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a b s t r a c t

By elementary arguments, we deduce closed-form expressions for the values of all
derivatives of the cotangent function at rational multiples of π. These formulae are
considerably simpler than similar ones which were found in a different manner by Kölbig.
Also, we show that the values of cot(n)(πx), n ∈ N, at x = 1

2 , 1
3 , 2

3 , 1
4 , 3

4 , 1
6 and 5

6 are
expressible in terms of the values of the Bernoulli polynomials alone.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Recently, Adamchik [2, p. 4, Eq. 26] completely solved a long-standing problem of finding a closed-form expression for
the higher derivatives of the cotangent function [2,3,6]. In this sequel to the work of Adamchik, by elementary arguments, we
deduce that the values of the derivatives of the cotangent at rational multiples ofπ can be expressed as finite sums involving
the Bernoulli polynomials, the sine or cosine functions and known constants. These formulae are considerably simpler than
similar ones which were found in a different manner by Kölbig [6, p. 8, Theorem 4]. Also, as an immediate corollary of this
result, we find that the values of cot(n)(πx), n ∈ N, at x = 1

2 , 1
3 , 2

3 , 1
4 , 3

4 , 1
6 and 5

6 are expressible in terms of the values of the
Bernoulli polynomials alone.

2. Statement of the results

In what follows, we shall use the function given by

lν(x) =
∞∑
k=1

(
e2πix

)k
kν

= Liν(e2πix) (x ∈ R) (1)

where

Liν(z) =
∞∑
k=1

zk

kν
(2)

(ν ∈ C, |z| < 1;R(ν) > 0, |z| ≤ 1, z 6= 1;R(ν) > 1, |z| ≤ 1)
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is the polylogarithm Liν(z) [5, p. 30, Eq. 1. 11 (14)]. Observe that

R[lν(x)] =
∞∑
k=1

cos(2kπx)
kν

and =[lν(x)] =
∞∑
k=1

sin(2kπx)
kν

(x ∈ R). (3)

The Bernoulli polynomial of degree n in x, Bn(x), is, as usual, given by the generating function [5, p. 36, Eq. 1.13 (2)]

tetx

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π). (4)

and Bn = Bn(0) is the n-th Bernoulli number [5, p. 35, Eq. 1.13 (1)].
The Hurwitz (or generalized) zeta function ζ(s, a) is defined as an analytic continuation of the series [5, p. 24, Eq. 1.10 (1)]

ζ(s, a) =
∞∑
k=0

1
(k+ a)s

(R(s) > 1; a 6= 0,−1,−2, . . . , ). (5)

Our results are as follows.

Theorem. If n, p and q ∈ N and p and q are such that 1 ≤ p < q, then

(a)
d2n−1

dx2n−1 cot(πx)|x=p/q = (−1)n
(2πq)2n−1

n

q∑
s=1

B2n(s/q) cos(s2πp/q),

(b)
d2n

dx2n cot(πx)|x=p/q = (−1)n−1 2(2πq)2n

2n+ 1

q∑
s=1

B2n+1(s/q) sin(s2πp/q),

where Bn(x) is the Bernoulli polynomial of degree n.

Corollary 1. Assume that n ∈ N and let Bn be the n-th Bernoulli number. We have

(a)
d2n−1

dx2n−1 cot(πx)|x=1/2 = (−1)n
(4π)2n−1

n
[B2n − B2n(1/2)] = (−1)n

(2π)2n−1(22n
− 1)

n
B2n;

(b)
d2n−1

dx2n−1 cot(πx)|x=1/3 =
d2n−1

dx2n−1 cot(πx)|x=2/3 = (−1)n
(6π)2n−1

n
[B2n − B2n(1/3)] = (−1)n

(2π)2n−1(32n
− 1)

2n
B2n;

(c)
d2n−1

dx2n−1 cot(πx)|x=1/4 =
d2n−1

dx2n−1 cot(πx)|x=3/4 = (−1)n
(8π)2n−1

n
[B2n − B2n(1/2)] = (−1)n

(4π)2n−1(22n
− 1)

n
B2n;

(d)
d2n−1

dx2n−1 cot(πx)|x=1/6 =
d2n−1

dx2n−1 cot(πx)|x=5/6 = (−1)n
(12π)2n−1

n
[B2n − B2n(1/2)− B2n(1/3)+ B2n(1/6)]

= (−1)n
(2π)2n−1(22n

− 1)(32n
− 1)

2n
B2n.

Corollary 2. Assume that n ∈ N and let Bn(x) be the Bernoulli polynomial of degree n. We have

(a)
d2n

dx2n cot(πx)|x=1/2 = 0;

(b)
d2n

dx2n cot(πx)|x=1/3 = −
d2n

dx2n cot(πx)|x=2/3 = (−1)n−1 2(6π)2n
√

3
2n+ 1

B2n+1(1/3);

(c)
d2n

dx2n cot(πx)|x=1/4 = −
d2n

dx2n cot(πx)|x=3/4 = (−1)n−1 4(8π)2n

2n+ 1
B2n+1(1/4);

(d)
d2n

dx2n cot(πx)|x=1/6 = −
d2n

dx2n cot(πx)|x=5/6 = (−1)n−1 2(12π)2n
√

3
2n+ 1

[B2n+1(1/6)+ B2n+1(1/3)] .

3. Proof of the results

In our proof of the theorem we shall use some known results:

(1) (Simpson’s series multisection formula) [7, p. 131]. Let f (x) =
∑
∞

k=1 akxk and let ω = e2πi/q(i :=
√
−1; q ∈ N). Then for

any integer p, 1 ≤ p ≤ q, we have q
∑
∞

k=0 ap+qkxp+qk =
∑q

s=1 ω
−spf (ωsx).

(2) (Abel’s theorem) [4, p. 148]. Let f (x) =
∑
∞

k=1 akxk, |x| < 1. If
∑
∞

k=1 ak converges then limx→1− f (x) =
∑
∞

k=1 ak.
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(3) (The Fourier series for Bn(x)). Let Bn(x) be the Bernoulli polynomial as defined in (4). We have [5, p. 38, Eq. 1.13 (15)]

B2n−1(x) = (−1)n
2(2n− 1)!

(2π)2n−1

∞∑
k=1

sin(2kπx)
k2n−1 (0 < x < 1, n = 1; 0 ≤ x ≤ 1, n = 2, 3, . . .), (6)

and [5, p. 37, Eq. 1.13 (14)]

B2n(x) = (−1)n−1 2(2n)!
(2π)2n

∞∑
k=1

cos(2kπx)
k2n (0 ≤ x ≤ 1, n ∈ N). (7)

(4) (Reflection formulae for ζ(s, a)) (see [5, p. 44, Eq. 1.16 (4)] in conjunction with [5, p. 45, Eq. 1.17 (9)]) If n ∈ N and
0 < x < 1, then

ζ(2n+ 1, x)− ζ(2n+ 1, 1− x) =
π

(2n)!
cot(πx)(2n), (8)

ζ(2n, x)+ ζ(2n, 1− x) = −
π

(2n− 1)!
cot(πx)(2n−1). (9)

In the proof of Corollary 1 we shall need the following relations [1, pp. 805–806, Eqs. 23.1.19–23.1.24]:

B2n(0) = B2n(1) = B2n; (10)

B2n(1/2) = (21−2n
− 1)B2n; (11)

B2n(1/3) = B2n(2/3) = (1/2)(31−2n
− 1)B2n; (12)

B2n(1/4) = B2n(3/4) = 2−2n(21−2n
− 1)B2n; (13)

B2n(1/6) = B2n(5/6) = (1/2)(21−2n
− 1)(31−2n

− 1)B2n. (14)

Proof of Theorem. First, we shall show that, for p, q ∈ N, 1 ≤ p ≤ q, and R(ν) > 1, the following holds:

ζ(ν, p/q) = qν−1
q∑

s=1
ω−spLiν(ω

s), ω = e2πi/q. (15)

Clearly, by Abel’s theorem and the definition of ζ(s, a) in (5), the relation in (15) follows at once from
∞∑
k=0

qxp+qk

(p+ qk)ν
=

q∑
s=1
ω−spLiν(ω

sx)

which is obtained by making use of Simpson’s multisection formula on Liν(z), R(ν) > 1.
Second, let lν(x) be given by (1) and let p, q ∈ N, 1 ≤ p ≤ q− 1. Then

ζ(ν, p/q)− ζ(ν, 1− p/q) = 2qν−1
q∑

s=1
=[lν(s/q)] sin(s2πp/q), (16)

ζ(ν, p/q)+ ζ(ν, 1− p/q) = 2qν−1
q∑

s=1
R[lν(s/q)] cos(s2πp/q). (17)

Indeed, starting from (15) we obtain

ζ(ν, p/q) = qν−1
q∑

s=1
(R[lν(s/q)] + i=[lν(s/q)])e−s2πip/q

= qν−1
q∑

s=1
[Φ1(s)+ iΦ2(s)] = qν−1

q∑
s=1

Φ1(s) (1 ≤ p ≤ q), (18)

where

Φ1(s) = R[lν(s/q)] cos(s2πp/q)+ =[lν(s/q)] sin(s2πp/q),
Φ2(s) = =[lν(s/q)] cos(s2πp/q)− R[lν(s/q)] sin(s2πp/q),

i.e. we obtain that the imaginary part vanishes. To prove this, note that for Φ2(s) we have that Φ2(q) = 0 and Φ2(q − s) =
−Φ2(s) (1 ≤ s ≤ q− 1) since (see Eq. (3))

R[lν(1− x)] = R[lν(x)] and =[lν(1− x)] = −=[lν(x)],

and therefore
∑q−1

s=1 Φ2(s) = 0, so Eq. (18) is valid. Now, by a simple trigonometric consideration, from (18) we have

ζ(ν, 1− p/q) = qν−1
q∑

s=1
(R[lν(s/q)] cos(s2πp/q)− =[lν(s/q)] sin(s2πp/q)) (1 ≤ p ≤ q− 1). (19)
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Here, the case p = q should be excluded, considering that for ζ(s, a) we must have a 6= 0 (see the definition of ζ(s, a) in (5)).
Finally, by combining (18) and (19) we arrive at the proposed formulae in (16) and (17).

Third, by applying the Fourier expansions in (6) and (7) in conjunction with (3), from (12) and (13) we have

ζ(2n+ 1, p/q)− ζ(2n+ 1, 1− p/q) = (−1)n−1q2n (2π)2n+1

(2n+ 1)!

q∑
s=1

B2n+1(s/q) sin(s2πp/q) (20)

ζ(2n, p/q)+ ζ(2n, 1− p/q) == (−1)n−1q2n−1 (2π)2n

(2n)!

q∑
s=1

B2n(s/q) cos(s2πp/q). (21)

Lastly, the assertions of the theorem follow upon comparing the reflection formulae for ζ(s, a) in (8) and (9) and our
expressions in (20) and (21). �

Proof of Corollaries. It is straightforward to verify that, in view of [1, pp. 804, Eq. 23.1.8],

Bm(1− x) = (−1)mBm(x) (m = 0, 1, 2, . . .), (22)

the formulae given by Corollary 2 follow directly from the theorem. In order to deduce the formulae given by Corollary 1
we apply the theorem and make use of the identity (22) and the relations (10) through (14). �
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