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1. Introduction

The superconducting properties of the YBa;CuzOgyoc
high-T.. superconductor depend not only on oxygen content
¢ but also on the degree of oxygen ordering in different struc-
tural phases. To understand this phenomenon and to analyze
the oxygen ordering in the basal plane the two-dimensional
asymmetric next-nearest-neighbor Ising (ASYNNNI) model
was proposed.’? The thermodynamic and statistical proper-
ties of this model have been extensively studied within the last
several years. All significant structural characteristics of the
material have by now successfully been explained in terms of
the ASYNNNI model. In particular, the only three structural
phases, unmistakably confirmed in experiments, i.e. tetrago-
nal, orthorhombic I (OI), and orthorhombic II (OII), are in-
cluded in the model as ground states.

The Hamiltonian of the ASYNNNI model has the form:

H = V1 ZO’iO'j + VQZ/UiGj + V3 Z”O’iO'j - %Z(ri,
NN i

NNN NNN
1

where o; denotes the Ising spin variable of the lattice site
i and takes the value +1 (—1) if the lattice site i is occu-
pied (not occupied) by an oxygen atom. Summation is over
the nearest-neighbor (NN) and next-nearest-neighbor (NNN)
oxygen sites, Y denotes that the summation is over all NNN
oxygen sites with a Cu ion in between while }_" represents a
sum over NNN sites without an intervening Cu ion. Finally, u
denotes oxygen chemical potential. The interaction parame-
ters Vi (NN) and V3 (NNN) are assumed to be positive (repul-
sive) while the copper mediated O-O interaction V; is nega-
tive (attractive). This choice of parameters ensures stability
of the main orthorhombic phases! and is consistent with the
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result of first-principles calculations. The thermodynamics of
the ASYNNNI model has been studied by a number of dif-
ferent techniques, such as the cluster variation method,>!'V
Monte Carlo simulations,!?>!? and transfer matrix renormal-
ization group methods.!>!®19 Almost all important proper-
ties of the phase diagram are well-known, but some aspects
of the low-temperature thermodynamics are still not eluci-
dated to a satisfying degree. Although these low tempera-
ture equilibrium structures are not attainable in experiments
(either because of sluggish oxygen diffusion or because fur-
ther neighbor interactions may become significant at low tem-
peratures) the problem of the low-temperature statistics of the
model is far from being of purely academic importance. It has
been proposed recently that some low-temperature character-
istics are retained up to those higher temperatures that are ex-
perimentally attainable.?? It is therefore important to explain
the nature of the ASYNNNI model in the region of low tem-
peratures. Moreover, the results are interesting in their own
right as they shed light on the properties of two-dimensional
Ising models, a subject of fundamental interest in statistical
physics.

2. Basic Thermodynamic Functions of the ASYNNNI
Model at Low Temperature

The basal plane of YBa,Cu3Ogyy. is represented in
Fig. 1 together with the pair interactions considered in the
ASYNNNI model. As is known,’? at T = 0 and for
0 < ¢ < 1/2, the basal plane lattice contains infinite Cu—
O chains located on columns of « sites (Fig. 1). In contrast,
B sites are completely unocupied due to the NN repulsion
Vi > 0. The « columns can be either completely occupied or
completely empty depending on the value of oxygen concen-
tration ¢. The OII phase, in which every second « column is
occupied (o) and the remaining columns (c;) are empty, is



Fig. 1 The basal plane lattice of YBayCu30Og. .. Open circles and squares
denote oxygen sites on « and S sublattices, while small black circles rep-
resent Cu(l) ions. Vi (NN), Vo (NNN) and V3 (NN N) are the pair inter-
action constants of the model.

stable for ¢ = 1/4 owing to the repulsive V; interaction.!?

For ¢ = 1/2 all « sites are occupied corresponding to the
OI structural phase. It should be noted that in equilibrium at
T = 0 no chain ends can be present in the system, i.e. all
the chains are intact (infinite). The ground state energy as a
function of oxygen concentration c is given by:

%Eo(c) = =2Vi(4c = 1) + Vh,FV3(4c — 1), 2)

where the upper sign corresponds to 0 < ¢ < 1/4 and the
lowerto 1/4 < ¢ < 1/2.

The thermodynamics of the ASYNNNI model at low tem-
peratures is determined by the energy and degeneracy of the
excited states. It is known®!V that the excited states of the
ASYNNNI model are characterized by an alternation of Cu~
O chains of finite length and empty segments along the «
columns. For a given oxygen concentration ¢ and tempera-
ture T (T = 0), the equilibrium occupancies ¢; and ¢, of
the sublattices «; and o, and the lengths of the Cu—O chains
are determined by the minimum condition on the free energy.
The chains and empty segments can glide almost freely along
the o columns without any change in total energy, the only
limitation being that no two empty segments (on two adja-
cent « columns) can even partially be positioned against one
another, because (—, —) V3 bonds between « sites are not al-
lowed in the excited states.”'" Denoting by N, the number
of oxygen sites on one « column, at finite temperatures the
square of the average magnetization M, = (1/Nj) Zf\ﬁl o;
equals to (2¢; — 1) on an o column, and (2¢; — 1) on an a,
column, while M2 = +1 at absolute zero temperature. Such
a ‘sudden’ jump of the sublattice magnetization indicates that
the model undergoes a second order phase transition at abso-
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Fig. 2 Chemical potential & (in units of V;) as a function of oxygen con-
centration ¢ at constant temperature T = kg7 /V; = 0.23 = const. Calcu-
lations were made in the 5+ 4 point approximation of the CVM and for the
LMTO values39 of interaction constants V, = —0.37Vy, V3 = 0.17V;.

lute zero. For a given concentration ¢, the excited states differ
from the ground state only in that some of the like V, bonds
are transformed into unlike V, bonds. Thus, .at T & 0, the
energy has the form:*-11

%E(c, T)= %Eo(c) + |Valn(e, T). 3

Here n(c, T) denotes the fraction of 3-fold coordinated Cu(1)
ions (located in the middle of unlike V, bonds).

From eq. (2) we see that at T = 0 the chemical poten-
tial u = (1/N)JEy(c)/dc equals u; = —8V; — 4V; for
O0<c<1/4,and uy = =8V, +4Vsfor1/4 < ¢ < 1/2.
At low temperatures the chemical potential attains values that
are very close to g, or to u,, away from the stoichiomet-
ric values ¢ = 1/4 and ¢ = 1/2. The transition between
these two p values takes place in a narrow interval arround
the OII stoichiometry ¢ = 1/4. At exactly this concentration
the chemical potential equals —8V; = (u; + p2)/2. Likewise
at the OI stoichiometry ¢ = 1/2u = 0. The results of CVM
calculations are shown in Fig. 2. We see that the chemical
potential indeed varies from —8V; to 0, when the concentra-
tion ¢ increases from 1/4 to 1/2, whereas it is approximately
equal to its ground state value p, in a wide range of oxygen
off-stoichiometry. Moreover, the chemical potential p differs
from w, only within very narrow intervals around ¢ = 1/4
and ¢ = 1/2, while it attains exactly the value w, for some
value of concentration marked with ¢4 in Fig. 2. A similar
behavior of the p(c) dependence has also been obtained for
0 < ¢ < 1/4 and for other sets of interaction parameters Vp,
V,, and V3. For the sake of simplicity we shall confine our
further analysis to the case 1/4 < ¢ < 1/2.

From the basic thermodynamic relation y = df/dc (where
f denotes the free energy per site) and taking into account
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eq. (3) it follows that, at T & 0 and for ¢ = cq4, one has:

a 1 9Ey(c) an as
pom = LIy 2

= -T
dc N dc dc

c=cq

. @

c=cq

where s denotes the entropy per lattice site. Since the first
term in the right-hand side of the above equation is equal to
42, we obtain:
as
ac

Wl an

~N — —

T dc ’ ©)

c=cq

c=cq

where 8¢ and én denote small increments in concentration
and in the number of 3-fold coordinated Cu(1) ions, around
the value c4. In the excited states of the system, for 1/4 <
¢ < 1/2, two types of unoccupied oxygen sites on the «
sublattice can be distinguished with respect to the change
of energy obtained when the sites are filled with an oxygen
atom. The first type (denoted by A) corresponds to vacant
oxygen sites located in the ends of empty segments; placing
an oxygen atom on such a site produces a change in energy
AE, = =8V 4+ 4V3 = p,. The second type (denoted by
B) corresponds to vacant oxygen sites located within empty
segments on « columns; filling such a site with an oxygen
atom produces an energy change AEp = —8V; — 4V, +4V;.
If wa and wp denote the probabilities that oxygen atoms are
added on sites A and B, then we can write for the increment
of the concentration: §¢c = dca +38cg = wadc+ wgdc (where
wa+wp = 1). Since only oxygen atoms added on sites B lead
to the creation of new chain ends it follows that §n = wgédc
and thus eq. (5) transforms into:

as wp

7 [Val T (0)
In this equation the probability wg generally depends on tem-
perature. Moreover since the right-hand side of eq. (6) must
remain finite as T approaches zero (third law of thermody-
namics®D), it follows that wg — 0as T — 0, i.e. forc = ¢4
all oxygen atoms are added on chain ends (§¢ = §c because
wg ~ 0and wa &~ 1 at ¢ = ¢4). This implics that at T ~ 0
both the entropy per site and the fraction of 3-fold coordi-
nated Cu(1) ions attain their maximal values at the concentra-
tion ¢ = c4 (wWhen they are considered as functions of oxygen
concentration c at fixed T = ~0).

Taking into account that at T = 0 both quantities Ay =
ulc, T) — uo and n, = 8n(c, T)/dc equal zero for ¢ = ¢y,
we expand Au in a Taylor scries with respect to n/, around the
value cq. Thus, we can write A = a(T)n,+b(T)(n.)>+- --
where the expansion coefficients depend only on tempera-
ture. Since Ap is small for a wide range of oxygen off-
stoichiometries (see Fig. 2) we retain only the first term of
the series. Since the coefficient a(7T') depends only on tem-
perature, we also expand it in a Taylor series arround abso-
lute zero, i.e. a(T) = ag + a1kgT + --- (where kg denotes
the Boltzmann constant). Hence, for the chemical potential
w(c, T) at low temperatures we finaly obtain:

ule, T) = py + (ap + arkgT)n,. @)

From eqgs. (3) and (7) the expression for the entropy per site
can be obtained as follows. Consider an isothermal reversible
process at a (constant) low temperature between two states
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with concentrations ¢, and ¢, (for the sake of simplicity, we
assume 1/4 < ¢, < ¢, < 1/2). The change of the free
energy per site equals Af = fab w(c, T)dc, but it also obeys:
Af = (1/N(Ep — E;) — T(sp — 54)- Inserting egs. (3) and
(7) into the expression for Af, we obtain:

1
ste, T) = - [IVal —ao — arkgTn(c, T). ®

From eqs. (3) and (8) we see that, at low temperatures, the
two basic thermodynamic functions of the ASYNNNI model,
the energy and the entropy, are proportional to the fraction
of 3-fold coordinated Cu(l) ions. Moreover, from egs. (7)
and (8) it follows that the low-temperature thermodynam-
ics also depends on two constants ag and a;. However, the
temperature dependence of the fraction n(c, T') is also de-
termined through these two constants which can be shown
using the basic thermodynamic relations C, = T3S/90T and
C. = 0E /0T (C, stands for the heat capacity at fixed oxygen
concentration). Combining these two relations we arrive at

- the following differential equation for the fraction n(c, T):

dn(e, T) _ (ap— Vo)) dT

n(c, T)  T(ap+ arksT)’
From the above equation it becomes evident that the fraction
n(c, T) can be expressed as a productn(c, T) = O (c)®(T).
The solution of the differential eq. (9) has the form:

©

Va2l
alkBT )1_—‘7(%-

_— 10
ap + arkgT (10)

n(c, T) = ©(c) (
We now analyze the relative fluctuations of the energy in
the neighborhood of absolute zero temperature in order to
show that the constant ay must be equal to zero. If the en-
ergy of the system under study is measured from its ground
state value, i.e. E/ = E — E,, then we have for the relative
fluctuations of the energy (see, for example, Ref. 22)):
2 2 "2
keT?C _ (E?) — (E)? an
E”? E”?

Generally, the relative energy fluctuations diverge as 7 — 0
due to the third law of thermodynamics. To show this, let
us observe that (as has been noted, for example, by Lan-
dau and Lifshitz?D) in the majority of model systems the
entropy at low temperature depends on temperature accord-
ing to a power law S o T™, which implies C, o« T™ and
E’ o« T™"! (m denotes a positive quantity). For such systems
TC, =~ const x E’ at T =~ 0 and, consequently, the behavior
of the left-hand side of eq. (11) is determined by the behavior
of the ratio kg T/E’ for which we find (applying L'Hépital’s
rule) kgT/E' « 1/C. — o0, as T — 0. The last relation

follows from the Nernst principle?" (C. — 0, as T — 0).
However, since the ASYNNNI model exibits a phase tran-
sition at,7 = O the left-hand side of eq. (11) must be char-
acterized by a stronger divergence than that which follows
solely from the third law of thermodynamics. The only phys-
ically acceptable way to obtain such divergence is to assume:

2
c

lim (12)

= const # 0.
T—0 #

For all other possible relations between the quantities T, E’,
and C. it can be shown?? that they are, either unphysical
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or included in the case S o« T™. That the above condition
ensures a stronger divergence of the relative energy fluctua-
tions can be directly seen by comparing the ratios kg 7/E’ and
const/E’ (in the limit 7 — 0). Using egs. (3) and (10) we ob-
tain that the ratio in the left-hand side of eq. (12) attains the
form (note that from eq. (3) one has: E'/N = |W»|n(c, T)):

T*np(c, T) _ap— |V
nie, T) ’

(13)

ap
a kg + ?

From the above equation we see that, if ay # 0, the expres-
sion in the right-hand side becomes arbitrarily small if the
temperature is low enough. Thus, we conclude that the con-
dition (12) will be fullfilled if and only if ¢y = 0. In order to
obtain the correct expression for the fraction n(c, T') for the
case ag = 0 we rewrite eq. (10) as:

T \'" %
ne, T) = O(c) (L‘?——) ‘
ag+ arkgT
~_a()+a]kBT_ |V2|]c .
ap ap ag+taj-tkg
=0 l1l-—
© ( ag + arkgT
ao
X (l — ————) . (14)
ag + aikgT

Since the second factor in the above expression tends to unity
as ap — 0, we finally obtain:

V2l

lim n(c, T) = O(c)eu*sT,
ap—0

as)

It can easily be shown that this expression is the solution of
eq. (9) forag = 0.

The results presented in this section can be summarized
as follows: a) all basic thermodynamic functions of the
ASYNNNI model at low temperatures are proportional to the
fraction n(c, T) of 3-fold coordinated Cu(1) ions, b) the con-
centration dependence of the basic thermodynamic functions
occurs only through the fraction n(c, T) (determined by the
function ® (c)) while the fraction n depends exponentially on
inverse temperature 1/kg7T, and c) the dimensionless con-
stant a; determines quantitatively the low-temperature ther-
modynamics of the ASYNNNI model. Moreover, the func-
tion ®(c) must be equal to zero for ¢ = 0, 1/4, 1/2, while,
on grounds of symmetry, in the interval 0 < ¢ < 1/20(c)
must be symmetric arround the value 1/4, i.e. ®(1/4 +6) =
(©(1/4 —$§). Also, O (c) attains its maximum for ¢ = ¢4 and
c=1/2 —c4.

3. Results of Numerical Calculations

We used the cluster variation method (CVM) to determine
the constant a; numerically. The CVM was originally pro-
posed by Kikuchi?*2?9 for the treatment of orderdisorder pro-
cesses. The CVM formalism is based on the expression for
the entropy per lattice site:

b(l)

s=—h§)4§mﬁumnh
1 i=1

(16)
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where the index / enumerates elements of the Kikuchi cluster
family, the Kikuchi coefficients y; take account of possible
cluster overlap, the index i enumerates all nonequivalent mi-
crostates of the cluster /, x;; is the probability of occurrence
of the microstate i of the cluster /, and o ; is the degeneracy
factor of the microstate i of the cluster /. One or several clus-
ters are taken as basic clusters (whose size defines the level of
the CVM approximation), while the remaining clusters [ are
included in (16) in order to correctly take into consideration
extensive thermodynamic quantities. Cluster probabilities x; ;
are connected with the multisite correlation functions &; (j
denoting subclusters) as follows:

1

=55 (17)

X1,i

I+ Zw,i,]fj ;
j

where p(l) denotes the number of lattice sites included in the
cluster [ and the index j runs over the set of all nonequivalent
clusters of the cluster family. The coefficients v;; ; are deter-
mined according to the following condition: for a given sub-
cluster j of the cluster / (the cluster / being in its microstate
i), the product of its spins is calculated and the correspond-
ing products of all such subclusters of the type j are summed.
Combining eq. (16) with the expression for the energy of the
system E = N ), n;V;&;, where n; denotes the number of
clusters of the type j per lattice site and V; is the interaction
energy associated with the cluster j, we obtain the expression
for the free energy (or for the thermodynamic potential). The
equilibrium state of the system under study corresponds to
the minimum of the free energy in the space of the multisite
correlation functions &;:
af

— =0=n;V;
ag] J I

Vi .
= —kgT Z zp—il) > i =1V nx,. (18)
J

If, instead of the concentration ¢ and the temperature 7', we
search for the equilibrium state for a given value of the chem-
ical potential v and the temperature T, then the thermody-
namical potential £2 should be used in eq. (18).

However, for some model systems it is more convenient to
use the so-called cluster fields as variational variables instead
of the multisite correlation functions. This approach to the
CVM is free of logarithmic terms in (18) which usually cause
convergence problems at low temperatures because some of
the cluster probabilities x;; become vanishingly small. The
cluster fields are introduced in the CVM via the relation:

1

X1 = Z exp "%l ;Vl,i,j(vj +vi) ],

19
where Z; denotes the statistical sum of the cluster / and ¥y ;
is the cluster field attached to cluster j when it is considered
as a subcluster of cluster /. Not all of the cluster fields v, ;
are linearly independent since they must satisfy certain re-
lations,**2> connected with the consistency relations among
the cluster probabilities x; ;. In order to obtain these relations,
we insert the expressions (19) into (18) and, after a few trans-
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formations, obtain:

> v =0, (20)
1

where v 1 ; equals the number of subclusters j contained in
the cluster / (here, we adopted a convention acording to which
the first microstate i = 1 of any cluster / is that in which all
its spins are oriented upwards). The implementation of the
cluster fields approach to the CVM ends with a search for
the minimum of the free energy (or, of the thermodynamic
potential £2) in the space of linearly independent fields v ;
Le.
af
0V,

We used the CVM in the cluster fields approach to analyze
the thermodynamics of the ASYNNNI model at low temper-
atures and especially to determine the value of the parameter
a;. The set of six basic clusters, consisting of three 5-point
and three 4-point clusters, is that used previously>* and has
proven itself capable of embracing all the relevant physics of
the ASYNNNI model. Recently higher-order CVM approxi-
mations including clusters as large as the 9-point basic clus-
ters?”) and the 13-point basic clusters?® were used, but the
resulting phase diagrams were practically identical to those
obtained with the 5 + 4-point approximation. The Kikuchi
cluster family for the 5 4+ 4-point approximation contains 15
clusters (i.e. [ = 1, 2,---, 15) which define N,, = 41 multi-
site correlation functions §;[3,4] (i.e. j =1, 2,---, 41) and
N, = 312, b(l) = 130 cluster probabilities x; ;. Since the
probabilities were subjected to normalization conditions?®
(for each cluster / of the cluster family) there were a total of
N. = N, — N,, — 15 = 74 consistency relations imposed on
the cluster probabilities x; ; and as many linearly independent
cluster effective field v, ;. Thus, the problem was reduced to
a system of 74 nonlinear egs. (21) which were solved numeri-
cally using a Newton-Raphson iteration scheme. Our numeri-
cal algorithms were able to work properly at very low temper-
atures (as low as T = kg T/ V; =~ 0.26(7)), but, since we were
interested in obtaining results at even lower temperatures, we
applied a simplified version of the CVM. This reduced ver-
sion of the CVM algorithm, which included a smaller number
of 60 cluster fields, was able to work successfully at T ~ 0.18
in a wide range of oxygen off-stoichiometry. Although such
a reduction of the numerical algorithms was made at the ex-
pense of the consistency of the CVM, in the sense that some
of 3-site correlation functions became dependent on the clus-
ter [ from which they were expressed, the equilibrium values
of the cluster probabilities x;; (19) thus obtained nevertheless
satisfied the system (18).

Figure 2 shows the chemical potential u as a function
of oxygen concentration ¢ at constant reduced temperature
T = (.24, in the interval 1/4 < ¢ < 1/2. Our numerical
calculations were based on the grand canonical scheme, i.e.
for a given value of the chemical potential & and tempera-
ture T we calculated the equilibrium values of the oxygen
concentration ¢, the fraction n(c, T) of 3-fold coordinated
Cu(1) ions, and other relevant statistical quantities. It should
be noted here that the difference 8¢ between the concentra-
tions of two adjacent calculated points on the isotherm was

0. 1)
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maintained to be very small, i.e. 0.002 < ¢ < 0.003. We
achieved this goal by suitably modifying the increment of the
chemical potential §u every time before calculating a new
point (using the previously solved point in the starting iter-
ation, in the space of the v ; variables, for implementation of
the Newton-Raphson procedure). Working this way we were

a (@)
1
-0_2—\0\0‘ \
0.404 | 0.405
-0.4 4
_0_6_
0.25 030 035 040 045  0.50
C
;
b
a |®

Fig. 3 Expansion coefficient a1, as a function of concentration ¢ at constant
temperature, calculated from eq. (7). Calculations were made for (a) the
canonical values of interaction constants? (V, = —0.5V, V3 = 0.5V;)
at T = 0.190 = const for 0.0005 < 8¢ < 0.001, and (b) the LMTO val-
ues’ at t = 0.195 = const. Inset: open (black) circles denote calculated
values of kgT'én(c, T) while open (black) inverted triangles denote the
values of A for 0.0005 < 3¢ < 0.001 (0.0002 < §¢ < 0.0004).
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able to determine very accurately the partial derivative dn/dc
as the ratio én/éc. Figure 3(a) shows the calculated values
of the parameter a;, as a function of oxygen concentration c,
obtained from the ratio between dn/8c and Au (where Au,
as before, stands for p(c, T) — py) according to eq. (7). The
results shown in Fig. 3(a) were obtained for the interaction
constants V, = —0.37Vy, V3 = 0.17V;, determined from
first principles linearized muffin-tin orbital (LMTO) calcula-
tions.*” From these results we see that a; is equal to —1/2 at
practically all values of the concentration except in the near
proximity of the concentration ¢4, where a; diverges. We have
also observed that the way a; tends to infinity, as ¢ approaches
cq4, is highly influenced by the magnitude of §c. The results
shown in Fig. 3(a) were obtained for 0.0005 < 3¢ < 0.001,
but when éc¢ was kept between 0.0002 and 0.0004 the singular
behavior around ¢4 became similar to that shown in Fig. 3(b)
(see the inset of Fig. 3(a)). Such singular behavior around
¢ = cq is therefore an artifact of the way we determined the
derivative n in the sense that, although éc in our calculations
was a very small quantity, it still was finite causing Ay and
dn not to change their signs at exactly the same value of the
concentration (i.e. at ¢ = cq) as they should in an exact calcu-
lation. Figure 3(b) shows results for the a; (¢) dependence ob-
tained for the canonical interaction constant’? V, = —0.5V;,
V3 = 0.5V,. We see that again a; = —1/2 for all oxygen con-
centrations (except in the vicinity of ¢ = 1/4 and ¢ = 1/2),
as in Fig. 3(a). Since the same result were also obtained for
other sets of interaction parameters and at all low tempera-
tures it follows that @; = —1/2 is indeed a general property
of the ASYNNNI model at T ~ 0 independent of the partic-
ular values of interactions.

To confirm this result we have calculated a; as a function

-0.55

-0.50

0.3 0.4 0.5
C

Fig. 4 Expansion coefficient a; as a function of concentration ¢, calculated
from eq. (8). The CVM calculations were performed for the canonical set
of interaction constants at T = 0.190 = const.
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of ¢ at constant (low) temperature using eq. (8). From eq. (8)
it follows that a; = (|V;|/ksT) — (s/ksn(c, T)), where the
fraction n(c, T) and the entropy s were determined from the
CVM calculations. These results, shown in Fig. 4, are in ex-
cellent agreement with the results of Fig. 3, indicating once
again that @y = —1/2. The fact that a;(c) attains the same
value at different concentrations ¢ confirms the validity of
eq. (8). This is a truly remarkable result in view of the CVM
expression for the entropy (16). In order to explain this in
some more detail, let us observe that at T =~ 0 the collec-
tion of all cluster microstates can be divided in two classes:
the first class contains the cluster microstates present in the
structure of the ground state, while the second class contains
the cluster microstates characteristics only for excited states.
The equilibrium values of the cluster probabilities of the first
class are of the order of unity, while the probabilities of the
second class are vanishing quantities as 7 =~ 0 (the clus-
ter microstates of the latter class obviously contain unlike V,
bonds and are proportional to the fraction n(c, T)). Taking
into account that the CVM entropy (16) represents a sum of
terms proportional to x; ; Inx; ; we have § = Sgrs + Sexs, Wwhere
Sgrs includes the terms with probabilities from the first class
while seys includes the terms with probabilities from the sec-
ond class. Thus, one would expect Sgrs > Sexs and conse-
quently s & sy at T ~ 0. However, such a conclusion is
incorrect since our numerical simulations clearly show that
Sexs > Sgrs at T~ 0, which is in accordance with eq. (8). We
explain such behavior by the fact that some of the Kikuchi
coefficients y; enter in eq. (16) with a negative sign and, thus,
positive and negative terms cancel causing sg to be negligi-
ble in comparison with seys. Such behavior was also observed
for all other sets of interaction constants V;, V5, and V3.

Having obtained numerically that a; = —1/2, either by use
of eq. (7) or through eq. (8), we can now state that the basic
thermodynamic functions of the ASYNNNI model at 7 ~ 0
are determined by the following expressions.

The deviation of the energy per site from the energy of the
ground state per site is given by:

E=Eo _ ol exp (—2'V2|> .
N  kgT
From eq. (8) we find that the entropy per site is given by:
5= @](f) [1V2| + kBTT] exp (- i':;') @3
Finally, the chemical potential , as a function of the con-
centration ¢ and the temperature T, is determined by:

22

kgT 2|V
wie, T) = —8V, F4V; — —Bz—@'(c) exp (— le;[) )
(24)
All other important thermodynamic functions can be di-
rectly obtained from (22-24).

4. Discussion and Conclusions

The low-temperature thermodynamics of the ASYNNNI
model has also been studied in Refs. 31)-33) in which the au-
thors concluded that the ASYNNNI model is equivalent to a
one-dimensional (1-D) Ising model with characteristic param-
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eter V3. Such a conclusion was based on the fact thatat 7 = 0
all o columns are either completely occupied with oxygen
atoms or completely empty. It appears, then, that a completely
occupied « column can be replaced by a single Ising spin ori-
ented upwards, while any completely unoccupied @ column
corresponds to an Ising spin oriented downwards. Taking into
account that the repulsive V3 bonds act between adjacent «
columns it therefore seems as if the whole basal plane lattice
is visually mapped onto a sequence of Ising spins coupled by
V3 bonds (the sequence of spins being aligned along the direc-
tion perpendicular to the @ columns). Assuming further that
at finite (low) temperatures the « columns are practically in-
tact (as at T = 0) the authors of Refs. 31)-33) thus concluded
that at low temperatures the ASYNNNI model is thermody-
namically equivalent to a 1-D Ising model with NN interac-
tion J = V3.

However, our results stand in a sharp contradiction to the
conclusions reached in Refs. 31)-33). In order to show this,
we shall briefly recapitulate the basic thermodynamic func-
tions of the 1-D Ising model at low temperatures. The en-
ergy of an open linear Ising chain, consisting of N spins
in zero external field, is determined by: (E — Ey)/N =
[J](1 — tanh(J/kgT)) which at T & Q attains the following
approximate form

E —

E 2\J
0 = 2|J|exp ——‘—l .
N kgT

The entropy of the 1-D Ising model in zero external field is
given by*¥

(25)

J
S=kg|NIn24+ (N —1)In|{ cos h—u
kg T

J J
~ -] M n L
kgT kgT
which when taken per site, at low temperature, and in the ther-
modynamic limit (N — o0) transforms into:

2 21J
s = []Jl-l— kBT] exp (—é%).

At low temperature and in zero external field the heat ca-
pacity C and the susceptibility x are approximately equal to

1 21J
C~ 5 €Xp l !
kgT? kT

1

L p (2
gl )

revealing singular behavior at 7 = 0.

Another fundamental property of the 1-D Ising model is
that the pair correlation functions £ () = (0;0;.,) decay ex-
ponentially with the distance r between spins, i.e. (0,0;+,) =
(0;0:4+1)". Since the magnetization per spin (o;) is equal to
zero at all temperatures, in zero external field, such exponen-
tial decay can be rewritten as:

(01014r) — (o) _ [ (010141) — (0:)* ]
1 —(0;)? 1 —(0)? '
which remains applicable when (o;) # 0.

Thus, at low temperatures, the basic thermodynamic func-
tions of the 1-D Ising model are determined by egs. (25), (27),

(26)

@7

(28a)

(28b)

29)
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and (28a), (28b), while the pair correlation functions along the
Ising chain satisfy the relation (29). We see that the temper-
ature dependences of the energy (25) and the entropy (27)
of the 1-D Ising model have the same forms as those of the
corresponding quantities of the ASYNNNI model (given by
egs. (22) and (23)). We further realize that the role of the in-
teraction V5 in formulas (22) and (23) is played by the NN in-
teraction J in eq. (25) and (27) of the 1-D Ising model, while
the role of the quantity @ (c) (in (22) and (23)) is played by
the number 2 in eqs. (25) and (27). Such one-to-one corre-
spondence between the interactions V; and J makes it possi-
ble to establish a full thermodynamical equivalence between
the ASYNNNI model and the 1-D Ising model with J = V;
in the region of low temperatures. That a conclusion of this
kind is very well grounded can also be seen from the heat ca-
pacity and the susceptibility of the ASYNNNI model which
show the same behavior as in eqs. (28a) and (28b), respec-
tively. The heat capacity of the ASYNNNI model is obtained
by taking the derivative of eq. (22), while the susceptibility
can be obtained as the inverse of the derivative of eq. (24) per
concentration ¢ yielding
2| Vzl)
ksT )~

ac 2 1
X =50 T 0" kaT exP(

It has recently been shown?” by Monte Carlo simulations
that, at low temperatures, the pair correlation functions of
the ASYNNNI model, along the direction of the V, bonds
Eva(r) = (0i0i4r)yy — (cr,-)i, behave almost exactly in accor-
dance with eq. (29) up to r =~ 20. However, such behavior
was not observed for the pair correlation functions along the
V3 and V; bond?*3% implying that the correlation functions
along the V, bonds might produce the largest contribution to
the susceptibility at low temperatures. That the fluctuations of
the oxygen atoms along the V, bonds contribute the dominant
paﬂ in the singular behavior of the susceptibility (30) around

= 0 can be most directly seen if we recall the fluctuation-
dlSSlpatlon result:*¥

ac
=T 4NkBT ZZ(("’U’

(30)

—(oi)o;). 3D

The indices i and j in the above equation run over all sites
in the lattice. Assuming that only the fluctuations along the
V, bonds on « columns are of importance at low 7', eq. (31)
transforms to:

+00
ol Z ((O‘,O’,_;,_,)

X ANksT 2 ~ (o1)a)-

(32)
Taking into account that for the case of, for example, the
OI structural phase {(0;) = 4c¢ — 1 (consequently, 1 —
(01)2 = 8c(1 — 2¢)) and (6;0i41) — (01)5 = 8c(1 — 2¢) —
20 (c) exp(—2|V,|/kgT), and inserting the expression (29)
into (32) we obtain:

[8c(1 —20)) 1 (2|V2|)
———————€eXp .
160 (c) kgT ksT

This relation expresses the same type of singular behavior

near absolute zero temperature as the CVM expression (30).
Although the CVM generally does not give accurate results

near critical points, where the correlation length becomes in-

(33)
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finite, it seems, according to (30) and (33), that it is never-
theless able to approach the exact solution very closely near
critical points in those cases in which the critical singularities
are due to the exponential decay of pair correlation functions
(29) along a certain direction. We believe that, even in the
framework of relatively simple approximations of the CVM,
the contribution of such long-distance pair correlation func-
tions appears to be included in the response functions of the
system owing to the way the CVM entropy expression is con-
structed: as a product of combinatorial expressions counting
local configurations of small clusters. This is supported by
the fact that for the 1-D Ising model using only the NN pairs
as the largest basic cluster in the CVM, yields the exact so-
lution which is characterized by the exponential decay of the
pair correlation functions.>¥

It is important to emphasize that the exponential decay of
the pair correlation functions along the V, bonds, being one
of the most important characteristics of the ASYNNNI model
at low temperatures, is maintained up to fairly high temper-
atures which are obtainable in experiments (800900 K, cor-
responding to T & 0.9). Also, the range of these correla-
tion functions is much greater than that of the pair correla-
tion functions along the V; or V3 bonds. For example, in the
tetragonal (disordered) phase at t =~ 50, the first 6 (7) pair
correlation functions along the V, bonds are still significant
(they also fit excellently into exponential decay, as expressed
by eq. (29)), while the correlation functions along the V3 and
V; bonds are negligible, except for NN N pairs.>> Therefore,
the short-range order in the system at high temperatures is, to
a high degree, determined by some maintained characteristics
of the V,-coupled Ising chain nature of the ASYNNNI model
which prevails at low temperatures.
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