(2pπ)2k+1
e(2l−1)ipπ/q Zq

(
2k + 1,

2l − 1

2q

)

+
�(n+1)/2	∑

k=1

q∑
l=1

(−1)k−1

(n − 2k + 1)!
(−1)l−1

(2pπ)2k
e(2l−1)ipπ/q Zq

(
2k,

2l − 1

2q

)]
.

We then employ (3.11) and take the real parts of J 1
n , J 2

n (p,q) and J 3
n (p,q). This completes the proof of Theorem 2. �

4. Special cases and consequences

In this section, we give several immediate consequences and some illustrative examples of the application of our integral
formulas derived in Section 2.

The cotangent integrals. Let

Q cot
n = (−1)�n/2	{1 + (−1)n}

n!2−(n+1)ζ(n + 1).

Some special cases of the cotangent integrals in (2.2) are given by

π/2∫
0

φn cot φ dφ = Q cot
n +

(
π

2

)n

ln 2 + 2n!
(

π

2

)n+1 �n/2	∑
k=1

(−1)k−1

(n − 2k)!
V 2k+1

(2π)2k+1
, (4.1)

where

V 2k+1 = (
2 − 22k+1)ζ(2k + 1); (4.2)

π/3∫
0

φn cot φ dφ = Q cot
n + 1

2

(
π

3

)n

ln 3 + n!
(

π

3

)n+1

·
(√

3
�(n+1)/2	∑ (−1)k−1

(n − 2k + 1)!
Acot

2k

(2π)2k
+

�n/2	∑ (−1)k−1

(n − 2k)!
Bcot

2k+1

(2π)2k+1

)
, (4.3)
k=1 k=1
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where

Acot
2k = 2ζ

(
2k,

1

3

)
+ (

1 − 32k)ζ(2k) and Bcot
2k+1 = (

3 − 32k+1)ζ(2k + 1);

and

π/4∫
0

φn cotφ dφ = Q cot
n + 1

2

(
π

4

)n

ln 2 + 2n!
(

π

4

)n+1

·
( �(n+1)/2	∑

k=1

(−1)k−1

(n − 2k + 1)!
U2k

(2π)2k
+

�n/2	∑
k=1

(−1)k−1

(n − 2k)!
V 2k+1

(2π)2k+1

)
, (4.4)

where V 2k+1 is given by (4.2) and U2k is given by

U2k = 2ζ

(
2k,

1

4

)
+ 22k(1 − 22k)ζ(2k). (4.5)

Regarding the integrals (4.1) and (4.4), it is a well-known classical result (cf. [2, pp. 306–310, Tables 204–206] and
[10, Tables 204–206]) that they can be evaluated by means of infinite series as in (1.1) and (1.2). A much newer result is the
finite series evaluation of these integrals: Crandall and Buhler [6, p. 280] obtained (4.1), while (4.1) and (4.4) can be deduced
as special cases of the integrals which were given by Srivastava et al. [13, p. 834, Eqs. (2.14) and (2.15)]. Formula (4.3) is
presumably a new result (see also a recent work on the evaluation of the Euler and related sums by Choi and Srivastava [5]).

Now, by making use of (4.1), it is easy to deduce the following results:

π/2∫
0

φ cotφ dφ = π

2
ln 2;

π/2∫
0

φ2 cot φ dφ = π2

4
ln 2 − 7

8
ζ(3);

π/2∫
0

φ3 cot φ dφ = π3

8
ln 2 − 9

16
πζ(3);

π/2∫
0

φ4 cot φ dφ = π4

16
ln 2 − 9

16
π2ζ(3) + 93

32
ζ(5);

π/2∫
0

φ5 cot φ dφ = π5

32
ln 2 − 15

32
π3ζ(3) + 225

64
πζ(5).

The cosecant integrals. Let

Q csc
n = (−1)�n/2	{1 + (−1)n}

n!(1 − 2−(n+1)
)
ζ(n + 1).

Some special cases of the cosecant integrals in (2.4) are given by

π/2∫
0

φn cscφ dφ = Q csc
n + 2n!

(
π

2

)n+1 �(n+1)/2	∑
k=1

(−1)k−1

(n − 2k + 1)!
U2k

(2π)2k
, (4.6)

where U2k is given by (4.5);

π/3∫
0

φn cscφ dφ = Q csc
n − 1

2

(
π

3

)n

ln 3 + n!
(

π

3

)n+1

·
(√

3
�(n+1)/2	∑

k=1

(−1)k−1

(n − 2k + 1)!
Acsc

2k

(2π)2k
+

�n/2	∑
k=1

(−1)k−1

(n − 2k)!
Bcsc

2k+1

(2π)2k+1

)
, (4.7)

where

Acsc
2k = 2ζ

(
2k,

1
)

+ (
1 − 22k)(32k − 1

)
ζ(2k)
6
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and

Bcsc
2k+1 = (

1 − 22k+1)(3 − 32k+1)ζ(2k + 1);
and

π/4∫
0

φn csc φ dφ = Q csc
n +

(
π

4

)n

ln
(√

2 − 1
) + n!

(
π

4

)n+1√
2

·
( �(n+1)/2	∑

k=1

(−1)k−1

(n − 2k + 1)!
Ccsc

2k

(2π)2k
+

�n/2	∑
k=1

(−1)k−1

(n − 2k)!
Dcsc

2k+1

(2π)2k+1

)
, (4.8)

where

Ccsc
2k = 2ζ

(
2k,

1

8

)
+ 2ζ

(
2k,

3

8

)
+ (

42k − 82k)ζ(2k) (4.9)

and

Dcsc
2k+1 = 2ζ

(
2k + 1,

1

8

)
+ 2ζ

(
2k + 1,

7

8

)
+ (

42k+1 − 82k+1)ζ(2k + 1). (4.10)

We remark that the above cosecant integral formulas resemble those derived earlier by Cho et al. [3, pp. 465–467,
Eqs. (23) and (24), and Eqs. (26) to (29)], but their results also contain the above-mentioned double sums as an additional
term.

Now, by making use of (4.6), it is easy to deduce the following results:

π/2∫
0

φ csc φ dφ = 2G; (4.11)

π/2∫
0

φ2 csc φ dφ = 2πG − 7

2
ζ(3); (4.12)

π/2∫
0

φ3 csc φ dφ = 3

2
π2G + π4

8
− 3

32
ζ

(
4,

1

4

)
; (4.13)

π/2∫
0

φ4 csc φ dφ = π3G + π5

4
+ 93

2
ζ(5) − 3

16
πζ

(
4,

1

4

)
; (4.14)

π/2∫
0

φ5 csc φ dφ = 5

8
π4G + π6

16
− 15

64
π2ζ

(
4,

1

4

)
+ 15

128
ζ

(
6,

1

4

)
, (4.15)

in terms of the Catalan constant G given by (1.9).
The integral in (4.11) is recorded in the work of (for instance) Choi and Srivastava [4, p. 101, Eq. (2.41)] and (4.12) was

first evaluated by De Doelder [8]. We have failed to find, in the literature, the integrals presented in (4.13) to (4.15).

The tangent and secant integrals. We now list the following special cases of the integrals in (2.4) and (2.5):

π/4∫
0

φn tan φ dφ = Q tan
n − 1

2

(
π

4

)n

ln 2 + 2n!
(

π

4

)n+1

·
( �(n+1)/2	∑

k=1

(−1)k−1

(n − 2k + 1)!
U2k

(2π)2k
−

�n/2	∑
k=1

(−1)k−1

(n − 2k)!
V 2k+1

(2π)2k+1

)
, (4.16)

where

Q tan
n = (−1)�n/2	{1 + (−1)n}

n!2−(n+1)
(
1 − 2−n)

ζ(n + 1),

and the coefficients U2k and V 2k+1 are, respectively, given by (4.5) and (4.2);
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π/4∫
0

φn secφ dφ = Q sec
n +

(
π

4

)n

ln
(√

2 + 1
) + n!

(
π

4

)n+1√
2

·
( �(n+1)/2	∑

k=1

(−1)k−1

(n − 2k + 1)!
Ccsc

2k

(2π)2k
−

�n/2	∑
k=1

(−1)k−1

(n − 2k)!
Dcsc

2k+1

(2π)2k+1

)
, (4.17)

where

Q sec
n = (−1)�(n+1)/2	{1 − (−1)n}

n!4−(n+1)

[
ζ

(
n + 1,

1

4

)
− ζ

(
n + 1,

3

4

)]
,

and the coefficients Ccsc
2k and Dcsc

2k+1 are given by (4.9) and (4.10), respectively.
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