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Abstract: A feed-forward artificial neural network (ANN) model was used to link

molecular structures (boiling points, connectivity indices and molecular weights)

and retention indices of polycyclic aromatic hydrocarbons (PAHs) in linear temper-

ature-programmed gas chromatography. A randomly taken subset of PAH retention

data reported by Lee et al. �Anal. Chem. 51 (1979) 768�, containing retention index

data for 30 PAHs, was used to make the ANN model. The prediction ability of the

trained ANN was tested on unseen data for 18 PAHs from the same article, as well as

on the retention data for 7 PAHs experimentally obtained in this work. In addition,

two different data sets with known retention indices taken from the literature were

analyzed by the same ANN model. It has been shown that the relative accuracy as

the degree of agreement between the measured and the predicted retention indices in

all testing sets, for most of the studied PAHs, were within the experimental error

margins (� 3 %).
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INTRODUCTION

Since some of polycyclic aromatic hydrocarbons (PAHs) are known to be

carcinogenic and/or mutagenic to human beings, increasing importance is being

given to their presence in the environment.1,2 Moreover, the measurement of the

content of these micropollutants in environmental materials is mandated by most

regulatory agencies worldwide.

As each PAH has a different toxicity, it is highly recommended to measure the

concentration of individual PAHs. The very large number of PAHs to be quantified

demands the employment of powerful separation techniques, such as gas chroma-

tography (GC) or high-performance liquid chromatography (HPLC).3 Progra-
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mmed-temperature GC has commonly been used to separate a mixture of 16 prior-

ity pollutant PAHs. However, when more PAHs are to be measured, the GC separa-

tion becomes very difficult. Owing to very similar physicochemical properties of

some PAHs, overlapping of their GC peaks frequently occurs. In order to optimize

the GC separation of PAHs, the retention behavior of each PAH has to be investi-

gated. The effect of a linear temperature ramp in GC, as the most important vari-

able, on the retention times of PAHs can be described by a quadratic equation.4 An

artificial neural network (ANN) may be applied to predict the retention times of

PAHs when there is more than one variable.5

Instead of studying the retention times, the retention index (I) concept, as a

very useful tool for the presentation and interpretation of chromatographic data,

has been widely used in GC.6 In linear temperature-programmed GC of PAHs, the

most commonly used approach to retention index studies proposed by Kovats7 is

not applicable. Lee et al.8 presented a relationship employed for the generation of

the retention indices of 209 PAHs. The PAH retention indices were calculated us-

ing naphthalene, phenanthrene, chrysene, and picene as internal standards accord-

ing to Eq. (1):

I = 100
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+ 100 · z
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where TR(substance) is the retention time of the substance for which the retention in-

dex is to be determined, TR(Cz) and TR(Cz+1) are defined as retention times for PAH

internal standards, which embrace the substance of interest, and z is the number of

rings in the PAH standard that elutes prior to the substance of interest.

A quantitative structure – retention relationship (QSRR) relating a quantitative

measure of the chemical structure to the retention behavior9 has been demonstrated to

be a powerful tool for the investigation of chromatographic parameters. QSRRs are

most often expressed in the form of a linear equation the independent variables of

which are molecular descriptors and the dependent variable of which is a retention in-

dex. There is a large number of published articles dealing with QSRRs in GC. QSRRs

have been used to obtain simple models to explain and predict the chromatographic

behavior of alkanes,10,11 alkenes,12 esters, alcohols, aldehydes and ketones,13–16

alkylbenzenes,17–21 polychlorinated naphthalenes,22 terpenes,23 flavonoids,24 hydro-

carbons of naphthas,25 �-, �1-, and �2-agonists,26 O–, N–, and S– heterocyclic com-

pounds,27 polybrominated diphenyl ether congeners,28 methyl-branched hydrocar-

bons produced by incests,29 and a vast number of diverse organic compounds with

highly diverse chemical structures.9,30–33 A few QSRR studies dealt with the predic-

tion of chromatographic retention data of PAHs from their structure.34 – 38

The importance of molecular descriptors of PAHs (quasi-length of the carbon

chain and pseudo-conjugated system surface area,36 molecular mass,37 and connec-

tivity index) on the nonpolar GC phase38 and several thermodynamic, electronic,
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steric and topological descriptors (HOMO and LUMO energies and the gap between

them, molecular hardness, polarizability, atomic charges, connectivity index, vol-

ume and surface area among others) in the HPLC of PAHs39 were emphasized.

Recently, ANNs have become an important modeling technique in the field of

QSRR studies in GC. The ANN-QSRR approach was used to study the retention

behavior of alkylbenzenes,19 noncyclic and monocyclic terpenes,23 alkanes, alke-

nes, alcohols, esters, ketones and ethers,40,41 disulfides.42 The advantage of ANNs

lies in their inherent ability to incorporate nonlinear and cross-product terms into

the model. In addition, they do not require prior knowledge of the mathematical

function. The theory behind ANNs and their use in chromatography have been re-

ported elsewhere.14,19,43–45

In this study, the relationship between the GC retention index data of PAHs on

an SE-52 capillary column and three molecular descriptors, boiling points, molec-

ular masses and connectivity indices, was used to make the ANN model, which

was further employed to predict the retention behavior of PAHs on different sta-

tionary phases and with different temperature programs.

EXPERIMENTAL

The measurements were performed using a Spectra-physics model SP7100 gas chromatograph

with a flame ionization detector (FID). Commercially supplied PAH standards from Macharey–Na-

gel were used to prepare 1.0 ppm PAH solution in toluene. A 1.0 �L aliquot was injected into an Ul-

tra

®

-1 (cross-linked methyl silicone) capillary column (50 m x 0.32 mm, 0.5 �m df). As the final

column temperature, 290

oC was selected, while the initial temperature and the linear temperature

ramp varied in the range 40 – 100 oC and 3 – 15 oC/min, respectively. The FID was operated at 330
oC and the carrier gas (N2) flow rate was 2.0 mL/min.

The retention time for each PAH was measured in duplicate using 13 initial temperature and

temperature ramp combinations. The retention indices were calculated using Eq. (1). This data set

was unseen to the ANN model and was used as the ANN testing set (Test_4) to investigate if varia-

tion of the initial temperature and temperature run has an influence on the modeling.

Two different retention data sets from Ref.8 were used to train (Train_1) and test (Test_1) the

ANN. In addition, the data from Ref.46 (Lundstedt et al.) and Ref.47 (Takada et al.) were also used to

test the ANN (Test _ 2, Test _ 3, respectively). Details on the experimental setup used to generate

these GC data are given in the cited articles.

The ANN system were simulated using the QwikNet ANN simulator (Craig Jensen, Redmond,

USA).

TABLE I. ANN training data set (data set taken from ref.48, original retention indices from ref.8). Bp

– boiling point, CI – connectivity index, M – molecular weight, I – retention index

PAH Bp/°C CI M I

2-Methylnaphthalene 241 3.815 142.2 218.1

1-Methylnaphthalene 245 3.821 142.2 221.0

2,6-Dimethylnaphthalene 262 4.226 156.2 237.6

1,6-Dimethylnaphthalene 266 4.232 156.2 240.7

2,3-Dimethylnaphthalene 268 4.232 156.2 243.6

1,5-Dimethylnaphthalene 269 4.238 156.2 245.0
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PAH Bp/°C CI M I

1,2-Dimethylnaphthalene 271 4.238 156.2 246.5

Acenaphthene 279 4.445 154.2 251.3

Fluorene 294 4.612 166.2 268.2

1-Methylfluorene 318 5.028 180.3 289.0

Anthracene 340 4.809 178.2 301.7

3-Methylphenanthrene 352 5.226 192.3 319.5

2-Methylphenanthrene 355 5.226 192.3 320.2

1-Methylanthracene 363 5.226 192.3 323.3

3,6-Dimethylphenanthrene 363 5.637 206.3 337.8

Fluoranthene 383 5.565 202.3 344.0

Pyrene 393 5.559 202.3 351.2

Benzo[a]fluorene 407 6.022 216.3 366.7

Benzo[b]fluorene 402 6.017 216.3 369.4

2-Methylpyrene 410 5.970 216.3 370.2

1-Methylpyrene 410 5.976 216.3 373.6

Benzo[ghi]fluoranthene 432 6.309 226.3 389.6

Benzo[a]fluoranthene 435 6.220 228.3 398.5

Benzo[j]fluoranthene 480 6.976 252.3 440.9

Benzo[k]fluoranthene 481 6.970 252.3 442.6

Benzo[a]pyrene 496 6.970 252.3 453.4

Pentacene 529 7.619 278.4 486.8

Dibenz[a,c]anthracene 535 7.637 278,4 495.0

Benzo[b]chrysene 541 7.631 278.4 497.7

Anthanthrene 547 7.714 276.3 503.9

RESULTS AND DISCUSSION

To obtain a QSRR model, the compounds must be represented by molecular

descriptors retaining as much structural information as possible. Here, three mo-

lecular descriptors, boiling point, connectivity index and molecular weight, were

used because they had been found to have a great influence on the retention behav-

ior of PAHs in GC (Table I).48

A back-propagation ANN with delta-bar-delta learning algorithm was used in

this study to predict the retention indices of PAHs. More details of the applied

ANN algorithm and training method are available elsewhere.44 The topological

structure of the employed ANN consists of three layers: an input layer with three

nodes (boiling points, connectivity indices and molecular weights), an output layer

with one node (PAH retention indices), and a hidden layer, the number of nodes of

which was to be optimized. To find the best ANN parameters, a trial and error ap-

proach was used. The root mean square error (RMSE) function was employed to
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evaluate the performances of the ANN. It was computed using the following

formula:

RMSE = ( ) /
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where di is the desired output, oi the actual output, and n the number of retention in-

dex data.

In order to determine the optimal number of hidden layer nodes, ANNs with dif-

ferent numbers of hidden nodes were trained. The number of hidden nodes was var-

ied from 2 to 12. During the training, a subset of 10 % of the training set was taken as

the cross-validation set in order to enable a better generalization in the ANN learn-

ing. A curve of the average RMSE versus the number of hidden layer nodes was

drawn (Fig. 1). The optimum number of hidden layer nodes was found to be 5.

To illustrate the learning process, the RMSE of the training and cross-valida-

tion set versus the learning epochs, when the number of hidden layer nodes was 5,

are shown in Fig. 2. The minimum average RMSE value for the training and

cross-validation set, for 1000 epochs, is 2.03 and 13.7, respectively. As increasing

the number of epochs above 1000 led to no further significant improvements in the

RMSE, the number of learning epochs was set at 1000.

The ANN optimized through the process discussed above was used for the

prediction of the retention indices of four different testing sets (see Experimental

section). The prediction results of 18 (Test_1) + 34 (Test_2) + 19 (Test_3) + 7

(Test_4) = 78 retention indices are summarized in Tables II and III. Table III pres-

ents the retention index data for the 7 PAHs experimentally obtained in this work,
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with different temperature programs. A total of 13 different GC runs were carried

out and the retention index for each PAH was calculated. Generally, the results

show that the predicted retention indices of all testing sets were in good agreement

with those of the experimental data.

Table II. ANN predicted and measured GC retention indices (mean) of PAHs (data for different tem-
perature programs)

PAH
Test_1 Test_2 Test_3

Ipred. Iexp. Ipred. Iexp. Ipred. Iexp.

2-Ethylnaphthalene 240.7 236.1 – – – –

1-Ethylnaphthalene 243.0 236.6 – – – –

2,7-Dimethylnaphthalene 239.6 237.7 – – – –

1,3-Dimethylnaphthalene 240.9 240.3 – – – –

1,7-Dimethylnaphthalene 240.1 240.7 – – – –

1,4-Dimethylnaphthalene 242.3 243.6 – – – –

Acenaphthylene 239.7 244.6 239.7 247.4 – –

2-Methylfluorene 292.2 288.2 292.2 287.7 – –

2-Methylanthracene 323.4 321.6 323.4 320.9 – –

9-Methylphenanthrene 321.1 323.1 – – 321.1 319.2

1-Methylphenanthrene 323.3 323.9 323.3 323.6 323.3 320.0

4-Methylpyrene 371.2 369.5 – – – –

Benzo[b]fluoranthene 444.5 441.7 444.5 442.1 444.5 442.7

Benzo[e]pyrene 449.9 450.7 449.9 451.8 449.9 452.7

Perylene 451.7 456.2 451.7 456.3 451.7 457.5

Dibenz[a,h]anthracene 483.3 495.5 483.3 494.5 483.3 499.0

1296 SREMAC, [KRBI] and ONJIA

Fig. 2. Root mean square er-
ror vs. training epochs.



PAH
Test_1 Test_2 Test_3

Ipred. Iexp. Ipred. Iexp. Ipred. Iexp.

Benzo[ghi]perylene 483.8 501.3 483.8 502.9 483.8 501.3

4H-Cyclopenta[def]phenanthrene 321.0 322.1 321.0 322.3 – –

2-Methylnaphthalene – – 224.3 220.1 – –

1-Methylnaphthalene – – 225.1 223.1 – –

Biphenyl – – 234.0 235.0 – –

2,6-Dimethylnaphthalene – – 239.6 239.7 – –

Acenaphthene – – 249.9 253.3 – –

Fluorene – – 266.8 269.6 – –

1-Methylfluorene – – 292.3 288.7 – –

Anthracene – – 301.4 301.4 301.4 301.2

1-Phenylnaphthalene – – 319.1 312.6 – –

3-Methylphenanthrene – – 319.5 318.6 319.5 315.6

2-Methylphenanthrene – – 321.1 319.5 321.1 316.4

2-Phenylnaphthalene – – 333.5 330.5 333.5 326.5

Fluoranthene – – 344.3 344.9 344.3 340.1

Pyrene – – 350.3 352.8 350.3 348.1

Benzo[a�fluorene – – 368.8 366.5 – –

Benzo[b]fluoranthene – – 365.7 368.9 – –

1-Methylpyrene – – 371.2 374.2 371.2 370.0

Benzo[ghi]fluoranthene – – 392.2 390.9 392.2 389.6

Benz[a]anthracene – – 397.3 398.6 397.3 398.4

Benzo[k]fluoranthene – – 444.5 442.8 444.5 443.6

Benzo[a]pyrene – – 451.2 453.4 451.2 454.3

Dibenz[a,j]anthracene – – 482.6 489.8 – –

Benzo[b]chrysene – – 484.3 498.5 – –

Anthanthrene – – 484.5 508.4 – –

Dibenz[a,c]anthracene – – – – 483.3 495.1

Table III. ANN predicted (A) and measured (B) GC retention indices (min) of PAHs (data for differ-

ent temperature programs)

PAH Ipred. I*
exp. SD**

exp.

Acenaphthylene 249.9 247.7 1.0

Acenaphthene 249.9 253.5 0.9

Fluorene 266.8 269.4 1.0

Anthracene 301.4 301.5 0.2

Fluoranthene 344.3 338.5 4.6

Pyrene 350.3 346.0 4.6

Benz[a]anthracene 397.3 398.3 0.6

*mean value obtained from 13 measurements; **standard deviation calculated from 13 measurements
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The accuracy as the degree of agreement between the measured and the pre-

dicted retention indices for each PAH is expressed quantitatively by the relative er-

ror. The relative accuracy for all the studied PAHs shown in Tables II and III was

calculated as:

Relative accuracy = (Ipred – Iexp)/Iexp (3)

Fig. 3. shows that the maximum relative error for most of the studied PAHs is

no more than 3 %. A slight underestimation is observed for the RIs of a few

late-eluting PAHs.

CONCLUSION

The data used in this paper include 78 GC retention indices of 43 PAHs on dif-

ferent stationary phases and for different temperature programs. The results of this

study demonstrate that the QSRR method in conjunction with the ANN technique

can generate a suitable model for the prediction of the retention index values of

PAHs. Molecular descriptors appearing in the ANN model, such as boiling points,

connectivity indices and molecular weights, give sufficient information on the re-

tention behavior in linear temperature-programmed GC. In general, for most of the

studied PAHs, the relative error of the prediction is within the experimental error

margins (< 3 %). For late-eluting PAHs, the prediction is somewhat worse but still

satisfactory (< 5 %).
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I Z V O D

ANN PREDVI\AWE QSRR-a U GASNOJ HROMATOGRAFIJI

POLICIKLI^NIH AROMATI^NIH UGQOVODONIKA
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U radu je kori{}en model ve{ta~kih neuronskih mre`a ANN radi povezivawa

karakteristika strukture molekula: ta~ke kqu~awa, indeksa konektiviteta i mole-

kulske mase sa retencionim indeksima policikli~nih aromati~nih ugqovodonika

PAH-ova) u linearnoj temperaturno-programiranoj gasnoj hromatografiji. ANN mo-

del je dobijen nesumi~nim uzimawem retencionih indeksa za 30 PAH-ova, koje je

objavili Lee i sar. [Anal. Chem. 51 (1979) 768]. Izu~avani model je ispitan sa retencio-

nim podacima 18 PAH-ova iz istog rada, kao i sa retencionim indeksima 7 PAH-ova

eksperimentalno dobijenih u ovom radu. Tako|e, dva razli~ita skupa podataka sa

poznatim retencionim indeksima su uzeta iz literature i analizirana pomo}u istog

ANN modela. Pokazano je dobro slagawe izme}u izmerenih i predvi|enih retencionih

indeksa za sve ispitivane setove podataka, pri ~emu je ono za najve}i broj analizira-

nih PAH-ova, u okviru eksperimentalne gre{ke od � 3 %.

(Primqeno 12. januara 2005)
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